Meta‐learning how to forecast time series
Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that re...
Gespeichert in:
| Veröffentlicht in: | Journal of forecasting Jg. 42; H. 6; S. 1476 - 1501 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester
Wiley Periodicals Inc
01.09.2023
|
| Schlagworte: | |
| ISSN: | 0277-6693, 1099-131X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that relates the features of a time series to the “best” forecast model using a classification algorithm such as a random forest. The framework is evaluated using time series from the M‐forecasting competitions and is shown to yield forecasts that are almost as accurate as state‐of‐the‐art methods but are much faster to compute. We use model‐agnostic machine learning interpretability methods to explore the results and to study what types of time series are best suited to each forecasting model. |
|---|---|
| AbstractList | Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that relates the features of a time series to the “best” forecast model using a classification algorithm such as a random forest. The framework is evaluated using time series from the M‐forecasting competitions and is shown to yield forecasts that are almost as accurate as state‐of‐the‐art methods but are much faster to compute. We use model‐agnostic machine learning interpretability methods to explore the results and to study what types of time series are best suited to each forecasting model. Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that relates the features of a time series to the “best” forecast model using a classification algorithm such as a random forest. The framework is evaluated using time series from the M‐forecasting competitions and is shown to yield forecasts that are almost as accurate as state‐of‐the‐art methods but are much faster to compute. We use model‐agnostic machine learning interpretability methods to explore the results and to study what types of time series are best suited to each forecasting model. |
| Author | Athanasopoulos, George Talagala, Thiyanga S. Hyndman, Rob J. |
| Author_xml | – sequence: 1 givenname: Thiyanga S. surname: Talagala fullname: Talagala, Thiyanga S. email: ttalagala@sjp.ac.lk organization: University of Sri Jayewardenepura – sequence: 2 givenname: Rob J. surname: Hyndman fullname: Hyndman, Rob J. organization: Monash University – sequence: 3 givenname: George surname: Athanasopoulos fullname: Athanasopoulos, George organization: Monash University |
| BookMark | eNp1kM1Kw0AURgepYFsFHyHgRpDE-WtmspRiVagURMHdMJnc6JQ0U2emlO58BJ_RJzE1rkRXd3O-c-_9RmjQuhYQOiU4IxjTy9r5jBY5O0BDgosiJYw8D9AQUyHSPC_YERqFsMQYC0noEF3cQ9Sf7x8NaN_a9iV5ddskuqTTgNEhJtGuIAngLYRjdFjrJsDJzxyjp9n14_Q2nS9u7qZX89RwIljKRV1ymDCqy4ryAjNDucx1xQnm3QGlFjmUsjYVlFQbLs2EVKyksqo0o7jmbIzOeu_au7cNhKiWbuPbbqWiknNWcElFR533lPEuBA-1Wnu70n6nCFb7KlT3g9pX0aHZL9TYqKN1bfTaNn8F0j6wtQ3s_hWr2eLhm_8CW8xxGg |
| CitedBy_id | crossref_primary_10_1108_JM2_09_2023_0211 crossref_primary_10_3390_app14031169 crossref_primary_10_1007_s00521_024_09659_1 crossref_primary_10_1016_j_eswa_2024_125666 crossref_primary_10_1111_ejed_12805 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_1109_TCSS_2024_3442238 crossref_primary_10_1016_j_pce_2024_103686 crossref_primary_10_1109_ACCESS_2024_3458391 crossref_primary_10_1109_ACCESS_2025_3584923 crossref_primary_10_1002_for_3099 crossref_primary_10_1016_j_engappai_2025_111121 crossref_primary_10_3390_app13127065 crossref_primary_10_1145_3715149 |
| Cites_doi | 10.1002/for.3980010202 10.1109/IJCNN.2016.7727376 10.1016/S0169-2070(00)00057-1 10.21105/joss.00359 10.1002/for.3980120104 10.32614/CRAN.package.vip 10.1016/S0169-2070(97)00031-9 10.1016/j.neucom.2008.10.017 10.1016/j.ijforecast.2016.09.004 10.1007/978-0-387-75967-8 10.1002/sam.11461 10.2307/2347679 10.1016/j.ijforecast.2019.04.014 10.1016/S0169-2070(01)00110-8 10.1111/j.1467-9892.1993.tb00139.x 10.1016/j.ijforecast.2019.02.011 10.1109/TKDE.2014.2316504 10.2172/1447470 10.1080/10618600.2014.907095 10.32614/CRAN.package.gratis 10.1287/mnsc.38.10.1394 10.1109/PROC.1982.12435 10.1016/S0065-2458(08)60520-3 10.1016/j.neucom.2009.09.020 10.1007/978-3-540-71918-2 10.1109/ICDMW.2015.104 10.1145/1456650.1456656 10.1016/S0304-4076(00)00030-0 10.1016/j.ijforecast.2021.07.002 10.1214/07-AOAS148 10.1016/j.neucom.2004.03.008 10.1023/A:1010933404324 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 8BJ FQK JBE |
| DOI | 10.1002/for.2963 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
| DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Social Sciences (General) Business |
| EISSN | 1099-131X |
| EndPage | 1501 |
| ExternalDocumentID | 10_1002_for_2963 FOR2963 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .L6 .Y3 05W 0R~ 10A 1L6 1OB 1OC 1XV 29K 3-9 31~ 33P 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5VS 66C 702 7PT 7WY 8-0 8-1 8-3 8-4 8-5 8FL 8FW 8R4 8R5 8UM 8VB 930 9M8 A04 AABNI AAESR AAHHS AAHQN AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABSOO ABTAH ABUWG ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFO ACGFS ACHQT ACPOU ACRPL ACSCC ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFKFF AFKRA AFPWT AFWVQ AFYRF AFZJQ AHBTC AHQJS AIAGR AIFKG AIURR AIWBW AJBDE AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BEZIV BFHJK BKOMP BMXJE BNVMJ BPHCQ BQESF BROTX BRXPI BY8 CCPQU CS3 D-C D-D D-I DCZOG DJZPD DPXWK DR2 DRFUL DRSSH DU5 DWQXO EBO EBS EBU EJD F00 F01 F5P FEDTE FRNLG G-S G.N G50 GNP GODZA GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC K1G K60 K6~ KQQ LATKE LAW LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES M0C M55 MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ NNB O66 O9- OIG P2P P2W P2Y P4C PALCI PQBIZ PQBZA PQQKQ PROAC Q.N Q11 Q2X QB0 QRW QWB R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TH9 TN5 U5U UB1 UHB V2E V8K VQA W8V W99 WBKPD WEBCB WH7 WIB WIH WII WOHZO WQZ WRC WSUWO WWB WXSBR XG1 XPP XSW XV2 ZCG ZL0 ZY4 ZZTAW ~IA ~WP AAMMB AAYXX ABBNM ADXHL AEFGJ AETEA AEYWJ AFFHD AGHNM AGQPQ AGXDD AIDQK AIDYY AIQQE AMVHM CITATION O8X PHGZM PHGZT 8BJ FQK JBE |
| ID | FETCH-LOGICAL-c4173-47fb4e532abd24903c2486ad4104693ba76eb8fcdeb2ac48c51d3b28dda320f43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937724000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-6693 |
| IngestDate | Sat Nov 08 06:08:32 EST 2025 Sat Nov 29 02:17:10 EST 2025 Tue Nov 18 21:38:26 EST 2025 Wed Jan 22 16:18:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4173-47fb4e532abd24903c2486ad4104693ba76eb8fcdeb2ac48c51d3b28dda320f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Meta-learning_how_to_forecast_time_series/21522471 |
| PQID | 2844394827 |
| PQPubID | 48359 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2844394827 crossref_primary_10_1002_for_2963 crossref_citationtrail_10_1002_for_2963 wiley_primary_10_1002_for_2963_FOR2963 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Journal of forecasting |
| PublicationYear | 2023 |
| Publisher | Wiley Periodicals Inc |
| Publisher_xml | – name: Wiley Periodicals Inc |
| References | 2004; 61 2009; 41 2017; 2 2002; 18 1982; 70 2009 2014; 26 2008 2002; 2 2020; 36 2020; 13 1972 2004 1999; 3 1992; 38 2001; 45 2008; 2 2015; 24 1993; 14 1993; 12 2000; 16 1982; 1 2022 2021 2009; 72 2020 2017; 33 2000; 99 1997; 13 2008; 26 2018 1984 2017 2016 2015 2001; 17 2013 1989; 38 1976; 15 2022; 38 2010; 73 e_1_2_10_44_1 e_1_2_10_42_1 Xie Y. (e_1_2_10_55_1) 2017 Kalousis A. (e_1_2_10_27_1) 1999; 3 e_1_2_10_40_1 Hyndman R. J. (e_1_2_10_22_1) 2021 (e_1_2_10_46_1) 1972 Hyndman R. J. (e_1_2_10_21_1) 2001; 17 e_1_2_10_4_1 Liaw A. (e_1_2_10_34_1) 2002; 2 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 Lawrence M. (e_1_2_10_32_1) 2001; 17 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_51_1 Hyndman R. J. (e_1_2_10_23_1) 2008; 26 e_1_2_10_29_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Hadley W. (e_1_2_10_18_1) 2009 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Armstrong J. S. (e_1_2_10_2_1) 2001; 17 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 70 start-page: 1115 issue: 9 year: 1982 end-page: 1125 article-title: Spectral estimation using combined time and lag weighting publication-title: Proceedings of the IEEE – start-page: 64 year: 2013 end-page: 72 – year: 2009 – volume: 18 start-page: 439 issue: 3 year: 2002 end-page: 454 article-title: A state space framework for automatic forecasting using exponential smoothing methods publication-title: International Journal of Forecasting – volume: 33 start-page: 345 issue: 2 year: 2017 end-page: 358 article-title: Visualising forecasting algorithm performance using time series instance spaces publication-title: International Journal of Forecasting – start-page: 1499 year: 2016 end-page: 1506 – volume: 17 start-page: 542 issue: 1 year: 2001 end-page: 543 article-title: Should we redesign forecasting competitions? publication-title: International Journal of Forecasting – volume: 2 issue: 16 year: 2017 article-title: iheatmapr: Interactive complex heatmaps in R publication-title: Journal of Open Source Software – volume: 12 start-page: 37 year: 1993 end-page: 48 article-title: Time‐series analysis supported by power transformations publication-title: Journal of Forecasting – volume: 15 start-page: 65 year: 1976 end-page: 118 article-title: The algorithm selection problem publication-title: Advances in Computers – volume: 41 start-page: 6 issue: 1 year: 2009 article-title: Cross‐disciplinary perspectives on meta‐learning for algorithm selection publication-title: ACM Computing Surveys (CSUR) – volume: 73 start-page: 2006 issue: 10 year: 2010 end-page: 2016 article-title: Meta‐learning for time series forecasting and forecast combination publication-title: Neurocomputing – volume: 61 start-page: 121 year: 2004 end-page: 137 article-title: Meta‐learning approaches to selecting time series models publication-title: Neurocomputing – year: 2021 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 38 start-page: 1 issue: 1 year: 1989 end-page: 50 article-title: Space‐time modelling with long‐memory dependence: Assessing ireland's wind power resource publication-title: Applied Statistics – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 article-title: Classification and regression by randomforest publication-title: R News – volume: 26 start-page: 3026 issue: 12 year: 2014 end-page: 3037 article-title: Highly comparative feature‐based time‐series classification publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 36 start-page: 54 issue: 1 year: 2020 end-page: 74 article-title: The m4 competition: 100,000 time series and 61 forecasting methods publication-title: International Journal of Forecasting – year: 2016 – year: 2018 – start-page: 1616 year: 2015 end-page: 1619 – volume: 99 start-page: 39 issue: 1 year: 2000 end-page: 61 article-title: Consistent cross‐validatory model‐selection for dependent data: HV‐block cross‐validation publication-title: Journal of Econometrics – volume: 38 start-page: 1394 issue: 10 year: 1992 end-page: 1414 article-title: Rule‐based forecasting: Development and validation of an expert systems approach to combining time series extrapolations publication-title: Management Science – volume: 3 start-page: 319 issue: 5 year: 1999 end-page: 337 article-title: NOEMON: Design, implementation and performance results of an intelligent assistant for classifier selection publication-title: Intelligent Data Analysis – volume: 72 start-page: 2581 issue: 10 year: 2009 end-page: 2594 article-title: Rule induction for forecasting method selection: Meta‐learning the characteristics of univariate time series publication-title: Neurocomputing – year: 1984 – volume: 16 start-page: 451 issue: 4 year: 2000 end-page: 476 article-title: The m3‐competition: Results, conclusions and implications publication-title: International Journal of Forecasting – volume: 1 start-page: 111 issue: 2 year: 1982 end-page: 153 article-title: The accuracy of extrapolation (time series) methods: Results of a forecasting competition publication-title: Journal of Forecasting – volume: 38 start-page: 920 issue: 3 year: 2022 end-page: 943 article-title: FFORMPP: Feature‐based forecast model performance prediction publication-title: International Journal of Forecasting – year: 2008 – year: 2022 – volume: 14 start-page: 209 year: 1993 end-page: 220 article-title: Power of the neural network linearity test publication-title: Journal of Time Series Analysis – year: 2004 – year: 2020 – volume: 36 start-page: 86 issue: 1 year: 2020 end-page: 92 article-title: FFORMA: Feature‐based forecast model averaging publication-title: International Journal of Forecasting – volume: 2 start-page: 916 issue: 3 year: 2008 end-page: 954 article-title: Predictive learning via rule ensembles publication-title: The Annals of Applied Statistics – year: 1972 – volume: 17 start-page: 574 issue: 1 year: 2001 end-page: 575 article-title: Why another study? publication-title: International Journal of Forecasting – volume: 17 start-page: 567 issue: 1 year: 2001 end-page: 570 article-title: It's time to move from what to why publication-title: International Journal of Forecasting – volume: 13 start-page: 354 issue: 4 year: 2020 end-page: 376 article-title: Gratis: Generating time series with diverse and controllable characteristics publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal – year: 2017 – volume: 26 start-page: 1 issue: 3 year: 2008 end-page: 22 article-title: Automatic time series forecasting: The forecast package for R publication-title: Journal of Statistical Software – volume: 13 start-page: 489 issue: 4 year: 1997 end-page: 500 article-title: Model selection in univariate time series forecasting using discriminant analysis publication-title: International Journal of Forecasting – volume: 24 start-page: 44 issue: 1 year: 2015 end-page: 65 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: Journal of Computational and Graphical Statistics – year: 2013 – ident: e_1_2_10_35_1 doi: 10.1002/for.3980010202 – ident: e_1_2_10_44_1 – ident: e_1_2_10_5_1 – ident: e_1_2_10_13_1 – ident: e_1_2_10_31_1 doi: 10.1109/IJCNN.2016.7727376 – ident: e_1_2_10_36_1 doi: 10.1016/S0169-2070(00)00057-1 – volume-title: Dynamic documents with r and knitr year: 2017 ident: e_1_2_10_55_1 – ident: e_1_2_10_48_1 doi: 10.21105/joss.00359 – ident: e_1_2_10_20_1 – ident: e_1_2_10_17_1 doi: 10.1002/for.3980120104 – ident: e_1_2_10_16_1 doi: 10.32614/CRAN.package.vip – ident: e_1_2_10_49_1 doi: 10.1016/S0169-2070(97)00031-9 – ident: e_1_2_10_53_1 doi: 10.1016/j.neucom.2008.10.017 – ident: e_1_2_10_29_1 doi: 10.1016/j.ijforecast.2016.09.004 – ident: e_1_2_10_41_1 doi: 10.1007/978-0-387-75967-8 – ident: e_1_2_10_7_1 – ident: e_1_2_10_42_1 – ident: e_1_2_10_28_1 doi: 10.1002/sam.11461 – ident: e_1_2_10_19_1 doi: 10.2307/2347679 – ident: e_1_2_10_37_1 doi: 10.1016/j.ijforecast.2019.04.014 – volume: 17 start-page: 567 issue: 1 year: 2001 ident: e_1_2_10_21_1 article-title: It's time to move from what to why publication-title: International Journal of Forecasting – volume: 17 start-page: 542 issue: 1 year: 2001 ident: e_1_2_10_2_1 article-title: Should we redesign forecasting competitions? publication-title: International Journal of Forecasting – ident: e_1_2_10_25_1 doi: 10.1016/S0169-2070(01)00110-8 – ident: e_1_2_10_52_1 doi: 10.1111/j.1467-9892.1993.tb00139.x – ident: e_1_2_10_39_1 doi: 10.1016/j.ijforecast.2019.02.011 – ident: e_1_2_10_12_1 doi: 10.1109/TKDE.2014.2316504 – ident: e_1_2_10_10_1 doi: 10.2172/1447470 – ident: e_1_2_10_15_1 doi: 10.1080/10618600.2014.907095 – ident: e_1_2_10_30_1 doi: 10.32614/CRAN.package.gratis – volume: 2 start-page: 18 issue: 3 year: 2002 ident: e_1_2_10_34_1 article-title: Classification and regression by randomforest publication-title: R News – ident: e_1_2_10_8_1 doi: 10.1287/mnsc.38.10.1394 – volume: 26 start-page: 1 issue: 3 year: 2008 ident: e_1_2_10_23_1 article-title: Automatic time series forecasting: The forecast package for R publication-title: Journal of Statistical Software – ident: e_1_2_10_40_1 doi: 10.1109/PROC.1982.12435 – ident: e_1_2_10_38_1 – ident: e_1_2_10_47_1 doi: 10.1016/S0065-2458(08)60520-3 – volume: 17 start-page: 574 issue: 1 year: 2001 ident: e_1_2_10_32_1 article-title: Why another study? publication-title: International Journal of Forecasting – volume-title: Forecasting: Principles and practice year: 2021 ident: e_1_2_10_22_1 – volume-title: ggplot2: Elegant graphics for data analysis year: 2009 ident: e_1_2_10_18_1 – ident: e_1_2_10_33_1 doi: 10.1016/j.neucom.2009.09.020 – ident: e_1_2_10_24_1 doi: 10.1007/978-3-540-71918-2 – ident: e_1_2_10_26_1 doi: 10.1109/ICDMW.2015.104 – volume: 3 start-page: 319 issue: 5 year: 1999 ident: e_1_2_10_27_1 article-title: NOEMON: Design, implementation and performance results of an intelligent assistant for classifier selection publication-title: Intelligent Data Analysis – ident: e_1_2_10_54_1 – ident: e_1_2_10_9_1 – volume-title: Forecasting in action year: 1972 ident: e_1_2_10_46_1 – ident: e_1_2_10_50_1 doi: 10.1145/1456650.1456656 – ident: e_1_2_10_45_1 doi: 10.1016/S0304-4076(00)00030-0 – ident: e_1_2_10_14_1 – ident: e_1_2_10_51_1 doi: 10.1016/j.ijforecast.2021.07.002 – ident: e_1_2_10_6_1 – ident: e_1_2_10_3_1 – ident: e_1_2_10_11_1 doi: 10.1214/07-AOAS148 – ident: e_1_2_10_43_1 doi: 10.1016/j.neucom.2004.03.008 – ident: e_1_2_10_4_1 doi: 10.1023/A:1010933404324 |
| SSID | ssj0007812 |
| Score | 2.6127713 |
| Snippet | Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1476 |
| SubjectTerms | Agnosticism algorithm selection problem black‐box models Classification Forecasting Machine learning machine learning interpretability Mapping random forest Time Time series visualization |
| Title | Meta‐learning how to forecast time series |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffor.2963 https://www.proquest.com/docview/2844394827 |
| Volume | 42 |
| WOSCitedRecordID | wos000937724000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-131X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007812 issn: 0277-6693 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfXiW1xdJYL4QOruJtk2PYq6eNBFRMFbyasqyK7Yqld_gr_RX-KkTVcFBcFTe0hoyMxkvulkvgHYpG1pUiWjIFYmCnik40ByhkDOIhw3Kka1EkWziajXE9fX8bm_VelqYUp-iOEPN2cZxXntDFyqrPlJGoqYbp-i-ozCGEW15TUYO7roXp0Oz-FIFLnOIkkZhjGrqGdbtFnN_e6MPhHmV5xaOJruzH-WOAvTHl6Sg1If5mDE9udhorrdPg-TVSEyvtfL0lzizTsjO56DencB9s5sLt9f33xTiRtyO3gh-YDgt6yWWU5cT3ri1Ndmi3DVPb48PAl8X4VA83bEUCKp4rbDqFQGo68W05SLUBru8r0xQ8mFVolUG4y6peZCd9qGKSqMkYy2Us6WoNYf9O0yEBWlse6w1LYxLlFaSUFVKJiRiJLQN7bqsF1tcKI96bjrfXGflHTJNMF1J26P6rAxHPlQEm38MKZRySjxppYl6F9dda-gUR22Cmn8Oj_BwNo9V_46cBWmXHv58k5ZA2r545Ndg3H9nN9lj-te4T4Aih3ZJA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60ivXiW6zPCOIDWW2TdDeLJ1GLYi0iCt6WvFYFacVd9epP8Df6S5zsoyooCJ52DwkJmZnMN0nmG4A12pAmVjLwQmUCjwc69CRnCOQswnGjQlQrkRWbCDodcX0dng_AXpkLk_ND9A_cnGVk-7UzcHcgvfvJGoqgboei_gzCEEctalZg6PCiddXub8SByC47s1tK3w9ZyT1bp7tl3-_e6BNifgWqmadpjf9rjhMwVgBMsp9rxCQM2O4UjJTv26egWqYi438tT84lhYEnZLNgod6ahu0zm8r317eirMQNue29kLRHcCyrZZISV5WeOAW2yQxctY4uD469orKCp3kjYCiTWHHbZFQqg_FXnWnKhS8Ndze-IUPZ-VaJWBuMu6XmQjcbhikqjJGM1mPOZqHS7XXtHBAVxKFustg2MDJRWklBlS-YkYiT0DvWa7BRrnCkC9pxV_3iPsoJk2mE847cGtVgtd_yIafa-KHNYimkqDC2JEIP6_J7BQ1qsJ6J49f-EYbW7jv_14YrUD2-PGtH7ZPO6QKMumLz-QuzRaikj092CYb1c3qXPC4X2vcBkTPdFA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5WV9SLb3F9RhAfSN3dJNumeBJ1UdRFRMFbyasqyK7Yqld_gr_RX-Kkj1VBQfDUHhIaMjOZbzqZbwDWaFOaWMnAC5UJPB7o0JOcIZCzCMeNClGtRNZsIuh0xPV1eF6B3bIWJueH6P9wc5aRndfOwO2DieufrKEI6nYo6s8AVHkr9NEqqwcX7avT_kEciCzZmWUpfT9kJfdsg9bLud-90SfE_ApUM0_THv_XGidgrACYZC_XiEmo2O4UDJf326dgpCxFxvdaXpxLCgNPyGbBQr01DdtnNpXvr29FW4kbctt7IWmP4LeslklKXFd64hTYJjNw1T683D_yis4KnubNgKFMYsVti1GpDMZfDaYpF7403GV8Q4ay860SsTYYd0vNhW41DVNUGCMZbcSczcJgt9e1c0BUEIe6xWLbxMhEaSUFVb5gRiJOQu_YqMFGucORLmjHXfeL-ygnTKYRrjtye1SD1f7Ih5xq44cxi6WQosLYkgg9rKvvFTSowXomjl_nRxhau-f8XweuwPD5QTs6Pe6cLMCo6zWfXzBbhMH08ckuwZB-Tu-Sx-VC-T4AT7_cjw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta%E2%80%90learning+how+to+forecast+time+series&rft.jtitle=Journal+of+forecasting&rft.au=Talagala%2C+Thiyanga+S.&rft.au=Hyndman%2C+Rob+J.&rft.au=Athanasopoulos%2C+George&rft.date=2023-09-01&rft.issn=0277-6693&rft.eissn=1099-131X&rft.volume=42&rft.issue=6&rft.spage=1476&rft.epage=1501&rft_id=info:doi/10.1002%2Ffor.2963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_for_2963 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6693&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6693&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6693&client=summon |