Binarized Neural Network Comprising Quasi‐Nonvolatile Memory Devices for Neuromorphic Computing

This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec−1) and a high on/off ratio (≥ 107). A pair of QNVM devices are used for a single syna...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced electronic materials Ročník 10; číslo 9
Hlavní autoři: Shin, Yunwoo, Jeon, Juhee, Cho, Kyoungah, Kim, Sangsig
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul John Wiley & Sons, Inc 01.09.2024
Wiley-VCH
Témata:
ISSN:2199-160X, 2199-160X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec−1) and a high on/off ratio (≥ 107). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply‐accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector‐matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high‐performance neuromorphic computing. In this study, quasi‐nonvolatile memory devices with the p+‐n‐p‐n+ structure are proposed as synaptic devices. The 2×2 synaptic cell array demonstrates the matrix multiply‐accumulate operations using XNOR and current summations. Furthermore, binarized neural network achieves high accuracy (93.32%) in MNIST image recognition simulation. Consequently, the devices provide synaptic cell array for high‐performance compact neuromorphic computing architecture.
AbstractList This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec −1 ) and a high on/off ratio (≥ 10 7 ). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply‐accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector‐matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high‐performance neuromorphic computing.
This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec−1) and a high on/off ratio (≥ 107). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply‐accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector‐matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high‐performance neuromorphic computing.
This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec−1) and a high on/off ratio (≥ 107). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply‐accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector‐matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high‐performance neuromorphic computing. In this study, quasi‐nonvolatile memory devices with the p+‐n‐p‐n+ structure are proposed as synaptic devices. The 2×2 synaptic cell array demonstrates the matrix multiply‐accumulate operations using XNOR and current summations. Furthermore, binarized neural network achieves high accuracy (93.32%) in MNIST image recognition simulation. Consequently, the devices provide synaptic cell array for high‐performance compact neuromorphic computing architecture.
Abstract This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec−1) and a high on/off ratio (≥ 107). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply‐accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector‐matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high‐performance neuromorphic computing.
Author Shin, Yunwoo
Jeon, Juhee
Cho, Kyoungah
Kim, Sangsig
Author_xml – sequence: 1
  givenname: Yunwoo
  orcidid: 0000-0002-0090-366X
  surname: Shin
  fullname: Shin, Yunwoo
  organization: Korea University
– sequence: 2
  givenname: Juhee
  orcidid: 0000-0003-3633-2288
  surname: Jeon
  fullname: Jeon, Juhee
  organization: Korea University
– sequence: 3
  givenname: Kyoungah
  orcidid: 0000-0003-1122-8003
  surname: Cho
  fullname: Cho, Kyoungah
  email: chochem@korea.ac.kr
  organization: Korea University
– sequence: 4
  givenname: Sangsig
  orcidid: 0000-0002-7246-8724
  surname: Kim
  fullname: Kim, Sangsig
  email: sangsig@korea.ac.kr
  organization: Korea University
BookMark eNqFkc9uEzEQxi1UJErplfNKnBP8b9f2sYQWKqVFSCBxs2bt2eKwWQd7t1U49RH6jDwJToIqhIQ4zWg0v29G3_ecHA1xQEJeMjpnlPLXgP16zimXlNKGPSHHnBkzYw39cvRH_4yc5rwqK0w1QtbimMCbMEAKP9BX1zgl6EsZ72L6Vi3iepNCDsNN9XGCHH7eP1zH4Tb2MIYeqytcx7St3uJtcJirLqa9QCzTzdfg9vg0FvoFedpBn_H0dz0hny_OPy3ez5Yf3l0uzpYzJ5mqZ87oBnTbOs6pNB690WiUcMZA0ymBQLkwrQOJvAbNNSomStNB62unWi9OyOVB10dY2fL6GtLWRgh2P4jpxkIag-vRSm4keAStJJe889rzTmODDWAxRu20Xh20Nil-nzCPdhWnNJT3reCqlorXNS9b88OWSzHnhN3jVUbtLhW7S8U-plIA-RfgwljsjMOYIPT_xsQBuyvGb_9zxJ6dL6-UrsUvBf6lPA
CitedBy_id crossref_primary_10_1016_j_nanoen_2025_111208
crossref_primary_10_1002_adma_202413916
Cites_doi 10.1016/j.neucom.2017.09.046
10.1002/admt.202000915
10.1109/TNNLS.2017.2778940
10.1038/s41598-019-51814-5
10.1007/s12559-020-09794-6
10.1109/LED.2021.3063954
10.1016/j.sse.2017.11.012
10.1109/LED.2021.3125966
10.3389/fnins.2021.644604
10.3390/electronics10212600
10.1038/s41598-022-07374-2
10.1038/s41586-021-04196-6
10.1109/ACCESS.2021.3121011
10.1038/s41928-019-0288-0
10.1007/s10462-023-10464-w
10.3390/electronics8060661
10.1063/5.0073284
10.1038/s41928-018-0054-8
10.3390/electronics10172181
10.1109/TED.2019.2939393
10.3390/electronics11091421
10.1016/j.patcog.2020.107281
10.1038/s41586-018-0180-5
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOA
DOI 10.1002/aelm.202400061
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection


Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Freely Accessible)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4294adea874242fd8d2f8e6e6ae1767d
10_1002_aelm_202400061
AELM785
Genre article
GrantInformation_xml – fundername: Korea University
– fundername: Samsung Electronics
  funderid: IO201223‐08257‐01
– fundername: National Research Foundation of Korea
  funderid: 2020R1A2C3004538; 2022M3I7A3046571; 2023RS00260876
– fundername: Ministry of Science, ICT & Future Planning
  funderid: Brain Korea 21 Plus Project
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJNI
ADMLS
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
M~E
JQ2
ID FETCH-LOGICAL-c4175-c986a8bbc22049ded98e973c99a6f73ea0239bca4e25a828e7135a8fabd5c7bd3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-160X
IngestDate Mon Nov 10 04:31:41 EST 2025
Wed Nov 26 12:51:52 EST 2025
Sat Nov 29 07:18:13 EST 2025
Tue Nov 18 21:45:43 EST 2025
Wed Jan 22 17:13:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4175-c986a8bbc22049ded98e973c99a6f73ea0239bca4e25a828e7135a8fabd5c7bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7246-8724
0000-0002-0090-366X
0000-0003-3633-2288
0000-0003-1122-8003
OpenAccessLink https://doaj.org/article/4294adea874242fd8d2f8e6e6ae1767d
PQID 3275472552
PQPubID 6852865
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_4294adea874242fd8d2f8e6e6ae1767d
proquest_journals_3275472552
crossref_primary_10_1002_aelm_202400061
crossref_citationtrail_10_1002_aelm_202400061
wiley_primary_10_1002_aelm_202400061_AELM785
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Advanced electronic materials
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2019; 8
2021; 9
2018; 29
2019; 9
2018; 143
2021; 43
2021; 42
2023; 56
2019; 2
2020; 105
2021; 13
2022; 120
2018; 275
2021; 15
2020; 5
2021; 10
2020; 2
2018; 1
2019; 66
2018; 558
2022; 12
2019
2018
2017
2022; 11
2016; 29
2022; 601
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_1_1
Zhao W. (e_1_2_9_3_1) 2020; 2
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 29
  start-page: 4782
  year: 2018
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 10
  start-page: 2181
  year: 2021
  publication-title: Electronics.
– volume: 66
  start-page: 4753
  year: 2019
  publication-title: IEEE Trans. Electron Devices
– volume: 558
  start-page: 60
  year: 2018
  publication-title: Nature
– volume: 2
  start-page: 25
  year: 2020
  publication-title: Air Space Syst
– volume: 601
  start-page: 211
  year: 2022
  publication-title: Nature
– volume: 11
  start-page: 1421
  year: 2022
  publication-title: Electronics
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– year: 2018
– volume: 1
  start-page: 246
  year: 2018
  publication-title: Nat. Electron.
– volume: 56
  year: 2023
  publication-title: Artif. Intell. Rev.
– volume: 15
  year: 2021
  publication-title: Front. Neurosci.
– year: 2018
  article-title: presented at
– volume: 275
  start-page: 1072
  year: 2018
  publication-title: Neurocomputing
– volume: 43
  start-page: 142
  year: 2021
  publication-title: IEEE Electron Device Lett.
– volume: 2
  start-page: 420
  year: 2019
  publication-title: Nat. Electron.
– volume: 13
  start-page: 179
  year: 2021
  publication-title: Cogn. Comput.
– volume: 12
  start-page: 3516
  year: 2022
  publication-title: Sci. Rep.
– volume: 10
  start-page: 2600
  year: 2021
  publication-title: Electronics
– volume: 29
  year: 2016
– year: 2017
– volume: 42
  start-page: 649
  year: 2021
  publication-title: IEEE Electron Device Lett.
– year: 2019
– volume: 105
  year: 2020
  publication-title: Pattern Recognit
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 143
  start-page: 10
  year: 2018
  publication-title: Solid State Electron.
– volume: 8
  start-page: 661
  year: 2019
  publication-title: Electronics
– volume: 9
  year: 2021
  publication-title: IEEE Access
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neucom.2017.09.046
– ident: e_1_2_9_31_1
  doi: 10.1002/admt.202000915
– ident: e_1_2_9_15_1
  doi: 10.1109/TNNLS.2017.2778940
– ident: e_1_2_9_10_1
  doi: 10.1038/s41598-019-51814-5
– ident: e_1_2_9_20_1
  doi: 10.1007/s12559-020-09794-6
– ident: e_1_2_9_26_1
  doi: 10.1109/LED.2021.3063954
– ident: e_1_2_9_29_1
  doi: 10.1016/j.sse.2017.11.012
– ident: e_1_2_9_17_1
  doi: 10.1109/LED.2021.3125966
– ident: e_1_2_9_28_1
  doi: 10.3389/fnins.2021.644604
– ident: e_1_2_9_9_1
  doi: 10.3390/electronics10212600
– ident: e_1_2_9_27_1
  doi: 10.1038/s41598-022-07374-2
– ident: e_1_2_9_12_1
  doi: 10.1038/s41586-021-04196-6
– ident: e_1_2_9_19_1
  doi: 10.1109/ACCESS.2021.3121011
– ident: e_1_2_9_16_1
– ident: e_1_2_9_18_1
  doi: 10.1038/s41928-019-0288-0
– ident: e_1_2_9_4_1
– ident: e_1_2_9_32_1
– ident: e_1_2_9_2_1
  doi: 10.1007/s10462-023-10464-w
– ident: e_1_2_9_24_1
– ident: e_1_2_9_7_1
  doi: 10.3390/electronics8060661
– ident: e_1_2_9_11_1
  doi: 10.1063/5.0073284
– ident: e_1_2_9_14_1
  doi: 10.1038/s41928-018-0054-8
– ident: e_1_2_9_8_1
– volume: 2
  start-page: 25
  year: 2020
  ident: e_1_2_9_3_1
  publication-title: Air Space Syst
– ident: e_1_2_9_30_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_23_1
– ident: e_1_2_9_21_1
  doi: 10.3390/electronics10172181
– ident: e_1_2_9_25_1
  doi: 10.1109/TED.2019.2939393
– ident: e_1_2_9_5_1
  doi: 10.3390/electronics11091421
– ident: e_1_2_9_1_1
  doi: 10.1016/j.patcog.2020.107281
– ident: e_1_2_9_13_1
  doi: 10.1038/s41586-018-0180-5
SSID ssj0001763453
Score 2.3062444
Snippet This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and...
Abstract This study presents a binarized neural network (BNN) comprising quasi‐nonvolatile memory (QNVM) devices that operate in a positive feedback loop...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Arrays
binarized neural network
Energy consumption
Feedback loops
image recognition
Memory devices
multiply‐accumulate
Neural networks
Neuromorphic computing
Positive feedback
positive feedback loop
quasi‐nonvolatile memory
Silicon
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELaq0gMXflQQKQX5gMSlq2a93rV9bKEVBxq1UpFys8b2LESKkippkeDEI_QZ-yTMeDdpc0AIcfXOeleef2vmGyHeuRJqrLQuVFNhodsyFoESuCJqVEEphNKEPGzCjEZ2PHbnD7r4O3yI9YUba0a216zgEJaH96ChgFPuJOcayCHnP4_KsjIs10qf39-ykProDEVJmumKshmOV8iNQ3W4ucWGZ8oA_htR58PYNTuf06f__9vPxJM-8JRHnaQ8F1s42xVwzO24k5-YJKN00PNRVxYu2U6Q_pNjkxc3sJzc_bodzWdky4iTU5RnXKD7Q37EbGgkRb55gzmtXn2bRNkNi6C3X4gvpyeXHz4V_dAFYg-FEkV0tgEbQlSKkoeEyVl0porOQdOaCoG7YUME4mUNlK4hz_gD20JIdTQhVS_F9mw-w1dCOkodY5kUkgfUVoXQ2mEdUVdAn1IBB6JYHbiPPSI5D8aY-g5LWXk-LL8-rIF4v6a_6rA4_kh5zPxbUzGGdl6YL776XiU9eWINCcEaTXFKm2xSrcUGG0ASG5MGYn_Ffd8r9tJXytTaUB6mBuIg8_kvv-KPTj6fGVvv_Rv5a_GY17pqtn2xfb24wTdiJ36_niwXb7OQ_wZPQP-Z
  priority: 102
  providerName: Wiley-Blackwell
Title Binarized Neural Network Comprising Quasi‐Nonvolatile Memory Devices for Neuromorphic Computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400061
https://www.proquest.com/docview/3275472552
https://doaj.org/article/4294adea874242fd8d2f8e6e6ae1767d
Volume 10
WOSCitedRecordID wos001233419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Freely Accessible)
  customDbUrl:
  eissn: 2199-160X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763453
  issn: 2199-160X
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA0qLtyIomJ9kYXgxsFOJjNJlj4qLmxRUOgu5HEHC6WVtgq6ED_Bb_RLvMlMS7sQN25mkcnMhJP7HG7OJeRYpSaHjPOEFRkkvExdYjGBSxwHZhkDkwobm02ITkd2u-purtVXqAmr6IEr4M7QXnLjwUjM4TgrvfSslFBAYSAVhfDB-jaFmkum4t8VVBueZ1OWxiY7M9APB89DyWSzSBe8UCTrX4gw5-PU6GiuN8h6HSHS82plm2QJBlvEXIRzs7138DTQaeD9TlW_TYNCo6KiB6L3L2bc-_786gwHaHQQ8j7QdqikfaNXEC0CxRA1vmCIo89PPUerrg749DZ5vG49XN4kdXcExBF9fuKULIy01jGGUb4HryQokTmlTFGKDEw4tmqdQdBzg3kVhGZ8RpbG-twJ67MdsjIYDmCXUIU5nks9A3RVXDJrS9nMHfDM4KeYhQZJpmhpV1OHhw4WfV2RHjMd0NUzdBvkZDb_uSLN-HXmRQB_NiuQXccBFAFdi4D-SwQa5GC6dbrWwLHOmMi5wISJNchp3M4_lqLPW7dtIfO9_1jSPlkLL66K0Q7IymT0Aodk1b1OeuPREVlm_O4oSixe2x-tH28r8bs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA-lFvSlWlS8tmoeCn1x6W02u0keW22p9G6pUOHeQv7M2oPjrty1gn3yI_gZ_STOZPeu3oOI4Gsymw2ZzL8w8xvGDkzuSiikzERVQCabPGQeA7gsSBBeCHC58qnZhKprPRqZyy6bkGphWnyI1YMbSUbS1yTg9CB99IAa6mBCpeSUBNmnAOiRRFNDTQyEvHx4ZkH5kQmLEkXTZHnVHy2hG_viaH2JNdOUEPzX3M7fnddkfc6e_od9P2PbnevJj9u7ssM2YPqcuRMqyB3fQ-SE04HzdZsYzklToAZA08Y_3bnF-Of3H_VsitoMeTkBPqQU3W_8AyRVw9H3TQvMcPTmehx42y4Cv37BPp-dXr0_z7q2C8ggdCayYHTltPdBCAwfIkSjwagiGOOqRhXgqB7WB4fcLB0GbEBd_pxunI9lUD4WL9nmdDaFV4wbDB5DHgWgDZRaeN_ofhlAFg5_JTz0WLY8cRs6THJqjTGxLZqysHRYdnVYPXa4or9p0Tj-SHlCDFxREYp2GpjNv9hOKC3aYukiOK0keipN1FE0GiqoHOC9UbHH9pfst51oL2whVCkVRmKix94lRv9lK_b4dDBUutz9N_K37PH51XBgBx_riz32hObb3LZ9tnk7v4PXbCt8vR0v5m_Sjf8Fc2UDig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELaqUiEuQAWI0AI-VOqFVbNe79o-trQRVdtVkEDKzfLPLESKkihpkcqJR-AZeRJmvJuUHBBC6tWe9Voez5818w1jByZ3JRRSZqIqIJNNHjKPAVwWJAgvBLhc-dRsQtW1Ho3MsMsmpFqYFh9i_eBGkpH0NQk4zGNzdIca6mBCpeSUBNmnAOiBLFHRErizHN49s6D8yIRFiaJpsrzqj1bQjX1xtLnEhmlKCP4bbuefzmuyPoMn97Dvp-xx53ry4_au7LItmD5j7oQKcsffIXLC6cD5uk0M56QpUAOgaeMfb9xy_OvHz3o2RW2GvJwAv6IU3Vt-CknVcPR90wIzHJ1_HQfetovAr5-zz4OzT-8_ZF3bBWQQOhNZMLpy2vsgBIYPEaLRYFQRjHFVowpwVA_rg0Nulg4DNqAuf043zscyKB-LF2x7OpvCS8YNBo8hjwLQBkotvG90vwwgC4e_Eh56LFuduA0dJjm1xpjYFk1ZWDosuz6sHjtc089bNI6_Up4QA9dUhKKdBmaLL7YTSou2WLoITiuJnkoTdRSNhgoqB3hvVOyx_RX7bSfaS1sIVUqFkZjosXeJ0f_Yij0-u7xSunz1f-Rv2cPh6cBentcXe-wRTbepbfts-3pxA6_ZTvh2PV4u3qQL_xsUjwMO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binarized+Neural+Network+Comprising+Quasi%E2%80%90Nonvolatile+Memory+Devices+for+Neuromorphic+Computing&rft.jtitle=Advanced+electronic+materials&rft.au=Yunwoo+Shin&rft.au=Juhee+Jeon&rft.au=Kyoungah+Cho&rft.au=Sangsig+Kim&rft.date=2024-09-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400061&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4294adea874242fd8d2f8e6e6ae1767d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon