Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT

Abstract Background Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD). Purpose To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:RöFo : Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebende Verfahren Ročník 195; číslo 1; s. 47 - 54
Hlavní autori: Klaus, Jeremias B., Christodoulidis, Stergios, Peters, Alan A., Hourscht, Cynthia, Loebelenz, Laura I., Munz, Jaro, Schroeder, Christophe, Sieron, Dominik, Drakopoulos, Dionysios, Stadler, Severin, Heverhagen, Johannes T., Prosch, Helmut, Huber, Adrian, Pohl, Moritz, Mougiakakou, Stavroula G., Christe, Andreas, Ebner, Lukas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Rüdigerstraße 14, 70469 Stuttgart, Germany Georg Thieme Verlag KG 01.01.2023
Predmet:
ISSN:1438-9029, 1438-9010, 1438-9010
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Background Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD). Purpose To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns. Materials and Methods We retrospectively extracted between 15–25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results. Results The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73–1.06; p  = 0.187). Furthermore, the consultants’ odds of correct pattern recognition was 78 % higher than the residents’ odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62–5.06; p  = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17. Conclusion There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification. Key points: There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease. There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification. These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis. Citation Format Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 – 54
AbstractList Abstract Background Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD). Purpose To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns. Materials and Methods We retrospectively extracted between 15–25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results. Results The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73–1.06; p  = 0.187). Furthermore, the consultants’ odds of correct pattern recognition was 78 % higher than the residents’ odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62–5.06; p  = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17. Conclusion There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification. Key points: There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease. There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification. These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis. Citation Format Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 – 54
Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.We retrospectively extracted between 15-25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results.The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73-1.06; p = 0.187). Furthermore, the consultants' odds of correct pattern recognition was 78 % higher than the residents' odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62-5.06; p = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17.There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification. · There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease.. · There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification.. · These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis.. CITATION FORMAT: · Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 - 54.Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.We retrospectively extracted between 15-25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results.The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73-1.06; p = 0.187). Furthermore, the consultants' odds of correct pattern recognition was 78 % higher than the residents' odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62-5.06; p = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17.There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification. · There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease.. · There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification.. · These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis.. CITATION FORMAT: · Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 - 54.
Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.We retrospectively extracted between 15-25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results.The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73-1.06;  = 0.187). Furthermore, the consultants' odds of correct pattern recognition was 78 % higher than the residents' odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62-5.06;  = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17.There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification. · There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease.. · There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification.. · These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis.. CITATION FORMAT: · Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 - 54.
Abstract_FL Zusammenfassung Hintergrund Trotz den aktuellen Empfehlungen gibt es keine aktuelle wissenschaftliche Studie, welche den Einfluss von CT-Rekonstruktionskernels auf die Erkennung von Mustern der interstitiellen Lungenerkrankungen (ILD) vergleicht. Ziel Untersuchung der Sensitivität von scharfen Lungen- (i70) und weichen Weichteil- (i30) CT-Rekonstruktionskernels zur Diagnose von ILD-Mustern. Material und Methoden Retrospektiv wurden von 23 Probanden 15–25 Muster annotiert (1 Annotation = 15 Schichten à 1 mm), was 408 Annotations-Stapel pro Lungen- und Weichteilkernel ergab. 2 subspezialisierte Thorax-Radiologen definierten den Referenzstandard im Konsens. 4 Assistenzärzte, 2 Thorax-Fellows und 2 Fachärzte mit 3–13 Jahren Erfahrung in der Radiologie beurteilten die Daten verblindet. Aufgrund der mehrfach geclusterten Daten wurde ein generalisiertes lineares gemischtes Modell (GLMM) mit den Interaktionstermen Kernel/Erfahrung zur Analyse verwendet. Ergebnisse Die Resultate des GLMM deuteten eine um 12 % niedrigere Treffsicherheit für die korrekte Mustererkennung an beim Verwenden des Lungenkernels im Vergleich zum Weichteilkernel, jedoch erreichten die Resultate keine statistische Signifikanz (OR 0.88; 95%-CI, 0.73–1.06; p  = 0.187). Des Weiteren zeigten die Fachärzte eine um 78 % höhere Wahrscheinlichkeit der korrekten Mustererkennung im Vergleich zu den Assistenzärzten, doch auch dieses Resultat war nicht statistisch signifikant (OR 1.78; 95%-KI 0.62–5.06; p  = 0.283). Die Intra-rater-Übereinstimmung war substantiell (κ = 0.63 ± 0.19), die gemittelte Inter-rater-Übereinstimmung für Lungen-/Weichteilkernel betrug κ = 0.37 ± 0.17/κ = 0.38 ± 0.17. Schlussfolgerung Insgesamt gab es keinen signifikanten Einfluss von CT-Kernel oder Erfahrung des befundenden Radiologen auf die korrekte Erkennung von ILD-Mustern. Es gibt nicht-signifikante Trends, dass die Verwendung eines Weichteilkernels und eine größere Erfahrung zu einer höheren Wahrscheinlichkeit der korrekten Mustererkennung führen. Kernaussagen: Es besteht kein signifikanter Unterschied zwischen mit Lungen- und Weichteilkernel-rekonstruierten CT-Bildern für die korrekte Erkennung von ILD-Mustern. Es gibt sogar nicht-signifikante Trends, dass die Verwendung des Weichteilkernels mit höherer Wahrscheinlichkeit zu einer korrekten Mustererkennung führt. Diese Ergebnisse stellen die aktuellen Empfehlungen und die routinemässig durchgeführten separaten Lungenkernelrekonstruktionen für die Analyse des Lungenparenchyms in Frage.
Author Loebelenz, Laura I.
Christe, Andreas
Prosch, Helmut
Mougiakakou, Stavroula G.
Pohl, Moritz
Hourscht, Cynthia
Stadler, Severin
Klaus, Jeremias B.
Drakopoulos, Dionysios
Munz, Jaro
Christodoulidis, Stergios
Peters, Alan A.
Ebner, Lukas
Schroeder, Christophe
Heverhagen, Johannes T.
Huber, Adrian
Sieron, Dominik
Author_xml – sequence: 1
  givenname: Jeremias B.
  orcidid: 0000-0002-2367-0184
  surname: Klaus
  fullname: Klaus, Jeremias B.
  email: jeremias.klaus@insel.ch
  organization: Department of Interventional, Pediatric and Diagnostic Radiology, Inselspital Bern
– sequence: 2
  givenname: Stergios
  surname: Christodoulidis
  fullname: Christodoulidis, Stergios
  organization: ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
– sequence: 3
  givenname: Alan A.
  surname: Peters
  fullname: Peters, Alan A.
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 4
  givenname: Cynthia
  surname: Hourscht
  fullname: Hourscht, Cynthia
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 5
  givenname: Laura I.
  orcidid: 0000-0003-4625-6565
  surname: Loebelenz
  fullname: Loebelenz, Laura I.
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 6
  givenname: Jaro
  surname: Munz
  fullname: Munz, Jaro
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 7
  givenname: Christophe
  surname: Schroeder
  fullname: Schroeder, Christophe
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 8
  givenname: Dominik
  surname: Sieron
  fullname: Sieron, Dominik
  organization: Department of Radiology, Division City and County Hospitals, INSELGROUP, Bern University Hospital, University of Bern, Bern, Switzerland
– sequence: 9
  givenname: Dionysios
  surname: Drakopoulos
  fullname: Drakopoulos, Dionysios
  organization: Department of Radiology, Division City and County Hospitals, INSELGROUP, Bern University Hospital, University of Bern, Bern, Switzerland
– sequence: 10
  givenname: Severin
  surname: Stadler
  fullname: Stadler, Severin
  organization: Bern University, University of Bern, Switzerland
– sequence: 11
  givenname: Johannes T.
  surname: Heverhagen
  fullname: Heverhagen, Johannes T.
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 12
  givenname: Helmut
  orcidid: 0000-0002-6119-6364
  surname: Prosch
  fullname: Prosch, Helmut
  organization: Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
– sequence: 13
  givenname: Adrian
  surname: Huber
  fullname: Huber, Adrian
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
– sequence: 14
  givenname: Moritz
  surname: Pohl
  fullname: Pohl, Moritz
  organization: Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
– sequence: 15
  givenname: Stavroula G.
  surname: Mougiakakou
  fullname: Mougiakakou, Stavroula G.
  organization: ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
– sequence: 16
  givenname: Andreas
  surname: Christe
  fullname: Christe, Andreas
  organization: Department of Radiology, Division City and County Hospitals, INSELGROUP, Bern University Hospital, University of Bern, Bern, Switzerland
– sequence: 17
  givenname: Lukas
  surname: Ebner
  fullname: Ebner, Lukas
  organization: Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36067777$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtLAzEQxoMo9qEn77JHEVaTTXaTHEvxUSgoUi9eQprOtim7Sd1kD_73pg8dBubB7xuGb4TOnXeA0A3BDwSX5aPOicQk54KwMzQkjIo8zfj8vy_kAI1C2GLMMKHyEg1ohSueYoi-Zq5uenAGMl9n896tsw8w3oXY9SZa77JJs_adjZs2ZGmauQhdiDZa3Rzxdx3Tyh1ka2cPmpTTxRW6qHUT4PpUx-jz-Wkxfc3nby-z6WSeG0aqmNeVEaYSBpYMZLXUUGOzKmshDS2lloLympW8XGpeESPZqqYFUBCVKBjhqaVjdHe8u-v8dw8hqtYGA02jHfg-qIITQrHgskzo7Qntly2s1K6zre5-1J8fCbg_AnFjoQW19X3n0vOKYLU3W2m1N1vtzaa_bFBw2w
CitedBy_id crossref_primary_10_1038_s43856_025_00732_x
ContentType Journal Article
Copyright The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Copyright_xml – notice: The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
– notice: The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
DBID 0U6
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1055/a-1901-7814
DatabaseName Thieme Connect Journals Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 0U6
  name: Thieme Connect Journals Open Access
  url: http://open.thieme.com
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Einfluss von Lungenrekonstruktionsalgorithmen auf die Erkennung von interstitiellen Lungenmustern in der Computertomografie
DocumentTitle_FL Einfluss von Lungenrekonstruktionsalgorithmen auf die Erkennung von interstitiellen Lungenmustern in der Computertomografie
EISSN 1438-9010
EndPage 54
ExternalDocumentID 36067777
10_1055_a_1901_7814
Genre Journal Article
GroupedDBID 0R~
0U6
123
4.4
5~~
ACGFS
ACKTL
AHRAW
ALMA_UNASSIGNED_HOLDINGS
CX-
H13
IY8
O9-
Q3R
RTC
CGR
CUY
CVF
EBS
ECM
EIF
EJD
NPM
QTC
RIG
ROL
7X8
AGCGI
ID FETCH-LOGICAL-c416t-f6c8c68ceb4e96baef0cd5f89c359a9837f4575ba761c94df32e3e86824172e33
IEDL.DBID 0U6
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851220600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1438-9029
1438-9010
IngestDate Wed Oct 01 12:09:20 EDT 2025
Thu Jan 02 22:41:08 EST 2025
Sun Nov 24 14:58:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CT
thorax
CT-high resolution
diagnostic radiology
technical aspects
Language English
License CC BY-NC-ND 4.0
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-f6c8c68ceb4e96baef0cd5f89c359a9837f4575ba761c94df32e3e86824172e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6119-6364
0000-0002-2367-0184
0000-0003-4625-6565
OpenAccessLink http://dx.doi.org/10.1055/a-1901-7814
PMID 36067777
PQID 2711308795
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2711308795
pubmed_primary_36067777
thieme_journals_10_1055_a_1901_7814
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Rüdigerstraße 14, 70469 Stuttgart, Germany
PublicationPlace_xml – name: Rüdigerstraße 14, 70469 Stuttgart, Germany
– name: Germany
PublicationTitle RöFo : Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebende Verfahren
PublicationTitleAlternate Rofo
PublicationYear 2023
Publisher Georg Thieme Verlag KG
Publisher_xml – name: Georg Thieme Verlag KG
SSID ssj0040139
Score 2.3113327
Snippet Abstract Background Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern...
Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in...
SourceID proquest
pubmed
thieme
SourceType Aggregation Database
Index Database
Publisher
StartPage 47
SubjectTerms Algorithms
Chest
Humans
Lung - diagnostic imaging
Radiographic Image Enhancement - methods
Retrospective Studies
Tomography, X-Ray Computed - methods
Title Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT
URI http://dx.doi.org/10.1055/a-1901-7814
https://www.ncbi.nlm.nih.gov/pubmed/36067777
https://www.proquest.com/docview/2711308795
Volume 195
WOSCitedRecordID wos000851220600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86RXzx-2N-UdHXYNs0SfM4hkPBjT1sMHwJaZq4gWtlrf79XtqOyfBhUEIKFyiXu95d7vI7hB4Dq4lOFMNEOVBtCAhwAmKAUwd2Hiob8VRVzSb4YBBPJmK4KqJZz-BT-qSws1nYQTNto50QRNR1aPDHbPnDdRGCqC4ROd31Q9Fcw1tb_J8LCZNyOjNz88em9A43_JojdNA4jV6n3uVjtGWyE7TXb9Lip-j9ddlqxMut9wb667mwcgUO63U-P_LFrJzOCw_eqmNAVyQAwleTDyuYzaxaVtUTARU83dEZGveeR90X3DRNwBp8qxJbpmPNYm2SyAiWKGN9nVIbC02oUALiURuBi5YozgItotSS0BATsxhMOYcpOUetLM_MJfKc92N8TZWgKtIQxykR6kSwNDKMhD5ro_slRyUIpcs0qMzk34UMeRA4qEFB2-iiZrX8qtEzJGEOtI7zNnqoeS8brSlklRCnVCrpmCwdk682orpG-64NfH00coNawF1zi3b1TzkrFneVtMDIJzGMg2H_F4A-uAk
linkProvider Thieme
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFPXi98f8rOg1rGubtDnKcGy4jR02GF5CmqZusLVjrf795rUdinjwIPSQwguEX1-T90tefg_gsRkrV4WSEVeiqLYhBCQ0bkAiFDt3ZOz5kSyKTfiDQTCZ8GElKZRVaZX5dKYXmijM9FA5plosS_XTrKErhLPGNF_Mqzq1tCEJrmsE5Zs2YYt6jo88zB6z9aSMLIIXF43w_7YdXl3V-9H5tzDTNMoBfVt32gf_OOJD2K-CT-up9JYj2NDJMez0q-P1E3jtrkuWWGls9cw8YCE9_RKZtZ7mb-lqlk8XmWXeiu1ETDYwTlyaDwu5zqToVuQlGSvztEanMG4_j1odUhVfIMrEaDmJmQoUC5QOPc1ZKHVsq4jGAVcu5ZIbXht7JtQLpc-aintR7Dra1QELTEjgm6Z7BrUkTfQFWBhFaVtRyan0lOGDkjsq5CzyNHMdm9Xhfo26MM6NJxYy0el7Jhy_2UTJQk7rcF5-DrEsVTiEy1D8zvfr8FDCL9ZIi-JgnVIhBYIsEOTLP1ndwW5n1O-JXnfwcgV7WFq-3G65hppBWt_AtvrIZ9nqtvCuT-IB1hE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IV58P9ZnRa9xu22TNkdRFxfXZQ8K4iWkaaIL2l1s9fc703ZRxIMHoYe0TEuYfE1mMpNvAE47zoQm1YKFmki10SFgKcKAZUR2HmgXxZmuik3Eg0Hy8CCHzfHookmrLJ9H9tUyQ5kepqRUi0nNflq0baPhoj3JXFOmlrc1o2WNEXvTGT6fhXkeoVuB6PbvxXReJkdCVmeN6Bf3A9mc1vvxgd8sTWzUffq29HRX_rfTq7DcmKDeeY2ZNZix-Tos3jZB9g147E0Ll3hj5_VxNvDISf2imvXOX57Gb6Py-bXw8K7aVKSUA4RyLT6sSDvz6rUqOwml8Lq424T77tXdxTVrSjAwg5ZayZwwiRGJsWlkpUi1db7JuEukCbnUEr1bF6HBl-pYdIyMMhcGNrSJSNAwiLEZbsFcPs7tDnhkS1nfcC25jgx6hVoGJpUii6wIA1-04HiqeIUQp7iFzu34vVBB3OkQcaHkLdiuR0RNai4OFQqiwIvjFpzUI6CmylZVeJ1zpRUpWpGid_8kdQSLw8uu6vcGN3uwRPXl6z2XfZhDRdsDWDAf5ah4O6zw9QlI2teU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Lung+Reconstruction+Algorithms+on+Interstitial+Lung+Pattern+Recognition+on+CT&rft.jtitle=R%C3%B6Fo+%3A+Fortschritte+auf+dem+Gebiet+der+Ro%CC%88ntgenstrahlen+und+der+bildgebende+Verfahren&rft.au=Klaus%2C+Jeremias+B.&rft.au=Christodoulidis%2C+Stergios&rft.au=Peters%2C+Alan+A.&rft.au=Hourscht%2C+Cynthia&rft.date=2023-01-01&rft.pub=Georg+Thieme+Verlag+KG&rft.issn=1438-9029&rft.eissn=1438-9010&rft.volume=195&rft.issue=1&rft.spage=47&rft.epage=54&rft_id=info:doi/10.1055%2Fa-1901-7814&rft.externalDBID=HTML_FULL_TEXT&rft.externalDocID=10_1055_a_1901_7814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-9029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-9029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-9029&client=summon