Modeling control strategies for prosumers in a Python-based modular simulation tool

The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead to new challenges in the electrical power system. These can include grid congestions at the low voltage level but also at higher voltage levels. Cont...

Full description

Saved in:
Bibliographic Details
Published in:Energy Informatics Vol. 6; no. Suppl 1; pp. 39 - 22
Main Authors: Schoen, Andrea, Ringelstein, Jan, Mende, Denis, Braun, Martin
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.10.2023
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2520-8942, 2520-8942
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead to new challenges in the electrical power system. These can include grid congestions at the low voltage level but also at higher voltage levels. Control strategies can enable the efficient use of flexibilities and therefore help mitigate upcoming problems. However, they need to be evaluated carefully before their application in the energy system to avoid any unwanted effects and to choose the most fitting strategy for each application. In this publication, a Python-based modular simulation tool for developing and analysing control strategies for prosumers, which uses pandapower (Thurner et al. 2018), is presented. It is intended for sequential simulations and enables detailed operational analyses, which include evaluating the influence on grid situations, the necessary behavior of energy system components, required measurements and communications. This publication also gives an overview of control strategies, existing simulation tools, how the modular simulation tool fits in and illustrates its functionalities in an application example, which further highlights its versatility and efficiency. Time series simulations with the tool allow analyses regarding the effect of control strategies on power flow results. Moreover, the simulation tool also facilitates evaluating the behavior of energy system components (e.g. distribution substations), necessary communications and measurements as well as any faults that might occur.
AbstractList Abstract The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead to new challenges in the electrical power system. These can include grid congestions at the low voltage level but also at higher voltage levels. Control strategies can enable the efficient use of flexibilities and therefore help mitigate upcoming problems. However, they need to be evaluated carefully before their application in the energy system to avoid any unwanted effects and to choose the most fitting strategy for each application. In this publication, a Python-based modular simulation tool for developing and analysing control strategies for prosumers, which uses pandapower (Thurner et al. 2018), is presented. It is intended for sequential simulations and enables detailed operational analyses, which include evaluating the influence on grid situations, the necessary behavior of energy system components, required measurements and communications. This publication also gives an overview of control strategies, existing simulation tools, how the modular simulation tool fits in and illustrates its functionalities in an application example, which further highlights its versatility and efficiency. Time series simulations with the tool allow analyses regarding the effect of control strategies on power flow results. Moreover, the simulation tool also facilitates evaluating the behavior of energy system components (e.g. distribution substations), necessary communications and measurements as well as any faults that might occur.
The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead to new challenges in the electrical power system. These can include grid congestions at the low voltage level but also at higher voltage levels. Control strategies can enable the efficient use of flexibilities and therefore help mitigate upcoming problems. However, they need to be evaluated carefully before their application in the energy system to avoid any unwanted effects and to choose the most fitting strategy for each application. In this publication, a Python-based modular simulation tool for developing and analysing control strategies for prosumers, which uses pandapower (Thurner et al. 2018), is presented. It is intended for sequential simulations and enables detailed operational analyses, which include evaluating the influence on grid situations, the necessary behavior of energy system components, required measurements and communications. This publication also gives an overview of control strategies, existing simulation tools, how the modular simulation tool fits in and illustrates its functionalities in an application example, which further highlights its versatility and efficiency. Time series simulations with the tool allow analyses regarding the effect of control strategies on power flow results. Moreover, the simulation tool also facilitates evaluating the behavior of energy system components (e.g. distribution substations), necessary communications and measurements as well as any faults that might occur.
The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead to new challenges in the electrical power system. These can include grid congestions at the low voltage level but also at higher voltage levels. Control strategies can enable the efficient use of flexibilities and therefore help mitigate upcoming problems. However, they need to be evaluated carefully before their application in the energy system to avoid any unwanted effects and to choose the most fitting strategy for each application. In this publication, a Python-based modular simulation tool for developing and analysing control strategies for prosumers, which uses (Thurner et al. 2018), is presented. It is intended for sequential simulations and enables detailed operational analyses, which include evaluating the influence on grid situations, the necessary behavior of energy system components, required measurements and communications. This publication also gives an overview of control strategies, existing simulation tools, how the modular simulation tool fits in and illustrates its functionalities in an application example, which further highlights its versatility and efficiency. Time series simulations with the tool allow analyses regarding the effect of control strategies on power flow results. Moreover, the simulation tool also facilitates evaluating the behavior of energy system components (e.g. distribution substations), necessary communications and measurements as well as any faults that might occur.
ArticleNumber 39
Author Mende, Denis
Braun, Martin
Ringelstein, Jan
Schoen, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  surname: Schoen
  fullname: Schoen, Andrea
  email: andrea.schoen@iee.fraunhofer.de
  organization: Fraunhofer Institute for Energy Economics and Energy System Technology IEE, Department of Energy Management and Power System Operation, University of Kassel
– sequence: 2
  givenname: Jan
  surname: Ringelstein
  fullname: Ringelstein, Jan
  organization: Fraunhofer Institute for Energy Economics and Energy System Technology IEE
– sequence: 3
  givenname: Denis
  surname: Mende
  fullname: Mende, Denis
  organization: Fraunhofer Institute for Energy Economics and Energy System Technology IEE, Department of Energy Management and Power System Operation, University of Kassel
– sequence: 4
  givenname: Martin
  surname: Braun
  fullname: Braun, Martin
  organization: Fraunhofer Institute for Energy Economics and Energy System Technology IEE, Department of Energy Management and Power System Operation, University of Kassel
BookMark eNp9UcFq3DAUFCWBbjb5gZwEPTuRni1ZPpbQNgspCbQ5C1l63mrxSqmkPeTvq6wbUnrIQTzxmBlm3pyRkxADEnLJ2RXnSl7nDriEhkHbMAa9aOADWYEA1qihg5N__h_JRc47VlFKSDHAivz4Hh3OPmypjaGkONNckim49ZjpFBN9SjEf9pgy9YEa-vBcfsXQjCajo_voDrNJNPt9ncXHQEuM8zk5ncyc8eLvXJPHr19-3tw2d_ffNjef7xrb8R6a3ozj6Kx1AxgGIxvYMDIle8ZE70zNZFrVoeyk4bavDx0oaKWoLK5s69o12Sy6Lpqdfkp-b9Kzjsbr4yKmrTapeDujRj7hJLCVig9VU41MdGhc20nHmBSqan1atGre3wfMRe_iIYVqX4Pq1VAP1kNFqQVl61VywklbX47B69H8rDnTL43opRFdG9HHRvQLFf6jvhp-l9QupFzBYYvpzdU7rD8dF5-e
CitedBy_id crossref_primary_10_1007_s00202_024_02652_w
Cites_doi 10.3390/en13123290
10.1109/TPWRS.2018.2829021
10.3390/en15082866
10.1109/TSG.2013.2274391
10.1016/j.apenergy.2018.03.123
10.1016/j.simpa.2023.100467
10.1186/s42162-019-0083-1
10.1049/icp.2021.1609
10.1016/j.jpowsour.2014.04.078
10.3390/en16010088
10.2139/ssrn.4034171
10.1109/IECON.2018.8591486
10.1049/icp.2022.2721
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1186/s42162-023-00275-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2520-8942
EndPage 22
ExternalDocumentID oai_doaj_org_article_e1fef5e368194e68b054ead346d00658
10_1186_s42162_023_00275_2
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACULB
ADBBV
ADMLS
AEUYN
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BCNDV
BENPR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
IAO
ISR
ITC
M~E
OK1
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
7SC
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c4172-7abbbdccd92a02b0909b08670057da421a384e646a1c7a1ced282365bbb18c3d3
IEDL.DBID DOA
ISSN 2520-8942
IngestDate Tue Oct 14 19:06:56 EDT 2025
Sat Oct 11 06:11:25 EDT 2025
Tue Nov 18 22:32:23 EST 2025
Sat Nov 29 01:31:58 EST 2025
Fri Feb 21 02:42:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords Distribution system operation
Control strategies
Prosumers
Distribution grids
Power system modeling
pandapower
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4172-7abbbdccd92a02b0909b08670057da421a384e646a1c7a1ced282365bbb18c3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/e1fef5e368194e68b054ead346d00658
PQID 2878928572
PQPubID 4406324
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_e1fef5e368194e68b054ead346d00658
proquest_journals_2878928572
crossref_citationtrail_10_1186_s42162_023_00275_2
crossref_primary_10_1186_s42162_023_00275_2
springer_journals_10_1186_s42162_023_00275_2
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Energy Informatics
PublicationTitleAbbrev Energy Inform
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Fraunhofer IEE and University of Kassel: pandapower Documentation (2023a) https://pandapower.readthedocs.io/en/latest/index.html Accessed 03 Mar 2023
Bundesnetzagentur: Leitfaden Einspeisemanagement (2023) https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/Einspeisemanagement/start.html Accessed 04 Apr 2023
Römer C, Hiry J, Kittl C, Liebig T, Rehtanz C (2019) Charging control of electric vehicles using contextual bandits considering the electrical distribution grid. arxiv:1905.01163
GümrükcüEAhmadifarAYavuzerAPonciFMontiAdatafev—a Python framework for development and testing of management algorithms for electric vehicle charging infrastructuresSoftw Impacts20231510.1016/j.simpa.2023.100467
Gomes I, Bot K, Ruano MG, Ruano A (2022) Recent techniques used in home energy management systems: a review. Energies 15(8)
VDE (2023) VDE-AR-N 4105 Anwendungsregel:2018–11 Generators Connected to the Low-voltage Distribution Network. https://www.vde-verlag.de/standards/0100492/vde-ar-n-4105-anwendungsregel-2018-11.html Accessed 28 Mar 2023
Wenderoth F, Drayer E, Schmoll R, Niedermeier M, Braun M (2019) Architectural and functional classification of smart grid solutions. Energy Informat 2(S1)
Montoya J, Brandl R, Vogt M, Marten F, Maniatopoulos M, Fabian A (2018) Asynchronous Integration of a real-time simulator to a geographically distributed controller through a co-simulation environment. In: IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, pp. 4013–4018
MahelaOPKhosravyMGuptaNKhanBAlhelouHHMahlaRPatelNSianoPComprehensive overview of multi-agent systems for controlling smart gridsCSEE J Power Energy Syst202281115131
Pacific Northwest National Laboratory (2023): GridLAB-D -The Next-Generation Simulation Software. https://www.gridlabd.org/ Accessed 20 Jun 2023
Fraunhofer IEE (2023c) MotiV—Modelltiefe in Verteilnetzen. https://www.iee.fraunhofer.de/de/projekte/suche/2020/motiv.html Accessed 05 Apr 2023
Hildermeier J, Burger J, Jahn A, Rosenow J (2023) A review of tariffs and services for smart charging of electric vehicles in Europe. Energies 16(1)
Schoen A, Ulffers J, Maschke H, Mueller L, Braun M (2023) Integrating control strategies for electric vehicles into a simultaneity-factor-based grid planning approach. In: ETG Congress 2023
TU Dortmund University (2023); Institute of Energy Systems, Energy Efficiency and Energy Economics: agent-based Energy System Modeling and Simulation. https://ie3.etit.tu-dortmund.de/labs-tools/simona/ Accessed 05 Apr 2023
Schoen A, Ringelstein J, Spalthoff C, Braun M (2020) Identifikation und Definition von Betriebsführungsstrategien für die Elektromobilität. In: 16. Symposium Energieinnovation, 12.-14.02.2020, vol. 2021. Graz, Austria
Fraunhofer IEE and University of Kassel (2023c) SimBench. https://simbench.de/en/ Accessed 25 Mar2023
Fraunhofer IEE and University of Kassel: pandapower Control Module (2023b) https://pandapower.readthedocs.io/en/latest/control.html Accessed 03 Mar 2023
Liu Z, Ringelstein J, Ernst M, Requardt B, Zauner E, Baumbush K, Wende-von Berg S, Braun M (2022) Monitoring of low-voltage grids using artificial neural networks and its field test application based on the beeDIP-platform. In: 6th E-Mobility Power System Integration Symposium (EMOB 2022), 2022, 94–99
VogtMMartenFBraunMA survey and statistical analysis of smart grid co-simulationsAppl Energy2018222677810.1016/j.apenergy.2018.03.123
Mende D, Schmiesing J, Brantl J, Wang H, Mora E, Geiger D, Pape C, Drauz SR, Majidi M, Braun M (2022) Modelltiefe in Verteilnetzen: Szenariobasierte Evaluation des Analyseumfangs und Komplexitätsreduktion für Netzstudien. In: Tagung Zukünftige Stromnetze
NREL (2023a) Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). https://helics.org/ Accessed 18 Mar 2023
German Federal Government (2023) “We’re Tripling the Speed of the Expansion of Renewable Energies”. https://www.bundesregierung.de/breg-de/themen/klimaschutz/amendment-of-the-renewables-act-2060448 Accessed 04 Apr 2023
CEN-CENELEC-ETSI Smart Grid Coordination Group: CEN-CENELEC-ETSI Smart Grid Coordination Group—Smart Grid Reference Architecture. https://energy.ec.europa.eu/system/files/2014-11/xpert_group1_reference_architecture_0.pdf Accessed 19 Jun 2023
Forschungsstelle für Energiewirtschaft e.V. (2023) GridSim-Electric Grid and Energy System Model for Distribution Grids. https://www.ffe.de/en/tools/gridsim-electricity-grid-and-energy-system-model-for-distribution-grids/ Accessed 18 Mar 2023
Meinecke S, Sarajlić D, Drauz SR, Klettke A, Lauven L-P, Rehtanz C, Moser A, Braun M (2020) SimBench—a benchmark dataset of electric power systems to compare innovative solutions based on power flow analysis. Energies 13(12)
NREL (2023b) Charging Infrastructure Technologies: Smart Electric Vehicle Charging for a Reliable and Resilient Grid (RECHARGE). https://www.energy.gov/sites/default/files/2021-06/elt202_bennett_2021_o_5-14_752pm_KS_TM.pdf Accessed 18 Mar 2023
The MathWorks, Inc. (2023) MATLAB and Simulink for Microgrid, Smart Grid, and Charging Infrastructure. https://www.mathworks.com/solutions/electrification/microgrid-smart-grid-charging-infrastructure.html Accessed 18 Mar 2023
ThurnerLScheidlerASchäferFMenkeJ-HDollichonJMeierFMeineckeSBraunMpandapower—an open source python tool for convenient modeling, analysis and optimization of electric power systemsIEEE Trans Power Syst20183366510652110.1109/TPWRS.2018.2829021
ADAC (2023) Jeder Fünfte Neuwagen Ist Ein Elektroauto. https://www.adac.de/news/neuzulassungen-kba/ Accessed 26 Mar 2023
Requardt B (2021) Architekturen und Verfahren für modulare Pilotsysteme und Erweiterungen von Netzleitstellen. PhD thesis, University of Kassel
Mende D (2022) Modellierung Von Maßnahmen der Leistungsflusssteuerung in Einer Nichtlinearen Mathematischen Optimierung zur Anwendung Im Operativen Engpassmanagement Elektrischer Energieversorgungssysteme: Zugl.: Hannover, Univ., Diss., 2021. Fraunhofer Verlag, Stuttgart
Plotly Technologies Inc. (2023) Plotly Dash. https://dash.plotly.com/introduction Accessed 19 Mar 2023
BDEW, German Association of Energy and Water Industries: Smart Grid Traffic Light Concept (2023) https://www.bdew.de/media/documents/Stn_20150310_Smart-Grids-Traffic-Light-Concept_english.pdf Accessed 17 Mar 2023
Birk Jones C, Vining W, Lave M, Haines T, Neuman C, Bennett J, Scoffield DR (2022) Impact of Electric Vehicle customer response to Time-of-Use rates on distribution power grids. Energy Reports 8
Fraunhofer IEE (2023b) Ladeinfrastruktur 2.0. https://iee.fraunhofer.de/de/projekte/suche/laufende/ladeinfrastruktur2-0.html Accessed 03 Mar 2023
Schoen A, Ulffers J, Maschke H, Junge E, Bott C, Thurner L, Braun M (2021b) Considering control approaches for electric vehicle charging in grid planning. In: ETG Congress 2021
ZhangLJabbariFBrownTSamuelsenSCoordinating plug-in electric vehicle charging with electric grid: valley filling and target load followingJ Power Sour201426758459710.1016/j.jpowsour.2014.04.078
Fraunhofer IEE (2023a) OpSim: Test- and Simulation-environment for grid control and aggregation strategies. url:opsim.net/en Accessed 17 Mar 2023
Schoen A, Ringelstein J, Baumbusch K, Braun M (2021a) Multi-level Analysis of Control Strategies for Electric Vehicles. In: CIRED 2021–the 26th International Conference and Exhibition on Electricity Distribution, 2021, 1470–1474
PapadopoulosPJenkinsNCipciganLMGrauIZabalaECoordination of the charging of electric vehicles using a multi-agent systemIEEE Trans Smart Grid2013441802180910.1109/TSG.2013.2274391
275_CR20
275_CR21
275_CR22
275_CR23
275_CR7
275_CR6
275_CR9
275_CR8
L Thurner (275_CR35) 2018; 33
OP Mahela (275_CR19) 2022; 8
275_CR17
275_CR39
275_CR18
275_CR1
275_CR3
275_CR13
275_CR2
275_CR14
275_CR36
275_CR5
275_CR37
275_CR4
275_CR16
275_CR31
275_CR10
275_CR32
275_CR11
275_CR33
275_CR12
275_CR34
275_CR30
E Gümrükcü (275_CR15) 2023; 15
275_CR28
M Vogt (275_CR38) 2018; 222
275_CR29
P Papadopoulos (275_CR26) 2013; 4
275_CR24
275_CR25
275_CR27
L Zhang (275_CR40) 2014; 267
References_xml – reference: Birk Jones C, Vining W, Lave M, Haines T, Neuman C, Bennett J, Scoffield DR (2022) Impact of Electric Vehicle customer response to Time-of-Use rates on distribution power grids. Energy Reports 8
– reference: Liu Z, Ringelstein J, Ernst M, Requardt B, Zauner E, Baumbush K, Wende-von Berg S, Braun M (2022) Monitoring of low-voltage grids using artificial neural networks and its field test application based on the beeDIP-platform. In: 6th E-Mobility Power System Integration Symposium (EMOB 2022), 2022, 94–99
– reference: Mende D (2022) Modellierung Von Maßnahmen der Leistungsflusssteuerung in Einer Nichtlinearen Mathematischen Optimierung zur Anwendung Im Operativen Engpassmanagement Elektrischer Energieversorgungssysteme: Zugl.: Hannover, Univ., Diss., 2021. Fraunhofer Verlag, Stuttgart
– reference: CEN-CENELEC-ETSI Smart Grid Coordination Group: CEN-CENELEC-ETSI Smart Grid Coordination Group—Smart Grid Reference Architecture. https://energy.ec.europa.eu/system/files/2014-11/xpert_group1_reference_architecture_0.pdf Accessed 19 Jun 2023
– reference: Römer C, Hiry J, Kittl C, Liebig T, Rehtanz C (2019) Charging control of electric vehicles using contextual bandits considering the electrical distribution grid. arxiv:1905.01163
– reference: Hildermeier J, Burger J, Jahn A, Rosenow J (2023) A review of tariffs and services for smart charging of electric vehicles in Europe. Energies 16(1)
– reference: ADAC (2023) Jeder Fünfte Neuwagen Ist Ein Elektroauto. https://www.adac.de/news/neuzulassungen-kba/ Accessed 26 Mar 2023
– reference: Mende D, Schmiesing J, Brantl J, Wang H, Mora E, Geiger D, Pape C, Drauz SR, Majidi M, Braun M (2022) Modelltiefe in Verteilnetzen: Szenariobasierte Evaluation des Analyseumfangs und Komplexitätsreduktion für Netzstudien. In: Tagung Zukünftige Stromnetze
– reference: ThurnerLScheidlerASchäferFMenkeJ-HDollichonJMeierFMeineckeSBraunMpandapower—an open source python tool for convenient modeling, analysis and optimization of electric power systemsIEEE Trans Power Syst20183366510652110.1109/TPWRS.2018.2829021
– reference: VDE (2023) VDE-AR-N 4105 Anwendungsregel:2018–11 Generators Connected to the Low-voltage Distribution Network. https://www.vde-verlag.de/standards/0100492/vde-ar-n-4105-anwendungsregel-2018-11.html Accessed 28 Mar 2023
– reference: BDEW, German Association of Energy and Water Industries: Smart Grid Traffic Light Concept (2023) https://www.bdew.de/media/documents/Stn_20150310_Smart-Grids-Traffic-Light-Concept_english.pdf Accessed 17 Mar 2023
– reference: Fraunhofer IEE (2023c) MotiV—Modelltiefe in Verteilnetzen. https://www.iee.fraunhofer.de/de/projekte/suche/2020/motiv.html Accessed 05 Apr 2023
– reference: Forschungsstelle für Energiewirtschaft e.V. (2023) GridSim-Electric Grid and Energy System Model for Distribution Grids. https://www.ffe.de/en/tools/gridsim-electricity-grid-and-energy-system-model-for-distribution-grids/ Accessed 18 Mar 2023
– reference: Fraunhofer IEE (2023a) OpSim: Test- and Simulation-environment for grid control and aggregation strategies. url:opsim.net/en Accessed 17 Mar 2023
– reference: Schoen A, Ulffers J, Maschke H, Mueller L, Braun M (2023) Integrating control strategies for electric vehicles into a simultaneity-factor-based grid planning approach. In: ETG Congress 2023
– reference: Plotly Technologies Inc. (2023) Plotly Dash. https://dash.plotly.com/introduction Accessed 19 Mar 2023
– reference: VogtMMartenFBraunMA survey and statistical analysis of smart grid co-simulationsAppl Energy2018222677810.1016/j.apenergy.2018.03.123
– reference: TU Dortmund University (2023); Institute of Energy Systems, Energy Efficiency and Energy Economics: agent-based Energy System Modeling and Simulation. https://ie3.etit.tu-dortmund.de/labs-tools/simona/ Accessed 05 Apr 2023
– reference: Bundesnetzagentur: Leitfaden Einspeisemanagement (2023) https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/Einspeisemanagement/start.html Accessed 04 Apr 2023
– reference: Fraunhofer IEE (2023b) Ladeinfrastruktur 2.0. https://iee.fraunhofer.de/de/projekte/suche/laufende/ladeinfrastruktur2-0.html Accessed 03 Mar 2023
– reference: Montoya J, Brandl R, Vogt M, Marten F, Maniatopoulos M, Fabian A (2018) Asynchronous Integration of a real-time simulator to a geographically distributed controller through a co-simulation environment. In: IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, pp. 4013–4018
– reference: The MathWorks, Inc. (2023) MATLAB and Simulink for Microgrid, Smart Grid, and Charging Infrastructure. https://www.mathworks.com/solutions/electrification/microgrid-smart-grid-charging-infrastructure.html Accessed 18 Mar 2023
– reference: Gomes I, Bot K, Ruano MG, Ruano A (2022) Recent techniques used in home energy management systems: a review. Energies 15(8)
– reference: MahelaOPKhosravyMGuptaNKhanBAlhelouHHMahlaRPatelNSianoPComprehensive overview of multi-agent systems for controlling smart gridsCSEE J Power Energy Syst202281115131
– reference: Schoen A, Ringelstein J, Baumbusch K, Braun M (2021a) Multi-level Analysis of Control Strategies for Electric Vehicles. In: CIRED 2021–the 26th International Conference and Exhibition on Electricity Distribution, 2021, 1470–1474
– reference: PapadopoulosPJenkinsNCipciganLMGrauIZabalaECoordination of the charging of electric vehicles using a multi-agent systemIEEE Trans Smart Grid2013441802180910.1109/TSG.2013.2274391
– reference: NREL (2023b) Charging Infrastructure Technologies: Smart Electric Vehicle Charging for a Reliable and Resilient Grid (RECHARGE). https://www.energy.gov/sites/default/files/2021-06/elt202_bennett_2021_o_5-14_752pm_KS_TM.pdf Accessed 18 Mar 2023
– reference: Schoen A, Ringelstein J, Spalthoff C, Braun M (2020) Identifikation und Definition von Betriebsführungsstrategien für die Elektromobilität. In: 16. Symposium Energieinnovation, 12.-14.02.2020, vol. 2021. Graz, Austria
– reference: ZhangLJabbariFBrownTSamuelsenSCoordinating plug-in electric vehicle charging with electric grid: valley filling and target load followingJ Power Sour201426758459710.1016/j.jpowsour.2014.04.078
– reference: Pacific Northwest National Laboratory (2023): GridLAB-D -The Next-Generation Simulation Software. https://www.gridlabd.org/ Accessed 20 Jun 2023
– reference: Schoen A, Ulffers J, Maschke H, Junge E, Bott C, Thurner L, Braun M (2021b) Considering control approaches for electric vehicle charging in grid planning. In: ETG Congress 2021
– reference: Fraunhofer IEE and University of Kassel: pandapower Documentation (2023a) https://pandapower.readthedocs.io/en/latest/index.html Accessed 03 Mar 2023
– reference: GümrükcüEAhmadifarAYavuzerAPonciFMontiAdatafev—a Python framework for development and testing of management algorithms for electric vehicle charging infrastructuresSoftw Impacts20231510.1016/j.simpa.2023.100467
– reference: Wenderoth F, Drayer E, Schmoll R, Niedermeier M, Braun M (2019) Architectural and functional classification of smart grid solutions. Energy Informat 2(S1)
– reference: Fraunhofer IEE and University of Kassel: pandapower Control Module (2023b) https://pandapower.readthedocs.io/en/latest/control.html Accessed 03 Mar 2023
– reference: Requardt B (2021) Architekturen und Verfahren für modulare Pilotsysteme und Erweiterungen von Netzleitstellen. PhD thesis, University of Kassel
– reference: German Federal Government (2023) “We’re Tripling the Speed of the Expansion of Renewable Energies”. https://www.bundesregierung.de/breg-de/themen/klimaschutz/amendment-of-the-renewables-act-2060448 Accessed 04 Apr 2023
– reference: Meinecke S, Sarajlić D, Drauz SR, Klettke A, Lauven L-P, Rehtanz C, Moser A, Braun M (2020) SimBench—a benchmark dataset of electric power systems to compare innovative solutions based on power flow analysis. Energies 13(12)
– reference: Fraunhofer IEE and University of Kassel (2023c) SimBench. https://simbench.de/en/ Accessed 25 Mar2023
– reference: NREL (2023a) Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). https://helics.org/ Accessed 18 Mar 2023
– ident: 275_CR21
  doi: 10.3390/en13123290
– ident: 275_CR12
– ident: 275_CR33
– ident: 275_CR37
– volume: 33
  start-page: 6510
  issue: 6
  year: 2018
  ident: 275_CR35
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2829021
– ident: 275_CR14
  doi: 10.3390/en15082866
– ident: 275_CR29
– ident: 275_CR8
– volume: 8
  start-page: 115
  issue: 1
  year: 2022
  ident: 275_CR19
  publication-title: CSEE J Power Energy Syst
– ident: 275_CR27
– ident: 275_CR1
– ident: 275_CR6
– ident: 275_CR20
– ident: 275_CR4
– ident: 275_CR24
– volume: 4
  start-page: 1802
  issue: 4
  year: 2013
  ident: 275_CR26
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2274391
– volume: 222
  start-page: 67
  year: 2018
  ident: 275_CR38
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.123
– volume: 15
  year: 2023
  ident: 275_CR15
  publication-title: Softw Impacts
  doi: 10.1016/j.simpa.2023.100467
– ident: 275_CR18
– ident: 275_CR10
– ident: 275_CR11
– ident: 275_CR39
  doi: 10.1186/s42162-019-0083-1
– ident: 275_CR36
– ident: 275_CR34
– ident: 275_CR31
  doi: 10.1049/icp.2021.1609
– ident: 275_CR9
– ident: 275_CR28
– volume: 267
  start-page: 584
  year: 2014
  ident: 275_CR40
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.04.078
– ident: 275_CR7
– ident: 275_CR2
– ident: 275_CR5
– ident: 275_CR16
  doi: 10.3390/en16010088
– ident: 275_CR23
– ident: 275_CR3
  doi: 10.2139/ssrn.4034171
– ident: 275_CR25
– ident: 275_CR22
  doi: 10.1109/IECON.2018.8591486
– ident: 275_CR17
  doi: 10.1049/icp.2022.2721
– ident: 275_CR30
– ident: 275_CR32
– ident: 275_CR13
SSID ssj0002856592
Score 2.2335331
Snippet The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead to new...
Abstract The planned massive increase of producers and consumers such as electric vehicles, heat pumps and photovoltaic systems in distribution grids will lead...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Computer Science
Control strategies
Distribution grids
Distribution system operation
Electric power
Electric power systems
Electric vehicles
Electrical transmission
Heat exchangers
Heat pumps
Information Systems and Communication Service
Low voltage
pandapower
Photovoltaics
Power flow
Power system modeling
Prosumers
Simulation
Substations
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RLYdeeAhQFwrygRtYmziO45wQICo4UK0ESOVk-RW0Urspm6US_74zjrNVkeiph1wSO3E8fny2Z74P4HUbO-ek7HgTbcNlGyy3UndcxdoRAVylYpfEJpqTE3162i5zePSQ3SqnMTEN1CPbM_lt4yC8CL2nHfMF4nzdCl034t3Fb04aUnTWmgU19mCfiLeKGewvv3xd_tztuWAGOkWcYme0WgxSlEpwnLg4LdBqLm7MT4nG_wb2_Oe4NM1Cxw_vtvyP4EFGo-z92Hwew724fgLfSB-NotRZ9mNnw3YilGCIcRl-OYVtDmy1ZpYt_xL_AKf5MLDzPpBjKxtW51kYjG37_uwp_Dj-9P3jZ561F7iXiGl4Y51zwfvQClsIV7RF63D101DwarBYa7bSMiqpbOkbvGIQJJ1eY65S-ypUz2C27tfxEJhChIR5Kt0RSXDttMc1jJMesYkNTRHmUE41bnwmJid9jDOTFihamdFKBq1kkpWMmMObXZ6LkZbj1tQfyJC7lESpnW70m18m91ATyy52dawUYiT8M-0QzGI3q6QKCafN4WgyrMn9fDDXdpzD26lpXD_-f5Ge3_62F3BAuvaj1-ARzLabP_El3PeX29WweZXb9RUL7QY6
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHry4PnF9kYM3DW7bNE2PKi6eRFBhbyGvysq6le0q-O-dyabKigp66KVNaB4znW-amW8IOSp9ZQznFSu8LhgvnWaay4oJnxskgMuEr0KxieL6Wg4G5U1MCmvaaPf2SDJ8qYNaS3Ha8DQRKQMbw9CXyhl8eJeQTgwDuS5ijsNj-F2U41lhmyHzbdc5KxTI-ucQ5pdD0WBr-p3_jXKNrEZsSc9mwrBOFvx4g3Taug00qvEmucUCaJiGTmOgOm2mLWMEBRBLYYghL7OhwzHV9OYNCQYYGjxHn2qHkau0GT7Fyl90WtejLXLfv7y7uGKxuAKzHEALK7QxxlnrylT3UtMre6UB96bA7FSnYRY6k9wLLnRiC7i8S7E2eg69Emkzl22TxXE99juECoBA0CeTFbIA50ZacFIMtwA-tCt6rkuSdrGVjczjWABjpIIHIoWarZqCVVNh1VTaJccffZ5nvBu_tj7HPfxoiZzZ4UY9eVBRBZVPKl_lPhMAgmBm0gBaBT3KuHABiHXJfisBKipyo8ChlCVIVAHvOGl3_PPxz0Pa_VvzPbKChexnYYL7ZHE6efEHZNm-TofN5DAI-Ds96fS6
  priority: 102
  providerName: Springer Nature
Title Modeling control strategies for prosumers in a Python-based modular simulation tool
URI https://link.springer.com/article/10.1186/s42162-023-00275-2
https://www.proquest.com/docview/2878928572
https://doaj.org/article/e1fef5e368194e68b054ead346d00658
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: BENPR
  dateStart: 20181001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: PIMPY
  dateStart: 20181001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: C24
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELY4oKA5gQCxHKxc0IFFHo7tlIBAULCKeEhQWX5FWgS7iCwn3b9nxkl4SUBzRRrHTuzJJDMTz3wfITtlqK3lvGYyGMl46Q0zXNVMhMIiAFwuQh3JJuRopG5uyuod1RfmhLXwwK3g9kNah7oIuQDTxYNQFnwMWH3OhY_mE7--iSzfBVN38ZdRgfuFfZWMEvsNz1KRMTBRDEOxgmUfLFEE7P_gZX7aGI325mSZ_O4cRXrQTnCFzIXJKrlE6jIsIKddijltZj3WAwX3k8KFY0VlQ8cTamj1D6EBGJoqTx-mHnNOaTN-6Di76Gw6vV8j1yfHV0enrKNFYI6Du8GksdZ653yZmSSzSZmUFgITiXWl3sAyTa5AUlyY1Ek4gs-Q1byAUalyuc_XyfxkOgkbhApwXmBMrmrE7y2schBeWO7AbTBeJn5A0l5E2nWY4Uhdca9j7KCEbsWqQaw6ilVnA7L7OuaxRcz4tvchSv61J6JdxwbQAd3pgP5JBwZkq39uunsFGw2hoCpBDyTcY69_lm-nv57S5v-Y0h-yhMT0bdrfFpmfPT2HbbLo_s7GzdOQLBwej6qLIfl1lPFhVF1oq87Oq9sXOWfu4Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceAgQCwV8gBNY3TiO4xwQ4lV11Xa1EkUqJ-NX0ErtpmwWUP8Uv5EZb7JVkeitBw65JLFlx59nPsee-QCeV7F2Tsqal9GWXFbBcit1zVUsHCWAy1Wsk9hEOZnoo6NqugG_-1gYOlbZ28RkqEPj6R_5NjJ7XQldlOLN6XdOqlG0u9pLaKxgsRfPfuGSrX09_oDj-0KInY-H73d5pyrAvURvzUvrnAveh0rYkXCjalQ55PUlhWUGK0Vmcy2jkspmvsQrBkGi4AWWyrTPQ471XoNNiWAfDWBzOj6Yfln_1cEG0j5lH52j1XaLNSrB0TVyWgIWXFzwgEko4AK7_WtDNvm5ndv_2xe6A7c6Rs3erqbAXdiI83vwiTTeKNKedWfxWbvsk2Iw5OkM-5ZCT1s2mzPLpmeUQ4GTTw_spAl0OJe1s5NO3Iwtm-b4Pny-kn48gMG8mceHwBSyPCyT65oSHRdOe1yHOemRX9lQjsIQsn5Mje-Sq5PGx7FJiyytzAoHBnFgEg6MGMLLdZnTVWqRS99-R1BZv0lpwdONZvHNdFbGxKyOdRFzhTwPe6YdEnI0FblUIXHNIWz10DGdrWrNOW6G8KoH3_njfzfp0eW1PYMbu4cH-2Z_PNl7DDcFTYF0CnILBsvFj_gErvufy1m7eNrNIgZfrxqWfwBhuldN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQRUXCi2oCwV84NZa3SSO7RyhsAKBViu1lXqz_AraaptUm4DEv2fGcUpbtUiIQy6JR_FjJvNN7PmGkHdVqK3lvGYyGMl45Q0zXNVMhNIiAVwhQh2LTcj5XJ2dVYtrWfzxtPu4JTnkNCBLU9MfXvp6MHElDjueZyJn4G8YxlUlg4_wQwhNJOr1Ucp3OI-_jkrcNxyzZe4UveGRInH_DbR5a4M0-p3Z1v_3-Cl5kjAnfT8oyTPyIDTbZGus50CTee-QYyyMhunpNB1gp10_MklQALcUuhvzNTu6bKihi19IPMDQEXp60Xo80Uq75UWqCEb7tl09J6ezTydHn1kqusAcBzDDpLHWeud8lZtpbqfVtLIQ9kjMWvUGRmEKxYPgwmROwhV8jjXTS5DKlCt88YJsNG0TdgkVAI1AplA1sgOXVjkIXix3AEqMl1M_Idk48dolRnIsjLHSMTJRQg-zpmHWdJw1nU_I_pXM5cDH8dfWH3A9r1oil3a80a6_62SaOmR1qMtQCABHMDJlAcWCfRVc-AjQJmRv1AadDLzTEGiqCrRLwjsOxtX_8_j-Lr38t-Zvyebi40x_-zL_-oo8xlr3w0nCPbLRr3-E1-SR-9kvu_WbqPe_Abk0AJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+control+strategies+for+prosumers+in+a+Python-based+modular+simulation+tool&rft.jtitle=Energy+Informatics&rft.au=Andrea+Schoen&rft.au=Jan+Ringelstein&rft.au=Denis+Mende&rft.au=Martin+Braun&rft.date=2023-10-01&rft.pub=SpringerOpen&rft.eissn=2520-8942&rft.volume=6&rft.issue=S1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs42162-023-00275-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1fef5e368194e68b054ead346d00658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon