A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images

We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 29; číslo 3; s. 545 - 559
Hlavní autoři: Liu, Jia, Gong, Maoguo, Qin, Kai, Zhang, Puzhao
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
AbstractList We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
Author Zhang, Puzhao
Gong, Maoguo
Liu, Jia
Qin, Kai
Author_xml – sequence: 1
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China
– sequence: 2
  givenname: Maoguo
  orcidid: 0000-0002-0415-8556
  surname: Gong
  fullname: Gong, Maoguo
  email: gong@ieee.org
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China
– sequence: 3
  givenname: Kai
  surname: Qin
  fullname: Qin, Kai
  organization: School of Computer Science and Information Technology, RMIT University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Puzhao
  surname: Zhang
  fullname: Zhang, Puzhao
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28026789$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEYhYNYqlX_gIIEeuPNbvPh5OPSbm0VlhWshd6FdyfvrLPOTqbJTEv_fTPu6oUXDYG8Cc85hHM-kP02tEjIKWdTzpn99LBYzL9PBeNqKpRUQug9cii4EhMhjdl_nfXPA3KS0prlpVihLu17ciAME0obe0jWV_QLYkdnof0dmqGvQwtNvg1dU7crusD-T4hPtAqRzh6hXWHGeyxHjn6GhJ7m4SY_xbDCFsOQ6F3X12U2gdbTe_AQ6e0GVpiOybsKmoQnu_OI_Ph6_TC7mczvvt3OruaT8pLrfsJBW4NQCKOsEcZXUEjGKymYLiFvrpcoS2-9LDyCNYpLI5YcrOJeVQblEbnY-nYx_Bow9W5TpxKbBp7_57gppBztTUY_vkHXYYg5geQEY8ZaZrXI1PmOGpYb9K6L9QbiX_eSYgbMFihjSCli5cq6hzGjPkLdOM7c2Jl77syNnbldZ1kq3khf3P8rOtuKakR8FWhtC1FY-Q9LiqEG
CODEN ITNNAL
CitedBy_id crossref_primary_10_5772_acrt_02
crossref_primary_10_1109_TNNLS_2022_3184414
crossref_primary_10_1109_LGRS_2019_2915251
crossref_primary_10_1016_j_cviu_2019_07_003
crossref_primary_10_1016_j_jag_2022_103127
crossref_primary_10_1007_s11432_020_3077_5
crossref_primary_10_1109_TGRS_2024_3390206
crossref_primary_10_1109_LGRS_2022_3217348
crossref_primary_10_1016_j_isprsjprs_2022_01_004
crossref_primary_10_1109_TGRS_2024_3403727
crossref_primary_10_1109_JSTARS_2025_3542469
crossref_primary_10_1109_LGRS_2020_3037930
crossref_primary_10_1109_TIP_2022_3154922
crossref_primary_10_1109_TNNLS_2024_3401696
crossref_primary_10_1109_LGRS_2021_3070145
crossref_primary_10_1109_JSTARS_2025_3582803
crossref_primary_10_1109_LGRS_2018_2843385
crossref_primary_10_3390_rs16040721
crossref_primary_10_1109_JSTARS_2021_3120381
crossref_primary_10_1109_TNNLS_2019_2920374
crossref_primary_10_1007_s12145_022_00914_4
crossref_primary_10_1016_j_jag_2023_103635
crossref_primary_10_1109_JSTARS_2024_3415171
crossref_primary_10_1016_j_isprsjprs_2024_01_002
crossref_primary_10_1109_JSTARS_2025_3542487
crossref_primary_10_1109_TNNLS_2019_2946869
crossref_primary_10_1109_JSTARS_2021_3069242
crossref_primary_10_1016_j_neucom_2019_12_104
crossref_primary_10_1109_JSTARS_2023_3260006
crossref_primary_10_1016_j_inffus_2024_102240
crossref_primary_10_1109_TIP_2025_3542276
crossref_primary_10_1016_j_jag_2023_103630
crossref_primary_10_3390_rs12111868
crossref_primary_10_1109_LGRS_2024_3370548
crossref_primary_10_1109_TGRS_2020_3026099
crossref_primary_10_1109_TGRS_2022_3224293
crossref_primary_10_3390_s25123740
crossref_primary_10_3390_rs14030722
crossref_primary_10_1109_TGRS_2023_3264811
crossref_primary_10_1109_TNNLS_2019_2910571
crossref_primary_10_1038_s41598_024_68129_9
crossref_primary_10_1016_j_isprsjprs_2019_09_016
crossref_primary_10_1109_JSTARS_2024_3461988
crossref_primary_10_1109_TGRS_2022_3228776
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_1109_JSTARS_2020_3046838
crossref_primary_10_1016_j_dsp_2021_103250
crossref_primary_10_1109_TGRS_2017_2739800
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_1109_ACCESS_2025_3559992
crossref_primary_10_3390_ijgi10090591
crossref_primary_10_1109_TGRS_2019_2956756
crossref_primary_10_1109_TGRS_2024_3381196
crossref_primary_10_1109_TGRS_2020_3000296
crossref_primary_10_1155_2022_3404858
crossref_primary_10_1109_ACCESS_2025_3552444
crossref_primary_10_1109_TGRS_2025_3544651
crossref_primary_10_1080_10106049_2024_2329673
crossref_primary_10_1109_TGRS_2024_3381752
crossref_primary_10_3390_rs16193624
crossref_primary_10_1007_s13042_023_01880_z
crossref_primary_10_1109_LGRS_2024_3496567
crossref_primary_10_1109_TGRS_2025_3584073
crossref_primary_10_1109_LGRS_2022_3173300
crossref_primary_10_1109_MGRS_2021_3088865
crossref_primary_10_1109_TGRS_2023_3334471
crossref_primary_10_1109_JSTARS_2022_3192251
crossref_primary_10_1109_TGRS_2022_3190504
crossref_primary_10_3390_rs14184646
crossref_primary_10_3390_rs15153896
crossref_primary_10_1109_TGRS_2021_3053571
crossref_primary_10_1007_s11220_019_0252_0
crossref_primary_10_1016_j_patcog_2025_111355
crossref_primary_10_1109_JSTARS_2025_3540041
crossref_primary_10_3390_rs11212593
crossref_primary_10_1016_j_isprsjprs_2025_03_008
crossref_primary_10_1007_s12517_020_05717_9
crossref_primary_10_1109_TNNLS_2021_3079627
crossref_primary_10_1016_j_asoc_2025_112725
crossref_primary_10_1016_j_patcog_2020_107598
crossref_primary_10_1109_JSTARS_2020_2964409
crossref_primary_10_1109_JSTARS_2021_3113831
crossref_primary_10_1109_JSTARS_2024_3373201
crossref_primary_10_1109_TGRS_2019_2944419
crossref_primary_10_1016_j_jag_2021_102638
crossref_primary_10_1109_JSTARS_2019_2892951
crossref_primary_10_1016_j_knosys_2024_112159
crossref_primary_10_3390_rs16081387
crossref_primary_10_1109_TGRS_2022_3200684
crossref_primary_10_1109_TGRS_2022_3221489
crossref_primary_10_1109_TGRS_2023_3294300
crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_1016_j_isprsjprs_2019_12_002
crossref_primary_10_3390_rs12172669
crossref_primary_10_3390_electronics12183766
crossref_primary_10_1109_JSTARS_2025_3588154
crossref_primary_10_1080_01431161_2020_1826066
crossref_primary_10_1109_LGRS_2018_2869608
crossref_primary_10_3390_rs13244971
crossref_primary_10_3390_rs15030588
crossref_primary_10_1007_s12524_021_01476_6
crossref_primary_10_1080_01431161_2018_1547934
crossref_primary_10_1109_JSTARS_2022_3174780
crossref_primary_10_1111_phor_12495
crossref_primary_10_1109_JSTARS_2024_3522350
crossref_primary_10_1109_TGRS_2024_3402391
crossref_primary_10_1109_TIP_2025_3539461
crossref_primary_10_1109_TNNLS_2020_3015858
crossref_primary_10_1109_TIP_2020_3017339
crossref_primary_10_3390_rs16203852
crossref_primary_10_1016_j_isprsjprs_2024_12_010
crossref_primary_10_1080_2150704X_2021_1892851
crossref_primary_10_1002_jbio_202300321
crossref_primary_10_3390_rs14040841
crossref_primary_10_3390_rs12223815
crossref_primary_10_3390_rs13234918
crossref_primary_10_1016_j_jag_2023_103399
crossref_primary_10_1109_TGRS_2021_3064501
crossref_primary_10_3390_rs14143323
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1109_TGRS_2023_3348878
crossref_primary_10_1109_TGRS_2025_3526211
crossref_primary_10_1016_j_displa_2024_102840
crossref_primary_10_3390_rs13234802
crossref_primary_10_1109_JSTARS_2020_3037893
crossref_primary_10_1109_TGRS_2025_3604532
crossref_primary_10_1016_j_neucom_2024_128080
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_3390_rs16061077
crossref_primary_10_1109_LGRS_2020_2988032
crossref_primary_10_1109_TGRS_2020_2986239
crossref_primary_10_1007_s11432_022_3588_0
crossref_primary_10_1016_j_dsp_2024_104825
crossref_primary_10_1109_TNNLS_2023_3334764
crossref_primary_10_3390_electronics13050867
crossref_primary_10_1109_JSTARS_2021_3073994
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1002_gj_4677
crossref_primary_10_1109_TGRS_2019_2930322
crossref_primary_10_3390_rs14040871
crossref_primary_10_1109_JSTARS_2024_3387093
crossref_primary_10_1016_j_rse_2024_114373
crossref_primary_10_3390_rs17152581
crossref_primary_10_1109_LGRS_2018_2878420
crossref_primary_10_1109_TGRS_2022_3199502
crossref_primary_10_1109_JSEN_2021_3119747
crossref_primary_10_1080_01431161_2021_1941390
crossref_primary_10_1038_s41598_022_16329_6
crossref_primary_10_1080_17538947_2024_2347457
crossref_primary_10_1109_TIP_2019_2933747
crossref_primary_10_1016_j_isprsjprs_2018_09_002
crossref_primary_10_1109_LGRS_2019_2953754
crossref_primary_10_1109_TIP_2021_3093766
crossref_primary_10_1016_j_rse_2021_112308
crossref_primary_10_3390_rs13071236
crossref_primary_10_1109_JSTARS_2021_3077545
crossref_primary_10_1007_s00521_022_07637_z
crossref_primary_10_1109_TGRS_2025_3542814
crossref_primary_10_3390_rs13224597
crossref_primary_10_1109_TGRS_2022_3209972
crossref_primary_10_1016_j_isprsjprs_2023_03_004
crossref_primary_10_1002_aisy_201900088
crossref_primary_10_1109_ACCESS_2019_2957148
crossref_primary_10_1016_j_patcog_2022_108845
crossref_primary_10_1109_TGRS_2024_3382474
crossref_primary_10_1109_TGRS_2017_2750220
crossref_primary_10_3390_rs11020142
crossref_primary_10_1109_TVT_2022_3230265
crossref_primary_10_1016_j_isprsjprs_2025_02_004
crossref_primary_10_1109_TGRS_2019_2948659
crossref_primary_10_3390_rs14071552
crossref_primary_10_3390_rs14215622
crossref_primary_10_1109_TGRS_2019_2913095
crossref_primary_10_3390_rs11151836
crossref_primary_10_1109_JSEN_2021_3085995
crossref_primary_10_3390_rs14153734
crossref_primary_10_1109_TGRS_2022_3158741
crossref_primary_10_1016_j_jag_2023_103361
crossref_primary_10_1016_j_isprsjprs_2025_05_029
crossref_primary_10_1109_MAES_2021_3117369
crossref_primary_10_1016_j_jag_2023_103366
crossref_primary_10_1109_TGRS_2021_3061686
crossref_primary_10_1007_s12145_019_00380_5
crossref_primary_10_1016_j_ecoinf_2021_101310
crossref_primary_10_3390_rs13010078
crossref_primary_10_1016_j_ipm_2021_102726
crossref_primary_10_1109_TGRS_2021_3109957
crossref_primary_10_1109_TGRS_2025_3598766
crossref_primary_10_3390_rs16111961
crossref_primary_10_1080_07038992_2021_1925530
crossref_primary_10_1016_j_patcog_2025_112394
crossref_primary_10_1109_JSTARS_2022_3215773
crossref_primary_10_1109_LGRS_2023_3266891
crossref_primary_10_1109_TGRS_2023_3330494
crossref_primary_10_1109_ACCESS_2018_2889326
crossref_primary_10_1109_JSTARS_2020_3026838
crossref_primary_10_1109_JSTARS_2024_3422687
crossref_primary_10_3390_rs13163336
crossref_primary_10_3390_rs12152460
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_1016_j_isprsjprs_2021_05_019
crossref_primary_10_3390_rs14030438
crossref_primary_10_3390_rs16050804
crossref_primary_10_1109_TGRS_2024_3519195
crossref_primary_10_3390_rs12091404
crossref_primary_10_1109_LGRS_2018_2889307
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_1109_TGRS_2024_3516001
crossref_primary_10_1109_LGRS_2018_2868704
crossref_primary_10_3390_rs16111850
crossref_primary_10_3390_rs12101662
crossref_primary_10_1080_17538947_2024_2398051
crossref_primary_10_1109_TGRS_2024_3480091
crossref_primary_10_1111_tgis_13133
crossref_primary_10_1109_LGRS_2019_2955309
crossref_primary_10_3390_rs14184478
crossref_primary_10_1109_JSTARS_2024_3464735
crossref_primary_10_1109_TGRS_2021_3055584
crossref_primary_10_1016_j_isprsjprs_2023_04_001
crossref_primary_10_3390_rs13183750
crossref_primary_10_1007_s00521_020_05008_0
crossref_primary_10_1016_j_engappai_2024_108446
crossref_primary_10_1109_JSTARS_2020_2974276
crossref_primary_10_1109_TGRS_2023_3314217
crossref_primary_10_1109_TGRS_2024_3421581
crossref_primary_10_3390_rs14041000
crossref_primary_10_1016_j_isprsjprs_2025_08_029
crossref_primary_10_3390_rs12020205
crossref_primary_10_1109_LGRS_2019_2916601
crossref_primary_10_1016_j_jag_2022_102769
crossref_primary_10_1109_LGRS_2022_3154745
crossref_primary_10_1016_j_isprsjprs_2023_04_008
crossref_primary_10_1016_j_ophoto_2023_100044
crossref_primary_10_3390_rs13173394
crossref_primary_10_1109_JSTARS_2019_2915842
crossref_primary_10_1016_j_isprsjprs_2023_09_012
crossref_primary_10_3390_rs11111292
crossref_primary_10_1109_TGRS_2018_2872509
crossref_primary_10_1134_S2635167624601190
crossref_primary_10_1109_TNNLS_2023_3242075
crossref_primary_10_3390_rs15092433
crossref_primary_10_1109_TNNLS_2020_3016321
crossref_primary_10_1117_1_JRS_16_046509
crossref_primary_10_1109_TNNLS_2025_3570425
crossref_primary_10_1016_j_cageo_2022_105249
crossref_primary_10_1109_TGRS_2019_2931620
crossref_primary_10_1109_TAES_2025_3529431
crossref_primary_10_1109_TGRS_2023_3235981
crossref_primary_10_1587_transinf_2020EDL8129
crossref_primary_10_1109_LGRS_2023_3300308
crossref_primary_10_1109_TGRS_2023_3281792
crossref_primary_10_1109_LGRS_2024_3415819
crossref_primary_10_1109_LGRS_2021_3111040
crossref_primary_10_1109_TGRS_2024_3456548
crossref_primary_10_1109_TGRS_2024_3362728
crossref_primary_10_1109_TNNLS_2022_3172183
crossref_primary_10_1016_j_neunet_2019_01_004
crossref_primary_10_1109_TGRS_2025_3605961
crossref_primary_10_1109_TGRS_2024_3524639
crossref_primary_10_1109_TGRS_2025_3591814
crossref_primary_10_1109_TGRS_2025_3600456
crossref_primary_10_3390_rs15153742
crossref_primary_10_1016_j_jag_2024_103969
crossref_primary_10_1016_j_inffus_2024_102313
crossref_primary_10_1109_TNNLS_2021_3056238
crossref_primary_10_1109_TGRS_2023_3277496
crossref_primary_10_3390_rs15030621
crossref_primary_10_3390_rs10081228
crossref_primary_10_1109_JSTARS_2020_3009116
crossref_primary_10_1109_JSTARS_2025_3591834
crossref_primary_10_1080_10095020_2024_2446307
crossref_primary_10_1109_TGRS_2021_3097717
crossref_primary_10_3390_ijgi11070385
crossref_primary_10_1109_JSTARS_2019_2934602
crossref_primary_10_1109_LGRS_2023_3309301
crossref_primary_10_1109_LGRS_2021_3085022
crossref_primary_10_3390_rs11030240
crossref_primary_10_1109_TGRS_2020_3013673
crossref_primary_10_1016_j_isprsjprs_2021_07_007
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_TNNLS_2017_2676130
crossref_primary_10_1080_01431161_2024_2343139
crossref_primary_10_3390_rs12183057
crossref_primary_10_1109_ACCESS_2018_2849110
crossref_primary_10_1109_TGRS_2024_3363431
crossref_primary_10_1109_TGRS_2022_3229027
crossref_primary_10_1109_TGRS_2023_3241436
crossref_primary_10_1109_TGRS_2021_3078741
crossref_primary_10_1109_TGRS_2023_3320805
crossref_primary_10_1080_10095020_2022_2085633
crossref_primary_10_1109_JSTARS_2024_3424831
crossref_primary_10_3390_rs12233922
crossref_primary_10_1109_LGRS_2023_3312734
crossref_primary_10_1016_j_asoc_2020_106510
crossref_primary_10_1080_17538947_2024_2316109
crossref_primary_10_3390_rs15010151
crossref_primary_10_1109_TGRS_2021_3056196
crossref_primary_10_1109_TGRS_2025_3578386
crossref_primary_10_3390_rs14133100
crossref_primary_10_1109_JSTARS_2024_3479703
crossref_primary_10_1109_TGRS_2021_3066432
crossref_primary_10_1109_TGRS_2022_3161337
crossref_primary_10_1109_TGRS_2020_3001584
crossref_primary_10_1080_01431161_2019_1708507
crossref_primary_10_1109_JSTARS_2020_2983993
crossref_primary_10_1109_JSTARS_2023_3333959
crossref_primary_10_1109_JSTARS_2023_3347571
crossref_primary_10_1109_TGRS_2021_3110998
crossref_primary_10_1038_s41598_025_07252_7
crossref_primary_10_1080_01431161_2024_2421935
crossref_primary_10_1109_TAI_2024_3357667
crossref_primary_10_1109_TIE_2020_2982085
crossref_primary_10_1109_TGRS_2021_3106381
crossref_primary_10_3390_rs14143394
crossref_primary_10_1109_JSTARS_2025_3574173
crossref_primary_10_1109_TGRS_2021_3071347
crossref_primary_10_3390_rs16214109
crossref_primary_10_1109_TGRS_2020_2981051
crossref_primary_10_1016_j_inffus_2023_102123
crossref_primary_10_32604_cmc_2020_012364
crossref_primary_10_1109_LGRS_2022_3201003
crossref_primary_10_1109_TGRS_2024_3515258
crossref_primary_10_1109_TPAMI_2023_3237896
crossref_primary_10_1109_LGRS_2022_3201925
crossref_primary_10_1109_TGRS_2022_3140404
crossref_primary_10_1016_j_asr_2025_08_045
crossref_primary_10_1016_j_cviu_2024_104253
crossref_primary_10_1109_TGRS_2019_2916212
crossref_primary_10_1111_exsy_12398
crossref_primary_10_1007_s40031_024_01084_1
crossref_primary_10_1109_TGRS_2020_2968098
crossref_primary_10_1109_TGRS_2023_3346879
crossref_primary_10_3390_rs12101688
crossref_primary_10_3390_rs16132355
crossref_primary_10_3390_rs14184570
crossref_primary_10_1109_TNNLS_2022_3157689
crossref_primary_10_1038_s41598_024_79266_6
crossref_primary_10_1007_s11063_020_10211_0
crossref_primary_10_1007_s12559_021_09968_w
crossref_primary_10_1109_LGRS_2017_2738149
crossref_primary_10_1016_j_rsase_2024_101168
crossref_primary_10_1109_TGRS_2021_3113912
Cites_doi 10.1109/TFUZZ.2013.2249072
10.1109/TNN.2006.875978
10.1109/TGRS.2013.2281391
10.1080/01431161.2013.805282
10.1109/TGRS.2004.834630
10.1109/LGRS.2011.2167211
10.1109/TGRS.2008.916476
10.1016/j.jag.2011.10.013
10.1162/neco.2006.18.7.1527
10.1109/TIP.2014.2387013
10.1038/nature14539
10.1177/001316448104100307
10.1109/LGRS.2013.2250908
10.4236/ars.2012.13008
10.1109/TIP.2010.2045070
10.1109/TGRS.2004.842441
10.1109/TIP.2012.2219547
10.1109/TGRS.2006.885408
10.1109/TIP.2008.916047
10.1109/TPAMI.2010.37
10.1109/TGRS.2013.2288271
10.1109/TGRS.2006.876288
10.1109/TPAMI.2013.50
10.1016/j.sigpro.2014.09.009
10.1016/j.isprsjprs.2015.02.005
10.1109/TGRS.2005.857987
10.1109/TNNLS.2015.2469673
10.1109/TGRS.2004.835304
10.1109/TGRS.2009.2038274
10.1109/TGRS.2014.2374218
10.1109/TNNLS.2014.2359471
10.1109/ICASSP.2015.7178223
10.1109/TGRS.2008.916201
10.1016/j.patcog.2014.03.025
10.1109/TGRS.2010.2045506
10.1109/TIP.2004.838698
10.1109/TNNLS.2015.2435783
10.1109/TNNLS.2014.2307532
10.1109/TIP.2006.888195
10.1016/j.asoc.2015.10.044
10.1109/TNNLS.2014.2336852
10.1109/TIP.2013.2259833
10.1109/TGRS.2013.2240692
10.1109/TIP.2011.2170702
10.1080/01431168908903939
10.1109/5.726791
10.1145/1390156.1390294
10.1109/TGRS.2007.893568
10.1109/TIP.2002.999678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2636227
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 559
ExternalDocumentID 28026789
10_1109_TNNLS_2016_2636227
7795259
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Program for Support of Top-Notch Young Professionals of China
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20130203110011
– fundername: National Natural Science Foundation of China
  grantid: 61422209
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-1a798ea52869828dfa5301f3207ca7ca17be3cd9d35dea9861382b1a961d6f8e3
IEDL.DBID RIE
ISICitedReferencesCount 341
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426344600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
IngestDate Thu Oct 02 06:13:55 EDT 2025
Sun Oct 05 00:17:05 EDT 2025
Thu Apr 03 06:49:58 EDT 2025
Sat Nov 29 01:39:56 EST 2025
Tue Nov 18 22:11:20 EST 2025
Wed Aug 27 02:52:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-1a798ea52869828dfa5301f3207ca7ca17be3cd9d35dea9861382b1a961d6f8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0415-8556
PMID 28026789
PQID 2008990972
PQPubID 85436
PageCount 15
ParticipantIDs ieee_primary_7795259
proquest_miscellaneous_1853352868
proquest_journals_2008990972
crossref_primary_10_1109_TNNLS_2016_2636227
pubmed_primary_28026789
crossref_citationtrail_10_1109_TNNLS_2016_2636227
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref14
ref52
ref55
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref47
ref41
jensen (ref35) 1987; 53
rifai (ref43) 2011
ref49
ref8
hou (ref48) 2015; 26
ref7
ref9
ref4
ref3
ref6
ref5
ref40
bengio (ref53) 2007
ref34
ref37
ref36
ref31
ref30
ref33
ref32
bazaraa (ref54) 2013
ref2
ref39
ref38
chandar (ref51) 2013
ref24
ref23
ref26
ref25
vincent (ref42) 2010; 11
ref20
ref22
ref21
ref28
ref27
ref29
gong (ref1) 2008; 37
lee (ref44) 2007
References_xml – ident: ref29
  doi: 10.1109/TFUZZ.2013.2249072
– ident: ref26
  doi: 10.1109/TNN.2006.875978
– volume: 37
  start-page: 757
  year: 2008
  ident: ref1
  article-title: A review of multi-temporal remote sensing data change detection algorithms
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref7
  doi: 10.1109/TGRS.2013.2281391
– ident: ref36
  doi: 10.1080/01431161.2013.805282
– ident: ref4
  doi: 10.1109/TGRS.2004.834630
– start-page: 833
  year: 2011
  ident: ref43
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/LGRS.2011.2167211
– ident: ref32
  doi: 10.1109/TGRS.2008.916476
– start-page: 1
  year: 2013
  ident: ref51
  article-title: Multilingual deep learning
  publication-title: Proc NIPS
– ident: ref37
  doi: 10.1016/j.jag.2011.10.013
– ident: ref40
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref16
  doi: 10.1109/TIP.2014.2387013
– ident: ref52
  doi: 10.1038/nature14539
– ident: ref57
  doi: 10.1177/001316448104100307
– ident: ref31
  doi: 10.1109/LGRS.2013.2250908
– ident: ref5
  doi: 10.4236/ars.2012.13008
– ident: ref21
  doi: 10.1109/TIP.2010.2045070
– ident: ref23
  doi: 10.1109/TGRS.2004.842441
– year: 2013
  ident: ref54
  publication-title: Nonlinear Programming Thory and Algorithms
– ident: ref56
  doi: 10.1109/TIP.2012.2219547
– ident: ref18
  doi: 10.1109/TGRS.2006.885408
– ident: ref14
  doi: 10.1109/TIP.2008.916047
– ident: ref9
  doi: 10.1109/TPAMI.2010.37
– ident: ref13
  doi: 10.1109/TGRS.2013.2288271
– start-page: 153
  year: 2007
  ident: ref53
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1109/TGRS.2006.876288
– ident: ref41
  doi: 10.1109/TPAMI.2013.50
– ident: ref17
  doi: 10.1016/j.sigpro.2014.09.009
– ident: ref34
  doi: 10.1016/j.isprsjprs.2015.02.005
– ident: ref11
  doi: 10.1109/TGRS.2005.857987
– ident: ref46
  doi: 10.1109/TNNLS.2015.2469673
– ident: ref20
  doi: 10.1109/TGRS.2004.835304
– ident: ref6
  doi: 10.1109/TGRS.2009.2038274
– start-page: 873
  year: 2007
  ident: ref44
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref50
  doi: 10.1109/TGRS.2014.2374218
– ident: ref47
  doi: 10.1109/TNNLS.2014.2359471
– ident: ref33
  doi: 10.1109/ICASSP.2015.7178223
– ident: ref30
  doi: 10.1109/TGRS.2008.916201
– ident: ref45
  doi: 10.1016/j.patcog.2014.03.025
– ident: ref25
  doi: 10.1109/TGRS.2010.2045506
– ident: ref2
  doi: 10.1109/TIP.2004.838698
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref42
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1109/TNNLS.2015.2435783
– ident: ref49
  doi: 10.1109/TNNLS.2014.2307532
– ident: ref8
  doi: 10.1109/TIP.2006.888195
– volume: 53
  start-page: 521
  year: 1987
  ident: ref35
  article-title: Inland wetland change detection using aircraft MSS data
  publication-title: Photogram Eng Remote Sens
– ident: ref15
  doi: 10.1016/j.asoc.2015.10.044
– volume: 26
  start-page: 1275
  year: 2015
  ident: ref48
  article-title: Blind image quality assessment via deep learning
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2336852
– ident: ref27
  doi: 10.1109/TIP.2013.2259833
– ident: ref10
  doi: 10.1109/TGRS.2013.2240692
– ident: ref28
  doi: 10.1109/TIP.2011.2170702
– ident: ref3
  doi: 10.1080/01431168908903939
– ident: ref39
  doi: 10.1109/5.726791
– ident: ref55
  doi: 10.1145/1390156.1390294
– ident: ref12
  doi: 10.1109/TGRS.2007.893568
– ident: ref19
  doi: 10.1109/TIP.2002.999678
SSID ssj0000605649
Score 2.6576676
Snippet We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 545
SubjectTerms Change detection
Coupling
Couplings
deep neural network
denoising autoencoder optical images
Feature extraction
Image acquisition
Image detection
Laser radar
Neural networks
Optical imaging
Optical measuring instruments
Optical properties
Optical sensors
Radar
Radar imaging
Sensors
synthetic aperture radar images
Title A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images
URI https://ieeexplore.ieee.org/document/7795259
https://www.ncbi.nlm.nih.gov/pubmed/28026789
https://www.proquest.com/docview/2008990972
https://www.proquest.com/docview/1853352868
Volume 29
WOSCitedRecordID wos000426344600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcuFFoeKaUyEjdIGzuJH8eybVUkFBAUaW-R154gECSrffT3d-w8xAGQKkVKpNiJ5RmPP9sz8wG84RJNYV2TNkY1aeGMSbUPrKkZgVdXGlRYRLIJVVV6Pjefd-DdFAuDiNH5DE_DYzzL953bhq2yM6VMSXB9F3aVUn2s1rSfkhEulxHtCi5FKnI1H2NkMnN2U1UfvwZHLnkqJNlsEcj3hA70S4Hg_Y8pKXKs_Btuxmnnav9-DX4MjwZ4yc57fXgCO9gewP5I3cCGkXwIP8_ZBeKSzbr2dlA-qjbrtiFA9zureudwRoiW9fEHVHwTvbZa9p4mPs_o4Tq40nSkgdht1-zTMm6LM9t69sV6u2IffpOxWj-Fb1eXN7PrdKBdSF3B1SblVhmNthRaGlqP-caWZAWaXGTKWbq4WmDuvPF56dEaLUMawwW3RnIvG435M9hruxZfACPrsODIrcikKBwttrXwuSwWdLdW-TwBPvZ87Yac5IEa41cd1yaZqaPg6iC4ehBcAm-nOss-I8d_Sx8GsUwlB4kkcDwKuB4G7ToyctLkbJRI4PX0moZbOEOxsS_rAG9CQhypE3jeK8b07VGfjv7-z5fwkFqmewe2Y9jbrLb4Ch64282P9eqEdHquT6JO3wGPCe8k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQvlFJaAn0YiRukjZ3Ej2PZttqq24BgkfYWeW0HgSBZ7aO_n7HzEAdAQoqUSLETyzMef7Zn5gN4Q7lTmTZVXClRxZlRKpbWs6YmCF5NrpxwWSCbEEUhZzP1cQveDbEwzrngfObO_GM4y7eN2fitsnMhVI5w_QE8zLOM0TZaa9hRSRCZ84B3GeUsZqmY9VEyiTqfFsXks3fl4meMo9Vmnn6PSU_A5Cnef5uUAsvK3wFnmHiud_-vyU_hSQcwyUWrEXuw5epnsNuTN5BuLO_D9wty6dyCjJr6vlM_rDZqNj5E9yspWvdwgpiWtBEIWHwd_LZq8h6nPkvwYeydaRrUQddsVuTDImyME11b8klbvSQ3P9FcrZ7Dl-ur6Wgcd8QLscmoWMdUCyWdzpnkCldkttI52oEqZYkwGi8q5i41Vtk0t04ryX0iwznVilPLK-nSA9ium9q9AIL2YU4d1SzhLDO43JbMpjyb411rYdMIaN_zpemykntyjB9lWJ0kqgyCK73gyk5wEbwd6izanBz_LL3vxTKU7CQSwVEv4LIbtqvAyYnTsxIsgtfDaxxw_hRFh74sPcDxKXG4jOCwVYzh270-vfzzP0_h8Xh6NyknN8XtK9jBVsrWne0IttfLjTuGR-Z-_W21PAma_QuCL_GD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Convolutional+Coupling+Network+for+Change+Detection+Based+on+Heterogeneous+Optical+and+Radar+Images&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Jia&rft.au=Gong%2C+Maoguo&rft.au=Qin%2C+Kai&rft.au=Zhang%2C+Puzhao&rft.date=2018-03-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=3&rft.spage=545&rft.epage=559&rft_id=info:doi/10.1109%2FTNNLS.2016.2636227&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2636227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon