Spin pair geometry revealed by high-field DEER in the presence of conformational distributions

Orientation selection on two nitroxide-labelled shape-persistent molecules is demonstrated by high-field pulsed electron–electron double resonance experiments at a frequency of 95 GHz with a commercial spectrometer. The experiments are performed with fixed observer and pump frequencies by variation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) Jg. 185; H. 1; S. 118 - 129
Hauptverfasser: Polyhach, Ye, Godt, A., Bauer, C., Jeschke, G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.03.2007
Schlagworte:
ISSN:1090-7807, 1096-0856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orientation selection on two nitroxide-labelled shape-persistent molecules is demonstrated by high-field pulsed electron–electron double resonance experiments at a frequency of 95 GHz with a commercial spectrometer. The experiments are performed with fixed observer and pump frequencies by variation of the magnetic field, so that the variation of both the dipolar frequencies and the modulation depths can be analyzed. By applying the deadtime-free four-pulse double electron–electron resonance (DEER) sequence, the lineshapes of the dipolar spectra are obtained. In the investigated linear biradical and equilateral triradical the nitroxide labels undergo restricted dynamics, so that their relative orientations are not fixed, but are correlated to some extent. In this situation, the general dependence of the dipolar spectra on the observer field can be satisfyingly modelled by simple geometrical models that involve only one rotational degree of freedom for the biradical and two rotational degrees of freedom for the triradical. A somewhat better agreement of the dipolar lineshapes for the biradical is obtained by simulations based on a molecular dynamics trajectory. For the triradical, small but significant deviations of the lineshape are observed with both models, indicating that the technique can reveal deficiencies in modelling of the conformational ensemble of a macromolecule.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1090-7807
1096-0856
DOI:10.1016/j.jmr.2006.11.012