The Performance of the Multivariate Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters

The multivariate adaptive exponentially weighted moving average control chart (MAEWMA) can detect shifts of different sizes while diminishing the inertia problem to a large extent. Although it has several advantages compared to various multivariate charts, previous literature has not considered its...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quality and reliability engineering international Ročník 32; číslo 3; s. 957 - 967
Hlavní autoři: Aly, Aya A., Mahmoud, Mahmoud A., Hamed, Ramadan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Blackwell Publishing Ltd 01.04.2016
Wiley Subscription Services, Inc
Témata:
ISSN:0748-8017, 1099-1638
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The multivariate adaptive exponentially weighted moving average control chart (MAEWMA) can detect shifts of different sizes while diminishing the inertia problem to a large extent. Although it has several advantages compared to various multivariate charts, previous literature has not considered its performance when the parameters are estimated. In this study, the performance of the MAEWMA chart with estimated parameters is studied while considering the practitioner‐to‐practitioner variation. This kind of variation occurs due to using different Phase I samples by different practitioners in estimating the unknown parameters. The simulation results in this paper show that estimating the parameters results in extensively excessive false alarms and as a result a large number of Phase I samples is needed to achieve the desired in‐control performance. Using small number of Phase I samples in estimating the parameters may result in an in‐control ARL distribution that almost completely lies below the desired value. To handle this problem, we strongly recommend the use of a bootstrap‐based algorithm to adjust the control limit of the MAEWMA chart. This algorithm enables practitioners to achieve, with a certain probability, an in‐control ARL that is greater than or equal to the desired value while using the available number of Phase I samples. Copyright © 2015 John Wiley & Sons, Ltd.
Bibliografie:istex:E538BC34D9995128F45E4E6769D7C7B5BE23C27D
ark:/67375/WNG-KTV3CMV0-B
ArticleID:QRE1806
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0748-8017
1099-1638
DOI:10.1002/qre.1806