Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes

Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie (International ed.) Vol. 60; no. 34; pp. 18845 - 18851
Main Authors: Cao, Longsheng, Li, Dan, Soto, Fernando A., Ponce, Victor, Zhang, Bao, Ma, Lu, Deng, Tao, Seminario, Jorge M., Hu, Enyuan, Yang, Xiao‐Qing, Balbuena, Perla B., Wang, Chunsheng
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 16.08.2021
Wiley
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C. A highly reversible Zn anode working at low temperature is achieved by introducing SnCl2 into eutectic ZnCl2 aqueous electrolyte to form a zincophilic–zincophobic interfacial layer on the Zn anode in situ. The bottom layer of Sn facilitates uniform Zn deposition, while the top layer of zincophobic Zn5(OH)8Cl2 H2O facilitates Zn2+ diffusion and avoids Zn dendrites. The eutectic composition enhances the low temperature conductivity.
AbstractList Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C.Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C.
Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C.
Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl 2 aqueous electrolyte with 0.05 m SnCl 2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn 5 (OH) 8 Cl 2 ⋅H 2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn 5 (OH) 8 Cl 2 ⋅H 2 O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm −1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn 2+ and Cl − . The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm −2 . Practically, Zn∥VOPO 4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C.
Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top‐layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half‐cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C. A highly reversible Zn anode working at low temperature is achieved by introducing SnCl2 into eutectic ZnCl2 aqueous electrolyte to form a zincophilic–zincophobic interfacial layer on the Zn anode in situ. The bottom layer of Sn facilitates uniform Zn deposition, while the top layer of zincophobic Zn5(OH)8Cl2 H2O facilitates Zn2+ diffusion and avoids Zn dendrites. The eutectic composition enhances the low temperature conductivity.
Author Wang, Chunsheng
Ma, Lu
Li, Dan
Balbuena, Perla B.
Deng, Tao
Cao, Longsheng
Yang, Xiao‐Qing
Soto, Fernando A.
Ponce, Victor
Zhang, Bao
Hu, Enyuan
Seminario, Jorge M.
Author_xml – sequence: 1
  givenname: Longsheng
  orcidid: 0000-0002-2917-6523
  surname: Cao
  fullname: Cao, Longsheng
  organization: University of Maryland
– sequence: 2
  givenname: Dan
  orcidid: 0000-0003-3097-9363
  surname: Li
  fullname: Li, Dan
  organization: University of Maryland
– sequence: 3
  givenname: Fernando A.
  surname: Soto
  fullname: Soto, Fernando A.
  organization: Texas A&M University
– sequence: 4
  givenname: Victor
  surname: Ponce
  fullname: Ponce, Victor
  organization: Texas A&M University
– sequence: 5
  givenname: Bao
  surname: Zhang
  fullname: Zhang, Bao
  organization: University of Maryland
– sequence: 6
  givenname: Lu
  surname: Ma
  fullname: Ma, Lu
  organization: Brookhaven National Laboratory
– sequence: 7
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: University of Maryland
– sequence: 8
  givenname: Jorge M.
  surname: Seminario
  fullname: Seminario, Jorge M.
  organization: Texas A&M University
– sequence: 9
  givenname: Enyuan
  surname: Hu
  fullname: Hu, Enyuan
  organization: Brookhaven National Laboratory
– sequence: 10
  givenname: Xiao‐Qing
  surname: Yang
  fullname: Yang, Xiao‐Qing
  organization: Brookhaven National Laboratory
– sequence: 11
  givenname: Perla B.
  surname: Balbuena
  fullname: Balbuena, Perla B.
  email: balbuena@tamu.edu
  organization: Texas A&M University
– sequence: 12
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
BackLink https://www.osti.gov/servlets/purl/1807958$$D View this record in Osti.gov
BookMark eNqFkU9rFDEYxoNUsK1ePQe9eJk1fyaTzHFbVndhUZCevIRMkummpMmaZJW59QsIgt-wn8SsUxQKIjnkz_N73iTvcwZOQgwWgJcYLTBC5K0Kzi4IIhhxysUTcIoZwQ3lnJ7UdUtpwwXDz8BZzjeVFwJ1p-D72l3v_AQ_2a82ZTd4C5dfDjYeMvzsgoYXqhSbnM3QBlVVA4fptxL3O-edvr_7-bCLg9NwEyo9Ku2Uh1s11ZJQBTMfp8O-VP96Mile23B_9-MiVm3lrS4p-qnY_Bw8HZXP9sXDfA6u3q2uLtfN9uP7zeVy2-gWc9FoIyw3BLE6EO0FMaY3Peu7kfT9MBpBNafIjGzQhilDCFVjO7IOEaO7ztBz8GouG3NxMmtXrN7pGEJ9icQC8Z6JCr2ZoX2KtSO5yFuXtfVehWN7JGEtZy2hBFX09SP0Jh5SqD-oFOupoKJrK9XOlE4x52RHWS9WxcVQknJeYiSPOcpjjvJPjtW2eGTbJ3er0vRvQz8bvjlvp__Qcvlhs_rr_QU6TLbL
CitedBy_id crossref_primary_10_1002_adma_202306508
crossref_primary_10_1002_ange_202212839
crossref_primary_10_1002_smll_202503105
crossref_primary_10_1002_adma_202506756
crossref_primary_10_1007_s40820_021_00733_0
crossref_primary_10_1002_adfm_202412547
crossref_primary_10_1002_smll_202205462
crossref_primary_10_1021_acsnano_4c18422
crossref_primary_10_1016_j_jpowsour_2022_231825
crossref_primary_10_1016_j_jechem_2023_12_019
crossref_primary_10_1002_smll_202405009
crossref_primary_10_1016_j_cej_2025_159323
crossref_primary_10_1007_s12274_023_5637_7
crossref_primary_10_1002_anie_202407067
crossref_primary_10_1016_j_enchem_2022_100076
crossref_primary_10_1039_D1EE03749H
crossref_primary_10_1038_s41467_025_58859_3
crossref_primary_10_1016_j_mattod_2023_09_008
crossref_primary_10_1002_ange_202309957
crossref_primary_10_1007_s40820_021_00782_5
crossref_primary_10_1016_j_jechem_2024_02_016
crossref_primary_10_1039_D2NH00354F
crossref_primary_10_1002_advs_202300398
crossref_primary_10_1016_j_nanoen_2022_107331
crossref_primary_10_1002_aenm_202203729
crossref_primary_10_1002_slct_202200926
crossref_primary_10_1002_anie_202314456
crossref_primary_10_1002_anie_202423531
crossref_primary_10_1002_ange_202516282
crossref_primary_10_1002_adfm_202403616
crossref_primary_10_1002_adma_202411802
crossref_primary_10_1002_adma_202313621
crossref_primary_10_1007_s40242_023_3099_9
crossref_primary_10_1016_j_gee_2022_09_004
crossref_primary_10_1016_j_carbon_2023_118066
crossref_primary_10_1002_aenm_202102707
crossref_primary_10_1063_5_0203943
crossref_primary_10_1007_s40820_023_01171_w
crossref_primary_10_1002_anie_202516282
crossref_primary_10_1002_aenm_202401470
crossref_primary_10_1002_adma_202308836
crossref_primary_10_1002_adfm_202509652
crossref_primary_10_1039_D2EE02687B
crossref_primary_10_1002_ange_202316499
crossref_primary_10_1002_smll_202401589
crossref_primary_10_1002_cnl2_70036
crossref_primary_10_1088_2752_5724_ace3de
crossref_primary_10_1016_j_jcis_2025_137251
crossref_primary_10_1016_j_jpowsour_2024_234075
crossref_primary_10_1039_D4EE06003B
crossref_primary_10_1002_smll_202107033
crossref_primary_10_1038_s41467_023_41276_9
crossref_primary_10_1002_aenm_202304003
crossref_primary_10_1002_smll_202401916
crossref_primary_10_1016_j_jcis_2024_08_179
crossref_primary_10_1016_j_molliq_2023_122988
crossref_primary_10_1016_j_cej_2024_150413
crossref_primary_10_1002_aenm_202403961
crossref_primary_10_1002_ange_202407067
crossref_primary_10_1002_adfm_202308762
crossref_primary_10_1002_adma_202207115
crossref_primary_10_1016_j_cej_2022_137843
crossref_primary_10_1002_smll_202411968
crossref_primary_10_1002_adfm_202312696
crossref_primary_10_1002_adfm_202424860
crossref_primary_10_1002_aenm_202200728
crossref_primary_10_1002_aenm_202403392
crossref_primary_10_1002_adfm_202402014
crossref_primary_10_1002_adfm_202502041
crossref_primary_10_1002_ange_202423531
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1016_j_electacta_2023_143338
crossref_primary_10_1002_adfm_202309840
crossref_primary_10_1002_ange_202318063
crossref_primary_10_1002_aenm_202401526
crossref_primary_10_1016_j_joule_2023_10_010
crossref_primary_10_12677_japc_2024_134065
crossref_primary_10_1002_anie_202215600
crossref_primary_10_1002_cssc_202500423
crossref_primary_10_1016_j_ensm_2025_104446
crossref_primary_10_1016_j_jechem_2025_01_058
crossref_primary_10_1002_smll_202200550
crossref_primary_10_1002_adma_202406093
crossref_primary_10_1002_cnl2_183
crossref_primary_10_1002_adma_202200131
crossref_primary_10_1002_cnl2_54
crossref_primary_10_1016_j_est_2024_112898
crossref_primary_10_1002_ange_202215600
crossref_primary_10_1002_anie_202318063
crossref_primary_10_1002_chem_202203973
crossref_primary_10_1039_D4EE05304D
crossref_primary_10_1007_s12209_023_00366_x
crossref_primary_10_1002_adma_202210051
crossref_primary_10_1016_j_matt_2024_11_011
crossref_primary_10_1002_smtd_202300324
crossref_primary_10_1002_smll_202311407
crossref_primary_10_1002_adfm_202416799
crossref_primary_10_1002_adma_202206239
crossref_primary_10_1016_j_esci_2025_100397
crossref_primary_10_1002_adma_202308193
crossref_primary_10_3390_molecules27186039
crossref_primary_10_3390_molecules29040874
crossref_primary_10_1016_j_cej_2023_145551
crossref_primary_10_1002_adma_202108206
crossref_primary_10_1002_adfm_202209642
crossref_primary_10_1002_adfm_202112091
crossref_primary_10_1002_adfm_202300795
crossref_primary_10_1016_j_jechem_2022_01_037
crossref_primary_10_1016_j_ccr_2023_215142
crossref_primary_10_1016_j_nxmate_2024_100124
crossref_primary_10_1016_j_jpowsour_2024_234385
crossref_primary_10_1016_j_nanoen_2024_109806
crossref_primary_10_1016_j_jechem_2025_03_047
crossref_primary_10_1002_adfm_202501894
crossref_primary_10_1007_s11706_023_0639_7
crossref_primary_10_1002_smll_202203674
crossref_primary_10_1002_anie_202500434
crossref_primary_10_1039_D5EE01316J
crossref_primary_10_1002_adma_202513463
crossref_primary_10_1002_adma_202110140
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1002_batt_202400811
crossref_primary_10_1002_ange_202314456
crossref_primary_10_1039_D1NR06058A
crossref_primary_10_1016_j_colsurfa_2022_129970
crossref_primary_10_1016_j_est_2025_116260
crossref_primary_10_1002_smll_202203583
crossref_primary_10_1016_j_cclet_2023_109393
crossref_primary_10_1002_batt_202400483
crossref_primary_10_1021_jacs_4c09524
crossref_primary_10_1016_j_mattod_2024_06_016
crossref_primary_10_1002_adma_202210789
crossref_primary_10_1002_anie_202300523
crossref_primary_10_1002_adfm_202410305
crossref_primary_10_1002_anie_202304444
crossref_primary_10_1016_j_jechem_2023_07_043
crossref_primary_10_1002_admi_202201125
crossref_primary_10_1002_anie_202309957
crossref_primary_10_1002_batt_202300420
crossref_primary_10_1002_smll_202202363
crossref_primary_10_1016_j_cclet_2023_109143
crossref_primary_10_1002_smll_202200742
crossref_primary_10_1016_j_joule_2024_12_003
crossref_primary_10_1016_j_nanoms_2022_10_004
crossref_primary_10_1002_ange_202300523
crossref_primary_10_1038_s41893_023_01092_x
crossref_primary_10_1002_advs_202507071
crossref_primary_10_1002_ange_202304444
crossref_primary_10_1016_j_scib_2023_05_015
crossref_primary_10_1002_ange_202500434
crossref_primary_10_1016_j_cej_2023_145745
crossref_primary_10_1002_aenm_202203708
crossref_primary_10_1016_j_jechem_2022_12_045
crossref_primary_10_1016_j_cej_2022_138772
crossref_primary_10_1016_j_cej_2024_156240
crossref_primary_10_1021_acsaem_5c00640
crossref_primary_10_1002_adfm_202303590
crossref_primary_10_1002_anie_202316499
crossref_primary_10_1002_adma_202400976
crossref_primary_10_1002_cssc_202300311
crossref_primary_10_1016_j_ensm_2025_104180
crossref_primary_10_1002_aenm_202202068
crossref_primary_10_1016_j_cej_2025_159911
crossref_primary_10_1007_s40820_022_00836_2
crossref_primary_10_1016_j_est_2022_105397
crossref_primary_10_1021_acs_nanolett_5c03724
crossref_primary_10_1016_j_jcis_2024_11_182
crossref_primary_10_1002_advs_202410318
crossref_primary_10_1002_batt_202400579
crossref_primary_10_1002_adma_202106409
crossref_primary_10_1002_adma_202203153
crossref_primary_10_1039_D4SC04611K
crossref_primary_10_1002_adfm_202405012
crossref_primary_10_1002_cssc_202201739
crossref_primary_10_1002_smll_202504123
crossref_primary_10_1007_s12598_024_02705_w
crossref_primary_10_1002_aenm_202405767
crossref_primary_10_1007_s12598_024_02972_7
crossref_primary_10_1103_PRXEnergy_4_023004
crossref_primary_10_3389_fchem_2022_899810
crossref_primary_10_1016_j_cej_2024_155257
crossref_primary_10_1016_j_jcis_2023_07_037
crossref_primary_10_1002_batt_202200478
crossref_primary_10_1002_aenm_202302499
crossref_primary_10_1002_aenm_202304557
crossref_primary_10_1002_smll_202304723
crossref_primary_10_1039_D4EE01615G
crossref_primary_10_1016_j_nanoen_2022_107395
crossref_primary_10_1002_adfm_202505132
crossref_primary_10_1002_anie_202212839
crossref_primary_10_1002_adma_202307708
crossref_primary_10_1002_adfm_202408662
crossref_primary_10_3390_polym16121680
crossref_primary_10_1002_adfm_202301935
crossref_primary_10_1038_s41467_023_39877_5
Cites_doi 10.1002/aenm.201801090
10.1126/science.aax6873
10.1021/jacs.0c09794
10.1002/ange.202008634
10.1002/anie.202008634
10.1021/acssuschemeng.7b03528
10.1063/1.433995
10.1038/s41563-018-0063-z
10.1002/adma.202008424
10.1002/adma.201906803
10.1038/s41467-020-18284-0
10.1039/C9EE00596J
10.1021/jp507196q
10.1039/C8CC07730D
10.1021/jacs.9b00617
10.1093/oso/9780198803195.001.0001
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
CorporateAuthor Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.202107378
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 18851
ExternalDocumentID 1807958
10_1002_anie_202107378
ANIE202107378
Genre article
GrantInformation_xml – fundername: the Advanced Research Projects Agency-Energy
  funderid: DEAR0000962
– fundername: the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy
  funderid: DE-SC0012704
– fundername: beamlines 7-BM of the National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science
  funderid: DE-SC0012704
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c4178-cd8e7d20505003982dd9d9596f299bfd83c730df5bcd5ad223af4f5602dc66d3
IEDL.DBID DRFUL
ISICitedReferencesCount 239
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673145600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri May 19 00:40:21 EDT 2023
Fri Jul 11 07:09:56 EDT 2025
Tue Oct 07 06:55:33 EDT 2025
Sat Nov 29 02:36:23 EST 2025
Tue Nov 18 21:44:11 EST 2025
Wed Jan 22 16:29:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4178-cd8e7d20505003982dd9d9596f299bfd83c730df5bcd5ad223af4f5602dc66d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
BNL-221775-2021-JAAM; BNL-221796-2021-JAAM
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0012704
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
ORCID 0000-0002-2917-6523
0000-0003-3097-9363
0000-0002-8626-6381
0000000330979363
0000000286266381
0000000229176523
OpenAccessLink https://www.osti.gov/servlets/purl/1807958
PQID 2559383864
PQPubID 946352
PageCount 7
ParticipantIDs osti_scitechconnect_1807958
proquest_miscellaneous_2547542320
proquest_journals_2559383864
crossref_citationtrail_10_1002_anie_202107378
crossref_primary_10_1002_anie_202107378
wiley_primary_10_1002_anie_202107378_ANIE202107378
PublicationCentury 2000
PublicationDate August 16, 2021
PublicationDateYYYYMMDD 2021-08-16
PublicationDate_xml – month: 08
  year: 2021
  text: August 16, 2021
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 5
2018; 17
2018; 8
2021; 33
2021
2020; 142
2019; 12
2020 2020; 59 132
2019; 366
2017
1977; 66
2015; 119
2020; 11
2020; 32
2019; 141
2018; 54
e_1_2_6_10_1
e_1_2_6_7_3
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_1_1
Zhang C. (e_1_2_6_3_1) 2021
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
Cao L. (e_1_2_6_16_1) 2021
e_1_2_6_18_1
e_1_2_6_15_1
References_xml – volume: 11
  start-page: 4463
  year: 2020
  publication-title: Nat. Commun.
– volume: 59 132
  start-page: 19292 19454
  year: 2020 2020
  end-page: 19296 19458
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 11780
  year: 2017
  end-page: 11787
  publication-title: ACS Sustainable Chem. Eng.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 142
  start-page: 21404
  year: 2020
  end-page: 21409
  publication-title: J. Am. Chem. Soc.
– year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  publication-title: Nat. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– start-page: 3
  year: 2021
  end-page: 348
  publication-title: Carbon Energy
– volume: 54
  start-page: 14097
  year: 2018
  end-page: 14099
  publication-title: Chem. Commun.
– volume: 141
  start-page: 6338
  year: 2019
  end-page: 6344
  publication-title: J. Am. Chem. Soc.
– year: 2017
– volume: 366
  start-page: 645
  year: 2019
  end-page: 648
  publication-title: Science
– volume: 12
  start-page: 1938
  year: 2019
  end-page: 1949
  publication-title: Energy Environ. Sci.
– volume: 119
  start-page: 8926
  year: 2015
  end-page: 8938
  publication-title: J. Phys. Chem. B
– volume: 66
  start-page: 896
  year: 1977
  end-page: 901
  publication-title: J. Chem. Phys.
– ident: e_1_2_6_8_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_6_11_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_6_6_2
  doi: 10.1021/jacs.0c09794
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.202008634
– ident: e_1_2_6_5_1
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.202008634
– ident: e_1_2_6_12_1
  doi: 10.1021/acssuschemeng.7b03528
– ident: e_1_2_6_13_1
  doi: 10.1063/1.433995
– ident: e_1_2_6_1_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.202008424
– year: 2021
  ident: e_1_2_6_16_1
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201906803
– ident: e_1_2_6_2_1
  doi: 10.1038/s41467-020-18284-0
– ident: e_1_2_6_9_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_6_18_1
  doi: 10.1021/jp507196q
– ident: e_1_2_6_14_1
  doi: 10.1039/C8CC07730D
– start-page: 3
  year: 2021
  ident: e_1_2_6_3_1
  publication-title: Carbon Energy
– ident: e_1_2_6_4_1
  doi: 10.1021/jacs.9b00617
– ident: e_1_2_6_17_1
  doi: 10.1093/oso/9780198803195.001.0001
SSID ssj0028806
Score 2.696127
Snippet Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low‐temperature performance. Here, we overcome both challenges by...
Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18845
SubjectTerms Aqueous electrolytes
aqueous zinc batteries
Dendritic structure
Electrolytes
ENERGY STORAGE
Eutectics
Flux density
hydrogen bond
Hydrogen bonds
Ion currents
Low temperature
MATERIALS SCIENCE
Plating
salt precipitation
Zinc
Zinc chloride
zincophilic-zincophobic interfacial bilayer
Title Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107378
https://www.proquest.com/docview/2559383864
https://www.proquest.com/docview/2547542320
https://www.osti.gov/servlets/purl/1807958
Volume 60
WOSCitedRecordID wos000673145600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBVrOthe1n2Vpe2KBoM9mdqSLduPoUvooIRROgh7EZKuBYFgh3wM8tY_MCj0H_aX9F7bcZuHMdje4kg2wrpXOuda9x7GPrsYosLbMDCxsEhQXBzY1MkgUdb7yCQiBFOLTaTjcTaZ5N-fZPE39SG6gBt5Rr1ek4Mbuzx7LBpKGdjI75CypDLN9tg-ZVYh_dr_ejX6cdmRLrTPJsNIyoCE6LeFG0NxtvuEnY2pV6GD7YDOp9C13ntGB_8_6tfsVYs7-aAxlDfsWVG-ZS_Ot3Jv79hvOvEx2_Croj6oYWcFH-CgqvWS_5yWjjeFOJFX86JOtwJuN3VLNaeYjLu_uWuvKjt1vI40ekMBeX5pCNdzU0Lz92I9R5zLLzawqNB-729uSdyYDxtFntkG0e97dj0aXp9fBK1WQ-DiCImog6xIQZAuHqX7ZgIghzzJlcf9znrIpMO1BHxiHSQGEJQYH3uEWwKcUiAPWa-syuID47jgALKYSOWgEN1JWndEkhkpKYk2VX0WbOdJu7aOOclpzHRTgVloese6e8d99qXrP28qePyx5zFNu0bsQQV0HZ00cisdZWGaJ9h6srUG3fr5UhMhQ46fqbjPPnXNOHP02cWUNEnYJyaZYSnCPhO1bfxlHHow_jbsro7-5aZj9pJ-U_A7Uiest1qsi4_sufu1mi4Xp2wvnWSnrac8AIB2Fjc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFD5oV1hfvC_WXXUEwaewyUwySR7L2tLFWmSpsPgyzCUDhZKUXoS-7R8QBP_h_hLPSdJoH0QQn0Iy0zBkzpn5vtM55wN4a2MXFd6EgY65QYJi48CkVgSJNN5HOuGh07XYRDqdZtfX-af2NCHlwjT1IbqAG3lGvV6Tg1NA-vxX1VBKwUaCh5wlFWl2F45iidceHL2_Gn2edKwLDbRJMRIiICX6feXGkJ8fvuFgZ-pV6GEHqPN37FpvPqOH_2HYj-BBizzZoDGVx3CnKJ_A8cVe8O0pfKMzH4sduyrqoxpmUbABjqrartmXeWlZU4oTmTUr6oQrx8yubqmWFJWxtzc_2rvKzC2rY41eU0ieTTQhe6ZL1zxebZeIdNl451YVWvDtzXeSN2bDRpNnsUP8-wxmo-HsYhy0ag2BjSOkotZlReo4KeNRwm_GnctdnuTS445nvMuExdXE-cRYl2iHsET72CPg4s5K6cQJ9MqqLJ4DwyXHIY-JZO4k4jtBKw9PMi0EpdGmsg_BfqKUbSuZk6DGQjU1mLmib6y6b9yHd13_ZVPD4489T2neFaIPKqFr6ayR3agoC9M8wdazvTmo1tPXiigZsvxMxn140zXjzNEfL7qkScI-MQkNCx72gdfG8ZdxqMH0ctjdvfiXH72G4_Hs40RNLqcfTuE-PadQeCTPoLdZbYuXcM9-3czXq1etw_wEkrYZPw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aTWl66bt0m7RVodCTiS35eVySXRK6LCGkEHoRssaChcVe9hHYW_5AodB_mF_SGdvrdg8lEHq0JRthzUjfN9bMB_DZhhgULvc9E8qcCIoNvTyxyovi3LnARNJHU4tNJJNJenWVnbenCTkXpqkP0QXc2DPq9ZodvJijO_pTNZRTsIngEWdJVJI-hL0wyqKwB3snF6Nv4451kYE2KUZKeaxEv63c6Muj3Tfs7Ey9ijxsB3X-jV3rzWf07D8M-zk8bZGnGDSm8gIeFOVL2D_eCr69gh985mO2ERdFfVQjnxViQKOq1kvxfVpa0ZTiJGYtijrhCkW-qVuqOUdl7O3Nr_aqyqdW1LFGZzgkL8aGkb0wJTa3F-s5IV1xusFFRRZ8e_OT5Y3FsNHkmW0I_76Gy9Hw8vjUa9UaPBsGREUtpkWCkpXxOOE3lYgZZlEWO9rxcoepsrSaoItyi5FBgiXGhY4Al0Qbx6jeQK-syuItCFpykHhMEGcYE75TvPLIKDVKcRptEvfB206Utm0lcxbUmOmmBrPU_I1194378KXrP29qePyz5wHPuyb0wSV0LZ81sisdpH6SRdR6uDUH3Xr6UjMlI5afxmEfPnXNNHP848WUPEnUJ2ShYSX9PsjaOO4Yhx5Mzobd1bv7PPQRHp-fjPT4bPL1AJ7wbY6EB_Eh9FaLdfEeHtnr1XS5-ND6y2_4-xi6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Reversible+Aqueous+Zinc+Batteries+enabled+by+Zincophilic%E2%80%93Zincophobic+Interfacial+Layers+and+Interrupted+Hydrogen%E2%80%90Bond+Electrolytes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cao%2C+Longsheng&rft.au=Li%2C+Dan&rft.au=Soto%2C+Fernando+A&rft.au=Ponce%2C+Victor&rft.date=2021-08-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=34&rft.spage=18845&rft.epage=18851&rft_id=info:doi/10.1002%2Fanie.202107378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon