Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes
Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H...
Saved in:
| Published in: | Angewandte Chemie (International ed.) Vol. 60; no. 34; pp. 18845 - 18851 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
16.08.2021
Wiley |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C.
A highly reversible Zn anode working at low temperature is achieved by introducing SnCl2 into eutectic ZnCl2 aqueous electrolyte to form a zincophilic–zincophobic interfacial layer on the Zn anode in situ. The bottom layer of Sn facilitates uniform Zn deposition, while the top layer of zincophobic Zn5(OH)8Cl2 H2O facilitates Zn2+ diffusion and avoids Zn dendrites. The eutectic composition enhances the low temperature conductivity. |
|---|---|
| AbstractList | Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C.Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C. Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C. Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl 2 aqueous electrolyte with 0.05 m SnCl 2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn 5 (OH) 8 Cl 2 ⋅H 2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn 5 (OH) 8 Cl 2 ⋅H 2 O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm −1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn 2+ and Cl − . The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm −2 . Practically, Zn∥VOPO 4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C. Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C. A highly reversible Zn anode working at low temperature is achieved by introducing SnCl2 into eutectic ZnCl2 aqueous electrolyte to form a zincophilic–zincophobic interfacial layer on the Zn anode in situ. The bottom layer of Sn facilitates uniform Zn deposition, while the top layer of zincophobic Zn5(OH)8Cl2 H2O facilitates Zn2+ diffusion and avoids Zn dendrites. The eutectic composition enhances the low temperature conductivity. |
| Author | Wang, Chunsheng Ma, Lu Li, Dan Balbuena, Perla B. Deng, Tao Cao, Longsheng Yang, Xiao‐Qing Soto, Fernando A. Ponce, Victor Zhang, Bao Hu, Enyuan Seminario, Jorge M. |
| Author_xml | – sequence: 1 givenname: Longsheng orcidid: 0000-0002-2917-6523 surname: Cao fullname: Cao, Longsheng organization: University of Maryland – sequence: 2 givenname: Dan orcidid: 0000-0003-3097-9363 surname: Li fullname: Li, Dan organization: University of Maryland – sequence: 3 givenname: Fernando A. surname: Soto fullname: Soto, Fernando A. organization: Texas A&M University – sequence: 4 givenname: Victor surname: Ponce fullname: Ponce, Victor organization: Texas A&M University – sequence: 5 givenname: Bao surname: Zhang fullname: Zhang, Bao organization: University of Maryland – sequence: 6 givenname: Lu surname: Ma fullname: Ma, Lu organization: Brookhaven National Laboratory – sequence: 7 givenname: Tao surname: Deng fullname: Deng, Tao organization: University of Maryland – sequence: 8 givenname: Jorge M. surname: Seminario fullname: Seminario, Jorge M. organization: Texas A&M University – sequence: 9 givenname: Enyuan surname: Hu fullname: Hu, Enyuan organization: Brookhaven National Laboratory – sequence: 10 givenname: Xiao‐Qing surname: Yang fullname: Yang, Xiao‐Qing organization: Brookhaven National Laboratory – sequence: 11 givenname: Perla B. surname: Balbuena fullname: Balbuena, Perla B. email: balbuena@tamu.edu organization: Texas A&M University – sequence: 12 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland |
| BackLink | https://www.osti.gov/servlets/purl/1807958$$D View this record in Osti.gov |
| BookMark | eNqFkU9rFDEYxoNUsK1ePQe9eJk1fyaTzHFbVndhUZCevIRMkummpMmaZJW59QsIgt-wn8SsUxQKIjnkz_N73iTvcwZOQgwWgJcYLTBC5K0Kzi4IIhhxysUTcIoZwQ3lnJ7UdUtpwwXDz8BZzjeVFwJ1p-D72l3v_AQ_2a82ZTd4C5dfDjYeMvzsgoYXqhSbnM3QBlVVA4fptxL3O-edvr_7-bCLg9NwEyo9Ku2Uh1s11ZJQBTMfp8O-VP96Mile23B_9-MiVm3lrS4p-qnY_Bw8HZXP9sXDfA6u3q2uLtfN9uP7zeVy2-gWc9FoIyw3BLE6EO0FMaY3Peu7kfT9MBpBNafIjGzQhilDCFVjO7IOEaO7ztBz8GouG3NxMmtXrN7pGEJ9icQC8Z6JCr2ZoX2KtSO5yFuXtfVehWN7JGEtZy2hBFX09SP0Jh5SqD-oFOupoKJrK9XOlE4x52RHWS9WxcVQknJeYiSPOcpjjvJPjtW2eGTbJ3er0vRvQz8bvjlvp__Qcvlhs_rr_QU6TLbL |
| CitedBy_id | crossref_primary_10_1002_adma_202306508 crossref_primary_10_1002_ange_202212839 crossref_primary_10_1002_smll_202503105 crossref_primary_10_1002_adma_202506756 crossref_primary_10_1007_s40820_021_00733_0 crossref_primary_10_1002_adfm_202412547 crossref_primary_10_1002_smll_202205462 crossref_primary_10_1021_acsnano_4c18422 crossref_primary_10_1016_j_jpowsour_2022_231825 crossref_primary_10_1016_j_jechem_2023_12_019 crossref_primary_10_1002_smll_202405009 crossref_primary_10_1016_j_cej_2025_159323 crossref_primary_10_1007_s12274_023_5637_7 crossref_primary_10_1002_anie_202407067 crossref_primary_10_1016_j_enchem_2022_100076 crossref_primary_10_1039_D1EE03749H crossref_primary_10_1038_s41467_025_58859_3 crossref_primary_10_1016_j_mattod_2023_09_008 crossref_primary_10_1002_ange_202309957 crossref_primary_10_1007_s40820_021_00782_5 crossref_primary_10_1016_j_jechem_2024_02_016 crossref_primary_10_1039_D2NH00354F crossref_primary_10_1002_advs_202300398 crossref_primary_10_1016_j_nanoen_2022_107331 crossref_primary_10_1002_aenm_202203729 crossref_primary_10_1002_slct_202200926 crossref_primary_10_1002_anie_202314456 crossref_primary_10_1002_anie_202423531 crossref_primary_10_1002_ange_202516282 crossref_primary_10_1002_adfm_202403616 crossref_primary_10_1002_adma_202411802 crossref_primary_10_1002_adma_202313621 crossref_primary_10_1007_s40242_023_3099_9 crossref_primary_10_1016_j_gee_2022_09_004 crossref_primary_10_1016_j_carbon_2023_118066 crossref_primary_10_1002_aenm_202102707 crossref_primary_10_1063_5_0203943 crossref_primary_10_1007_s40820_023_01171_w crossref_primary_10_1002_anie_202516282 crossref_primary_10_1002_aenm_202401470 crossref_primary_10_1002_adma_202308836 crossref_primary_10_1002_adfm_202509652 crossref_primary_10_1039_D2EE02687B crossref_primary_10_1002_ange_202316499 crossref_primary_10_1002_smll_202401589 crossref_primary_10_1002_cnl2_70036 crossref_primary_10_1088_2752_5724_ace3de crossref_primary_10_1016_j_jcis_2025_137251 crossref_primary_10_1016_j_jpowsour_2024_234075 crossref_primary_10_1039_D4EE06003B crossref_primary_10_1002_smll_202107033 crossref_primary_10_1038_s41467_023_41276_9 crossref_primary_10_1002_aenm_202304003 crossref_primary_10_1002_smll_202401916 crossref_primary_10_1016_j_jcis_2024_08_179 crossref_primary_10_1016_j_molliq_2023_122988 crossref_primary_10_1016_j_cej_2024_150413 crossref_primary_10_1002_aenm_202403961 crossref_primary_10_1002_ange_202407067 crossref_primary_10_1002_adfm_202308762 crossref_primary_10_1002_adma_202207115 crossref_primary_10_1016_j_cej_2022_137843 crossref_primary_10_1002_smll_202411968 crossref_primary_10_1002_adfm_202312696 crossref_primary_10_1002_adfm_202424860 crossref_primary_10_1002_aenm_202200728 crossref_primary_10_1002_aenm_202403392 crossref_primary_10_1002_adfm_202402014 crossref_primary_10_1002_adfm_202502041 crossref_primary_10_1002_ange_202423531 crossref_primary_10_1002_smtd_202300101 crossref_primary_10_1016_j_electacta_2023_143338 crossref_primary_10_1002_adfm_202309840 crossref_primary_10_1002_ange_202318063 crossref_primary_10_1002_aenm_202401526 crossref_primary_10_1016_j_joule_2023_10_010 crossref_primary_10_12677_japc_2024_134065 crossref_primary_10_1002_anie_202215600 crossref_primary_10_1002_cssc_202500423 crossref_primary_10_1016_j_ensm_2025_104446 crossref_primary_10_1016_j_jechem_2025_01_058 crossref_primary_10_1002_smll_202200550 crossref_primary_10_1002_adma_202406093 crossref_primary_10_1002_cnl2_183 crossref_primary_10_1002_adma_202200131 crossref_primary_10_1002_cnl2_54 crossref_primary_10_1016_j_est_2024_112898 crossref_primary_10_1002_ange_202215600 crossref_primary_10_1002_anie_202318063 crossref_primary_10_1002_chem_202203973 crossref_primary_10_1039_D4EE05304D crossref_primary_10_1007_s12209_023_00366_x crossref_primary_10_1002_adma_202210051 crossref_primary_10_1016_j_matt_2024_11_011 crossref_primary_10_1002_smtd_202300324 crossref_primary_10_1002_smll_202311407 crossref_primary_10_1002_adfm_202416799 crossref_primary_10_1002_adma_202206239 crossref_primary_10_1016_j_esci_2025_100397 crossref_primary_10_1002_adma_202308193 crossref_primary_10_3390_molecules27186039 crossref_primary_10_3390_molecules29040874 crossref_primary_10_1016_j_cej_2023_145551 crossref_primary_10_1002_adma_202108206 crossref_primary_10_1002_adfm_202209642 crossref_primary_10_1002_adfm_202112091 crossref_primary_10_1002_adfm_202300795 crossref_primary_10_1016_j_jechem_2022_01_037 crossref_primary_10_1016_j_ccr_2023_215142 crossref_primary_10_1016_j_nxmate_2024_100124 crossref_primary_10_1016_j_jpowsour_2024_234385 crossref_primary_10_1016_j_nanoen_2024_109806 crossref_primary_10_1016_j_jechem_2025_03_047 crossref_primary_10_1002_adfm_202501894 crossref_primary_10_1007_s11706_023_0639_7 crossref_primary_10_1002_smll_202203674 crossref_primary_10_1002_anie_202500434 crossref_primary_10_1039_D5EE01316J crossref_primary_10_1002_adma_202513463 crossref_primary_10_1002_adma_202110140 crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1002_batt_202400811 crossref_primary_10_1002_ange_202314456 crossref_primary_10_1039_D1NR06058A crossref_primary_10_1016_j_colsurfa_2022_129970 crossref_primary_10_1016_j_est_2025_116260 crossref_primary_10_1002_smll_202203583 crossref_primary_10_1016_j_cclet_2023_109393 crossref_primary_10_1002_batt_202400483 crossref_primary_10_1021_jacs_4c09524 crossref_primary_10_1016_j_mattod_2024_06_016 crossref_primary_10_1002_adma_202210789 crossref_primary_10_1002_anie_202300523 crossref_primary_10_1002_adfm_202410305 crossref_primary_10_1002_anie_202304444 crossref_primary_10_1016_j_jechem_2023_07_043 crossref_primary_10_1002_admi_202201125 crossref_primary_10_1002_anie_202309957 crossref_primary_10_1002_batt_202300420 crossref_primary_10_1002_smll_202202363 crossref_primary_10_1016_j_cclet_2023_109143 crossref_primary_10_1002_smll_202200742 crossref_primary_10_1016_j_joule_2024_12_003 crossref_primary_10_1016_j_nanoms_2022_10_004 crossref_primary_10_1002_ange_202300523 crossref_primary_10_1038_s41893_023_01092_x crossref_primary_10_1002_advs_202507071 crossref_primary_10_1002_ange_202304444 crossref_primary_10_1016_j_scib_2023_05_015 crossref_primary_10_1002_ange_202500434 crossref_primary_10_1016_j_cej_2023_145745 crossref_primary_10_1002_aenm_202203708 crossref_primary_10_1016_j_jechem_2022_12_045 crossref_primary_10_1016_j_cej_2022_138772 crossref_primary_10_1016_j_cej_2024_156240 crossref_primary_10_1021_acsaem_5c00640 crossref_primary_10_1002_adfm_202303590 crossref_primary_10_1002_anie_202316499 crossref_primary_10_1002_adma_202400976 crossref_primary_10_1002_cssc_202300311 crossref_primary_10_1016_j_ensm_2025_104180 crossref_primary_10_1002_aenm_202202068 crossref_primary_10_1016_j_cej_2025_159911 crossref_primary_10_1007_s40820_022_00836_2 crossref_primary_10_1016_j_est_2022_105397 crossref_primary_10_1021_acs_nanolett_5c03724 crossref_primary_10_1016_j_jcis_2024_11_182 crossref_primary_10_1002_advs_202410318 crossref_primary_10_1002_batt_202400579 crossref_primary_10_1002_adma_202106409 crossref_primary_10_1002_adma_202203153 crossref_primary_10_1039_D4SC04611K crossref_primary_10_1002_adfm_202405012 crossref_primary_10_1002_cssc_202201739 crossref_primary_10_1002_smll_202504123 crossref_primary_10_1007_s12598_024_02705_w crossref_primary_10_1002_aenm_202405767 crossref_primary_10_1007_s12598_024_02972_7 crossref_primary_10_1103_PRXEnergy_4_023004 crossref_primary_10_3389_fchem_2022_899810 crossref_primary_10_1016_j_cej_2024_155257 crossref_primary_10_1016_j_jcis_2023_07_037 crossref_primary_10_1002_batt_202200478 crossref_primary_10_1002_aenm_202302499 crossref_primary_10_1002_aenm_202304557 crossref_primary_10_1002_smll_202304723 crossref_primary_10_1039_D4EE01615G crossref_primary_10_1016_j_nanoen_2022_107395 crossref_primary_10_1002_adfm_202505132 crossref_primary_10_1002_anie_202212839 crossref_primary_10_1002_adma_202307708 crossref_primary_10_1002_adfm_202408662 crossref_primary_10_3390_polym16121680 crossref_primary_10_1002_adfm_202301935 crossref_primary_10_1038_s41467_023_39877_5 |
| Cites_doi | 10.1002/aenm.201801090 10.1126/science.aax6873 10.1021/jacs.0c09794 10.1002/ange.202008634 10.1002/anie.202008634 10.1021/acssuschemeng.7b03528 10.1063/1.433995 10.1038/s41563-018-0063-z 10.1002/adma.202008424 10.1002/adma.201906803 10.1038/s41467-020-18284-0 10.1039/C9EE00596J 10.1021/jp507196q 10.1039/C8CC07730D 10.1021/jacs.9b00617 10.1093/oso/9780198803195.001.0001 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States) |
| CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) |
| DBID | AAYXX CITATION 7TM K9. 7X8 OIOZB OTOTI |
| DOI | 10.1002/anie.202107378 |
| DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 18851 |
| ExternalDocumentID | 1807958 10_1002_anie_202107378 ANIE202107378 |
| Genre | article |
| GrantInformation_xml | – fundername: the Advanced Research Projects Agency-Energy funderid: DEAR0000962 – fundername: the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy funderid: DE-SC0012704 – fundername: beamlines 7-BM of the National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science funderid: DE-SC0012704 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI PQEST |
| ID | FETCH-LOGICAL-c4178-cd8e7d20505003982dd9d9596f299bfd83c730df5bcd5ad223af4f5602dc66d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 239 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673145600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri May 19 00:40:21 EDT 2023 Fri Jul 11 07:09:56 EDT 2025 Tue Oct 07 06:55:33 EDT 2025 Sat Nov 29 02:36:23 EST 2025 Tue Nov 18 21:44:11 EST 2025 Wed Jan 22 16:29:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 34 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4178-cd8e7d20505003982dd9d9596f299bfd83c730df5bcd5ad223af4f5602dc66d3 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 BNL-221775-2021-JAAM; BNL-221796-2021-JAAM USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office |
| ORCID | 0000-0002-2917-6523 0000-0003-3097-9363 0000-0002-8626-6381 0000000330979363 0000000286266381 0000000229176523 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1807958 |
| PQID | 2559383864 |
| PQPubID | 946352 |
| PageCount | 7 |
| ParticipantIDs | osti_scitechconnect_1807958 proquest_miscellaneous_2547542320 proquest_journals_2559383864 crossref_citationtrail_10_1002_anie_202107378 crossref_primary_10_1002_anie_202107378 wiley_primary_10_1002_anie_202107378_ANIE202107378 |
| PublicationCentury | 2000 |
| PublicationDate | August 16, 2021 |
| PublicationDateYYYYMMDD | 2021-08-16 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 16, 2021 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: United States |
| PublicationTitle | Angewandte Chemie (International ed.) |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2017; 5 2018; 17 2018; 8 2021; 33 2021 2020; 142 2019; 12 2020 2020; 59 132 2019; 366 2017 1977; 66 2015; 119 2020; 11 2020; 32 2019; 141 2018; 54 e_1_2_6_10_1 e_1_2_6_7_3 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_1_1 Zhang C. (e_1_2_6_3_1) 2021 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 Cao L. (e_1_2_6_16_1) 2021 e_1_2_6_18_1 e_1_2_6_15_1 |
| References_xml | – volume: 11 start-page: 4463 year: 2020 publication-title: Nat. Commun. – volume: 59 132 start-page: 19292 19454 year: 2020 2020 end-page: 19296 19458 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 11780 year: 2017 end-page: 11787 publication-title: ACS Sustainable Chem. Eng. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 142 start-page: 21404 year: 2020 end-page: 21409 publication-title: J. Am. Chem. Soc. – year: 2021 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 543 year: 2018 end-page: 549 publication-title: Nat. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – start-page: 3 year: 2021 end-page: 348 publication-title: Carbon Energy – volume: 54 start-page: 14097 year: 2018 end-page: 14099 publication-title: Chem. Commun. – volume: 141 start-page: 6338 year: 2019 end-page: 6344 publication-title: J. Am. Chem. Soc. – year: 2017 – volume: 366 start-page: 645 year: 2019 end-page: 648 publication-title: Science – volume: 12 start-page: 1938 year: 2019 end-page: 1949 publication-title: Energy Environ. Sci. – volume: 119 start-page: 8926 year: 2015 end-page: 8938 publication-title: J. Phys. Chem. B – volume: 66 start-page: 896 year: 1977 end-page: 901 publication-title: J. Chem. Phys. – ident: e_1_2_6_8_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_6_11_1 doi: 10.1126/science.aax6873 – ident: e_1_2_6_6_2 doi: 10.1021/jacs.0c09794 – ident: e_1_2_6_7_3 doi: 10.1002/ange.202008634 – ident: e_1_2_6_5_1 – ident: e_1_2_6_7_2 doi: 10.1002/anie.202008634 – ident: e_1_2_6_12_1 doi: 10.1021/acssuschemeng.7b03528 – ident: e_1_2_6_13_1 doi: 10.1063/1.433995 – ident: e_1_2_6_1_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_6_15_1 doi: 10.1002/adma.202008424 – year: 2021 ident: e_1_2_6_16_1 publication-title: Nat. Nanotechnol. – ident: e_1_2_6_10_1 doi: 10.1002/adma.201906803 – ident: e_1_2_6_2_1 doi: 10.1038/s41467-020-18284-0 – ident: e_1_2_6_9_1 doi: 10.1039/C9EE00596J – ident: e_1_2_6_18_1 doi: 10.1021/jp507196q – ident: e_1_2_6_14_1 doi: 10.1039/C8CC07730D – start-page: 3 year: 2021 ident: e_1_2_6_3_1 publication-title: Carbon Energy – ident: e_1_2_6_4_1 doi: 10.1021/jacs.9b00617 – ident: e_1_2_6_17_1 doi: 10.1093/oso/9780198803195.001.0001 |
| SSID | ssj0028806 |
| Score | 2.696127 |
| Snippet | Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by... Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18845 |
| SubjectTerms | Aqueous electrolytes aqueous zinc batteries Dendritic structure Electrolytes ENERGY STORAGE Eutectics Flux density hydrogen bond Hydrogen bonds Ion currents Low temperature MATERIALS SCIENCE Plating salt precipitation Zinc Zinc chloride zincophilic-zincophobic interfacial bilayer |
| Title | Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107378 https://www.proquest.com/docview/2559383864 https://www.proquest.com/docview/2547542320 https://www.osti.gov/servlets/purl/1807958 |
| Volume | 60 |
| WOSCitedRecordID | wos000673145600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBVrOthe1n2Vpe2KBoM9mdqSLduPoUvooIRROgh7EZKuBYFgh3wM8tY_MCj0H_aX9F7bcZuHMdje4kg2wrpXOuda9x7GPrsYosLbMDCxsEhQXBzY1MkgUdb7yCQiBFOLTaTjcTaZ5N-fZPE39SG6gBt5Rr1ek4Mbuzx7LBpKGdjI75CypDLN9tg-ZVYh_dr_ejX6cdmRLrTPJsNIyoCE6LeFG0NxtvuEnY2pV6GD7YDOp9C13ntGB_8_6tfsVYs7-aAxlDfsWVG-ZS_Ot3Jv79hvOvEx2_Croj6oYWcFH-CgqvWS_5yWjjeFOJFX86JOtwJuN3VLNaeYjLu_uWuvKjt1vI40ekMBeX5pCNdzU0Lz92I9R5zLLzawqNB-729uSdyYDxtFntkG0e97dj0aXp9fBK1WQ-DiCImog6xIQZAuHqX7ZgIghzzJlcf9znrIpMO1BHxiHSQGEJQYH3uEWwKcUiAPWa-syuID47jgALKYSOWgEN1JWndEkhkpKYk2VX0WbOdJu7aOOclpzHRTgVloese6e8d99qXrP28qePyx5zFNu0bsQQV0HZ00cisdZWGaJ9h6srUG3fr5UhMhQ46fqbjPPnXNOHP02cWUNEnYJyaZYSnCPhO1bfxlHHow_jbsro7-5aZj9pJ-U_A7Uiest1qsi4_sufu1mi4Xp2wvnWSnrac8AIB2Fjc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFD5oV1hfvC_WXXUEwaewyUwySR7L2tLFWmSpsPgyzCUDhZKUXoS-7R8QBP_h_hLPSdJoH0QQn0Iy0zBkzpn5vtM55wN4a2MXFd6EgY65QYJi48CkVgSJNN5HOuGh07XYRDqdZtfX-af2NCHlwjT1IbqAG3lGvV6Tg1NA-vxX1VBKwUaCh5wlFWl2F45iidceHL2_Gn2edKwLDbRJMRIiICX6feXGkJ8fvuFgZ-pV6GEHqPN37FpvPqOH_2HYj-BBizzZoDGVx3CnKJ_A8cVe8O0pfKMzH4sduyrqoxpmUbABjqrartmXeWlZU4oTmTUr6oQrx8yubqmWFJWxtzc_2rvKzC2rY41eU0ieTTQhe6ZL1zxebZeIdNl451YVWvDtzXeSN2bDRpNnsUP8-wxmo-HsYhy0ag2BjSOkotZlReo4KeNRwm_GnctdnuTS445nvMuExdXE-cRYl2iHsET72CPg4s5K6cQJ9MqqLJ4DwyXHIY-JZO4k4jtBKw9PMi0EpdGmsg_BfqKUbSuZk6DGQjU1mLmib6y6b9yHd13_ZVPD4489T2neFaIPKqFr6ayR3agoC9M8wdazvTmo1tPXiigZsvxMxn140zXjzNEfL7qkScI-MQkNCx72gdfG8ZdxqMH0ctjdvfiXH72G4_Hs40RNLqcfTuE-PadQeCTPoLdZbYuXcM9-3czXq1etw_wEkrYZPw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aTWl66bt0m7RVodCTiS35eVySXRK6LCGkEHoRssaChcVe9hHYW_5AodB_mF_SGdvrdg8lEHq0JRthzUjfN9bMB_DZhhgULvc9E8qcCIoNvTyxyovi3LnARNJHU4tNJJNJenWVnbenCTkXpqkP0QXc2DPq9ZodvJijO_pTNZRTsIngEWdJVJI-hL0wyqKwB3snF6Nv4451kYE2KUZKeaxEv63c6Muj3Tfs7Ey9ijxsB3X-jV3rzWf07D8M-zk8bZGnGDSm8gIeFOVL2D_eCr69gh985mO2ERdFfVQjnxViQKOq1kvxfVpa0ZTiJGYtijrhCkW-qVuqOUdl7O3Nr_aqyqdW1LFGZzgkL8aGkb0wJTa3F-s5IV1xusFFRRZ8e_OT5Y3FsNHkmW0I_76Gy9Hw8vjUa9UaPBsGREUtpkWCkpXxOOE3lYgZZlEWO9rxcoepsrSaoItyi5FBgiXGhY4Al0Qbx6jeQK-syuItCFpykHhMEGcYE75TvPLIKDVKcRptEvfB206Utm0lcxbUmOmmBrPU_I1194378KXrP29qePyz5wHPuyb0wSV0LZ81sisdpH6SRdR6uDUH3Xr6UjMlI5afxmEfPnXNNHP848WUPEnUJ2ShYSX9PsjaOO4Yhx5Mzobd1bv7PPQRHp-fjPT4bPL1AJ7wbY6EB_Eh9FaLdfEeHtnr1XS5-ND6y2_4-xi6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Reversible+Aqueous+Zinc+Batteries+enabled+by+Zincophilic%E2%80%93Zincophobic+Interfacial+Layers+and+Interrupted+Hydrogen%E2%80%90Bond+Electrolytes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cao%2C+Longsheng&rft.au=Li%2C+Dan&rft.au=Soto%2C+Fernando+A&rft.au=Ponce%2C+Victor&rft.date=2021-08-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=34&rft.spage=18845&rft.epage=18851&rft_id=info:doi/10.1002%2Fanie.202107378&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |