An application of deep reinforcement learning to algorithmic trading

•Reinforcement learning (RL) formalization of the algorithmic trading problem.•Novel trading strategy based on deep reinforcement learning (DRL), denominated TDQN.•Rigorous performance assessment methodology for algorithmic trading.•TDQN algorithm delivers promising results surpassing benchmark stra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 173; s. 114632
Hlavní autoři: Théate, Thibaut, Ernst, Damien
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.07.2021
Elsevier BV
Elsevier
Témata:
ISSN:0957-4174, 1873-6793, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Reinforcement learning (RL) formalization of the algorithmic trading problem.•Novel trading strategy based on deep reinforcement learning (DRL), denominated TDQN.•Rigorous performance assessment methodology for algorithmic trading.•TDQN algorithm delivers promising results surpassing benchmark strategies. This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem of determining the optimal trading position at any point in time during a trading activity in the stock market. It proposes a novel DRL trading policy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets. Denominated the Trading Deep Q-Network algorithm (TDQN), this new DRL approach is inspired from the popular DQN algorithm and significantly adapted to the specific algorithmic trading problem at hand. The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data. In order to objectively assess the performance of trading strategies, the research paper also proposes a novel, more rigorous performance assessment methodology. Following this new performance assessment approach, promising results are reported for the TDQN algorithm.
AbstractList •Reinforcement learning (RL) formalization of the algorithmic trading problem.•Novel trading strategy based on deep reinforcement learning (DRL), denominated TDQN.•Rigorous performance assessment methodology for algorithmic trading.•TDQN algorithm delivers promising results surpassing benchmark strategies. This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem of determining the optimal trading position at any point in time during a trading activity in the stock market. It proposes a novel DRL trading policy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets. Denominated the Trading Deep Q-Network algorithm (TDQN), this new DRL approach is inspired from the popular DQN algorithm and significantly adapted to the specific algorithmic trading problem at hand. The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data. In order to objectively assess the performance of trading strategies, the research paper also proposes a novel, more rigorous performance assessment methodology. Following this new performance assessment approach, promising results are reported for the TDQN algorithm.
This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem of determining the optimal trading position at any point in time during a trading activity in the stock market. It proposes a novel DRL trading policy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets. Denominated the Trading Deep Q-Network algorithm (TDQN), this new DRL approach is inspired from the popular DQN algorithm and significantly adapted to the specific algorithmic trading problem at hand. The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data. In order to objectively assess the performance of trading strategies, the research paper also proposes a novel, more rigorous performance assessment methodology. Following this new performance assessment approach, promising results are reported for the TDQN algorithm.
ArticleNumber 114632
Author Ernst, Damien
Théate, Thibaut
Author_xml – sequence: 1
  givenname: Thibaut
  surname: Théate
  fullname: Théate, Thibaut
  email: thibaut.theate@uliege.be
– sequence: 2
  givenname: Damien
  surname: Ernst
  fullname: Ernst, Damien
  email: dernst@uliege.be
BookMark eNp9kE1P3DAQhq2KSl2gf6CnSJyz2BPbSSQuiJYPCYkLnEdee7x4lbVTx0vVf98s6YkDpxmN3mc085yyk5giMfZD8LXgQl_u1jT9MWvgINZCSN3AF7YSXdvUuu2bE7bivWprKVr5jZ1O045z0XLertjP61iZcRyCNSWkWCVfOaKxyhSiT9nSnmKpBjI5hritSqrMsE05lNd9sFXJxs3jc_bVm2Gi7__rGXu5_fV8c18_Pt093Fw_1lYKXWqSRoHiUvbOawLlvQGtrJQbB411ThhqPJDwjVLGK6kdtWrTASkDZHtozliz7B0CbQlT3gR8A0wmLP1h2KKxuCEE0B2C1FK1M3WxUGNOvw80FdylQ47zoQgKhBDQ9XpOdUvK5jRNmTzaUN6dzE-GAQXHo2nc4dE0Hk3jYnpG4QM65rA3-e_n0NUC0SzsLVDGyQaKllzIZAu6FD7D_wFXiJlo
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107788
crossref_primary_10_3390_electronics13234659
crossref_primary_10_1051_e3sconf_202337605002
crossref_primary_10_3390_en13236435
crossref_primary_10_3390_en15103645
crossref_primary_10_1007_s13177_025_00521_9
crossref_primary_10_1016_j_procs_2021_09_147
crossref_primary_10_3390_data6110119
crossref_primary_10_1007_s41060_024_00692_w
crossref_primary_10_1016_j_asoc_2025_113029
crossref_primary_10_1109_ACCESS_2025_3546099
crossref_primary_10_1007_s00500_023_08973_5
crossref_primary_10_1007_s42979_024_03555_0
crossref_primary_10_1145_3733714
crossref_primary_10_1016_j_eswa_2023_120346
crossref_primary_10_1016_j_neunet_2025_107905
crossref_primary_10_1016_j_eswa_2023_121711
crossref_primary_10_1109_ACCESS_2025_3558887
crossref_primary_10_1016_j_cirp_2024_06_003
crossref_primary_10_1109_ACCESS_2023_3289844
crossref_primary_10_1109_ACCESS_2024_3418510
crossref_primary_10_1177_18724981251315846
crossref_primary_10_3390_app122412526
crossref_primary_10_1016_j_jenvman_2024_123308
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1016_j_eswa_2025_127864
crossref_primary_10_1155_2021_7877590
crossref_primary_10_1007_s10489_022_03280_2
crossref_primary_10_1016_j_knosys_2024_112767
crossref_primary_10_3390_ai6080183
crossref_primary_10_1002_jsc_2525
crossref_primary_10_1016_j_asoc_2025_113881
crossref_primary_10_1111_exsy_13667
crossref_primary_10_3390_app13031956
crossref_primary_10_3390_electronics11091506
crossref_primary_10_1007_s00521_020_05377_6
crossref_primary_10_1038_s41598_024_51408_w
crossref_primary_10_1016_j_eswa_2022_118614
crossref_primary_10_3390_a16010023
crossref_primary_10_1007_s13762_023_04763_6
crossref_primary_10_3390_math12244020
crossref_primary_10_3390_info15120755
crossref_primary_10_1007_s10462_023_10512_5
crossref_primary_10_1016_j_asoc_2023_110802
crossref_primary_10_1016_j_eswa_2023_121245
crossref_primary_10_1016_j_aej_2025_02_013
crossref_primary_10_1016_j_eswa_2023_122581
crossref_primary_10_1109_ACCESS_2024_3515039
crossref_primary_10_3390_risks13080148
crossref_primary_10_1109_ACCESS_2022_3226629
crossref_primary_10_1146_annurev_statistics_112723_034423
crossref_primary_10_1016_j_asoc_2025_113252
crossref_primary_10_1109_ACCESS_2023_3253503
crossref_primary_10_3390_math11173626
crossref_primary_10_3390_a17080343
crossref_primary_10_3390_ijfs11010010
crossref_primary_10_1016_j_eswa_2022_117311
crossref_primary_10_1007_s10462_024_11066_w
crossref_primary_10_3390_a16070325
crossref_primary_10_1016_j_eswa_2023_121897
crossref_primary_10_1016_j_knosys_2023_111290
crossref_primary_10_1016_j_asoc_2023_111108
crossref_primary_10_1016_j_jksuci_2024_102015
crossref_primary_10_5772_acrt_20230095
crossref_primary_10_1007_s10489_022_03321_w
crossref_primary_10_1016_j_asoc_2025_113927
crossref_primary_10_1177_20438869231189519
crossref_primary_10_3390_math13152485
crossref_primary_10_1016_j_engappai_2023_107004
crossref_primary_10_3390_app112311208
crossref_primary_10_3390_systems10050146
crossref_primary_10_1109_ACCESS_2023_3259424
crossref_primary_10_1016_j_jisa_2024_103856
crossref_primary_10_1016_j_apenergy_2023_121321
crossref_primary_10_1016_j_asoc_2025_113617
crossref_primary_10_3390_risks13030040
crossref_primary_10_3390_s23167216
crossref_primary_10_1016_j_eswa_2023_121502
crossref_primary_10_1631_FITEE_2200039
crossref_primary_10_1016_j_eswa_2023_122994
crossref_primary_10_1155_2022_6820073
crossref_primary_10_21511_imfi_21_1__2024_21
crossref_primary_10_1016_j_eswa_2024_124350
crossref_primary_10_1016_j_eswa_2024_125043
crossref_primary_10_1016_j_eswa_2025_128297
Cites_doi 10.1016/j.asoc.2018.09.017
10.1090/noti1105
10.1016/j.eswa.2018.08.003
10.1109/72.935097
10.1016/j.eswa.2005.10.012
10.1111/j.1540-6261.2010.01624.x
10.1016/j.eswa.2020.113573
10.1109/MSP.2017.2743240
10.1007/s10994-021-06020-8
10.1038/nature14236
10.1109/TNNLS.2016.2522401
10.1371/journal.pmed.0020124
10.1109/TKDE.2013.133
10.1109/MC.2011.31
10.1371/journal.pone.0180944
10.1016/j.eswa.2019.112872
10.1016/j.eswa.2018.09.036
10.1016/j.eswa.2019.04.013
10.3905/jpm.2011.38.1.110
10.1609/aaai.v32i1.11796
10.1145/2500117
10.1038/nature14539
10.1016/j.jocs.2010.12.007
10.1038/nature16961
ContentType Journal Article
Contributor Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Contributor_xml – sequence: 1
  fullname: Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
JLOSS
Q33
DOI 10.1016/j.eswa.2021.114632
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID oai_orbi_ulg_ac_be_2268_246457
10_1016_j_eswa_2021_114632
S0957417421000737
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
JLOSS
Q33
ID FETCH-LOGICAL-c416t-e4a5250449df6e25ffa265c44bd23cdd1ae3f2e1f355af546de75b82e5a2ec923
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636782600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
1873-6793
IngestDate Sat Nov 29 01:28:25 EST 2025
Sun Nov 09 06:43:39 EST 2025
Tue Nov 18 21:07:07 EST 2025
Sat Nov 29 07:09:02 EST 2025
Fri Feb 23 02:43:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Algorithmic trading
Trading policy
Deep reinforcement learning
Artificial intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-e4a5250449df6e25ffa265c44bd23cdd1ae3f2e1f355af546de75b82e5a2ec923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85101170161
ORCID 0000-0002-3035-8260
OpenAccessLink https://orbi.uliege.be/handle/2268/246457
PQID 2521112896
PQPubID 2045477
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_246457
proquest_journals_2521112896
crossref_citationtrail_10_1016_j_eswa_2021_114632
crossref_primary_10_1016_j_eswa_2021_114632
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114632
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Arévalo, Niño, Hernández, Sandoval (b0010) 2016
Li, Y. (2017). Deep reinforcement learning: An overview. CoRR, abs/1701.07274.
Leinweber, Sisk (b0135) 2011; 38
Bailey, Borwein, de Prado, Zhu (b0020) 2014
Lei, K., Zhang, B., Li, Y., Yang, M., & Shen, Y. (2020). Time-driven Feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading.
Sutton, Barto (b0205) 2018
Boukas, I., Ernst, D., Théate, T., Bolland, A., Huynen, A., Buchwald, M., Wynants, C., & Cornélusse, B. (2020). A deep reinforcement learning framework for continuous intraday market bidding. ArXiv, abs/2004.05940.
Hessel, M., Modayil, J., van Hasselt, H. P., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., & Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement learning. CoRR, abs/1710.02298.
Goodfellow, Bengio, Courville (b0080) 2016
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
Watkins, Dayan (b0230) 1992; 8
Busoniu, Babuska, De Schutter, Ernst (b0045) 2010
Park, Sim, Choi (b0180) 2020; 158
Dempster, Leemans (b0065) 2006; 30
van Hasselt, H. P., Guez, A., & Silver, D. (2015). Deep reinforcement learning with double Q-Learning. CoRR, abs/1509.06461.
Paiva, Cardoso, Hanaoka, Duarte (b0175) 2019; 115
.
Chan (b0055) 2009
Bao, Yue, Rao (b0025) 2017; 12
Bellemare, M. G., Dabney, W., & Munos, R. (2017). A distributional perspective on reinforcement learning. CoRR, abs/1707.06887.
Chan (b0060) 2013
Wang, Z., de Freitas, N., & Lanctot, M. (2015). Dueling network architectures for deep reinforcement learning. CoRR, abs/1511.06581.
Hausknecht, M. J., & Stone, P. (2015). Deep recurrent Q-Learning for partially observable MDPs. CoRR, abs/1507.06527.
Nuti, Mirghaemi, Treleaven, Yingsaeree (b0170) 2011; 44
Zhang, C., Vinyals, O., Munos, R., & Bengio, S. (2018). A study on overfitting in deep reinforcement learning. CoRR, abs/1804.06893.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. CoRR, abs/1707.06347.
Shao, K., Tang, Z., Zhu, Y., Li, N., & Zhao, D. (2019). A survey of deep reinforcement learning in video games. ArXiv, abs/1912.10944.
Hendershott, Jones, Menkveld (b0095) 2011; 66
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (b0150) 2015; 518
Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., & Legg, S. (2018). Noisy networks for exploration. CoRR, abs/1706.10295.
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. A. (2013). Playing Atari with deep reinforcement learning. CoRR, abs/1312.5602.
Almahdi, Yang (b0005) 2019; 130
Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. CoRR, abs/1708.05866.
Carapuço, Neves, Horta (b0050) 2018; 73
Treleaven, Galas, Lalchand (b0215) 2013; 56
Nuij, Milea, Hogenboom, Frasincar, Kaymak (b0165) 2014; 26
Goodfellow, Bengio, Courville (b0085) 2015; 521
Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel, Hassabis (b0200) 2016; 529
Deng, Bao, Kong, Ren, Dai (b0070) 2017; 28
Szepesvari (b0210) 2010
Bollen, J., Mao, H., & jun Zeng, X. (2011). Twitter mood predicts the stock market.
LeCun, Bengio, Hinton (b0125) 2015; 521
1–8.
Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience replay. CoRR, abs/1511.05952.
Jeong, Kim (b0115) 2019; 117
Moody, Saffell (b0155) 2001; 12
Ioannidis (b0105) 2005; 2
Narang (b0160) 2009
Leinweber (10.1016/j.eswa.2021.114632_b0135) 2011; 38
Chan (10.1016/j.eswa.2021.114632_b0060) 2013
Paiva (10.1016/j.eswa.2021.114632_b0175) 2019; 115
10.1016/j.eswa.2021.114632_b0040
Bailey (10.1016/j.eswa.2021.114632_b0020) 2014
10.1016/j.eswa.2021.114632_b0220
10.1016/j.eswa.2021.114632_b0120
10.1016/j.eswa.2021.114632_b0185
10.1016/j.eswa.2021.114632_b0140
Szepesvari (10.1016/j.eswa.2021.114632_b0210) 2010
10.1016/j.eswa.2021.114632_b0015
10.1016/j.eswa.2021.114632_b0235
10.1016/j.eswa.2021.114632_b0035
LeCun (10.1016/j.eswa.2021.114632_b0125) 2015; 521
Jeong (10.1016/j.eswa.2021.114632_b0115) 2019; 117
Busoniu (10.1016/j.eswa.2021.114632_b0045) 2010
Goodfellow (10.1016/j.eswa.2021.114632_b0085) 2015; 521
Watkins (10.1016/j.eswa.2021.114632_b0230) 1992; 8
Mnih (10.1016/j.eswa.2021.114632_b0150) 2015; 518
Nuij (10.1016/j.eswa.2021.114632_b0165) 2014; 26
10.1016/j.eswa.2021.114632_b0190
Arévalo (10.1016/j.eswa.2021.114632_b0010) 2016
Carapuço (10.1016/j.eswa.2021.114632_b0050) 2018; 73
10.1016/j.eswa.2021.114632_b0090
Goodfellow (10.1016/j.eswa.2021.114632_b0080) 2016
Ioannidis (10.1016/j.eswa.2021.114632_b0105) 2005; 2
10.1016/j.eswa.2021.114632_b0110
Almahdi (10.1016/j.eswa.2021.114632_b0005) 2019; 130
Sutton (10.1016/j.eswa.2021.114632_b0205) 2018
10.1016/j.eswa.2021.114632_b0075
10.1016/j.eswa.2021.114632_b0130
10.1016/j.eswa.2021.114632_b0030
10.1016/j.eswa.2021.114632_b0195
Nuti (10.1016/j.eswa.2021.114632_b0170) 2011; 44
Bao (10.1016/j.eswa.2021.114632_b0025) 2017; 12
Narang (10.1016/j.eswa.2021.114632_b0160) 2009
10.1016/j.eswa.2021.114632_b0145
10.1016/j.eswa.2021.114632_b0100
Silver (10.1016/j.eswa.2021.114632_b0200) 2016; 529
Hendershott (10.1016/j.eswa.2021.114632_b0095) 2011; 66
10.1016/j.eswa.2021.114632_b0225
Treleaven (10.1016/j.eswa.2021.114632_b0215) 2013; 56
Moody (10.1016/j.eswa.2021.114632_b0155) 2001; 12
Park (10.1016/j.eswa.2021.114632_b0180) 2020; 158
Chan (10.1016/j.eswa.2021.114632_b0055) 2009
Deng (10.1016/j.eswa.2021.114632_b0070) 2017; 28
Dempster (10.1016/j.eswa.2021.114632_b0065) 2006; 30
References_xml – volume: 28
  start-page: 653
  year: 2017
  end-page: 664
  ident: b0070
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience replay. CoRR, abs/1511.05952.
– volume: 2
  start-page: 124
  year: 2005
  ident: b0105
  article-title: Why most published research findings are false
  publication-title: PLoS Med
– volume: 12
  year: 2017
  ident: b0025
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PloS one
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: b0200
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– reference: Bollen, J., Mao, H., & jun Zeng, X. (2011). Twitter mood predicts the stock market.
– volume: 521
  year: 2015
  ident: b0125
  article-title: Deep learning
  publication-title: Nature
– start-page: 458
  year: 2014
  end-page: 471
  ident: b0020
  article-title: Pseudo-mathematics and financial charlatanism: the effects of backtest overfitting on out-of-sample performance
  publication-title: Notice of the American Mathematical Society
– year: 2010
  ident: b0045
  article-title: Reinforcement learning and dynamic programming using function approximators
– volume: 158
  year: 2020
  ident: b0180
  article-title: An intelligent financial portfolio trading strategy using Deep Q-Learning
  publication-title: Expert Systems With Applications
– reference: Zhang, C., Vinyals, O., Munos, R., & Bengio, S. (2018). A study on overfitting in deep reinforcement learning. CoRR, abs/1804.06893.
– reference: Lei, K., Zhang, B., Li, Y., Yang, M., & Shen, Y. (2020). Time-driven Feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading.
– reference: Hessel, M., Modayil, J., van Hasselt, H. P., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., & Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement learning. CoRR, abs/1710.02298.
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: b0230
  article-title: Technical note: Q-Learning
  publication-title: Machine Learning
– reference: Bellemare, M. G., Dabney, W., & Munos, R. (2017). A distributional perspective on reinforcement learning. CoRR, abs/1707.06887.
– volume: 117
  start-page: 125
  year: 2019
  end-page: 138
  ident: b0115
  article-title: Improving financial trading decisions using Deep Q-Learning: Predicting the number of shares, action strategies, and transfer learning
  publication-title: Expert Systems With Applications
– reference: Hausknecht, M. J., & Stone, P. (2015). Deep recurrent Q-Learning for partially observable MDPs. CoRR, abs/1507.06527.
– reference: Li, Y. (2017). Deep reinforcement learning: An overview. CoRR, abs/1701.07274.
– year: 2010
  ident: b0210
  article-title: Algorithms for reinforcement learning
– reference: Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. CoRR, abs/1708.05866.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b0150
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– year: 2016
  ident: b0010
  article-title: High-frequency trading strategy based on deep neural networks
  publication-title: ICIC
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0085
  article-title: Deep learning
  publication-title: Nature
– reference: Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167.
– volume: 130
  start-page: 145
  year: 2019
  end-page: 156
  ident: b0005
  article-title: A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning
  publication-title: Expert Systems With Applications
– reference: Shao, K., Tang, Z., Zhu, Y., Li, N., & Zhao, D. (2019). A survey of deep reinforcement learning in video games. ArXiv, abs/1912.10944.
– volume: 26
  start-page: 823
  year: 2014
  end-page: 835
  ident: b0165
  article-title: An automated framework for incorporating news into stock trading strategies
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 56
  start-page: 76
  year: 2013
  end-page: 85
  ident: b0215
  article-title: Algorithmic trading review
  publication-title: Communications of the ACM
– volume: 66
  start-page: 1
  year: 2011
  end-page: 33
  ident: b0095
  article-title: Does algorithmic trading improve liquidity?
  publication-title: Journal of Finance
– volume: 12
  start-page: 875
  year: 2001
  end-page: 889
  ident: b0155
  article-title: Learning to trade via direct reinforcement
  publication-title: IEEE Transactions on Neural Networks
– reference: Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. CoRR, abs/1707.06347.
– volume: 73
  start-page: 783
  year: 2018
  end-page: 794
  ident: b0050
  article-title: Reinforcement learning applied to Forex trading
  publication-title: Applied Soft Computing
– volume: 115
  start-page: 635
  year: 2019
  end-page: 655
  ident: b0175
  article-title: Decision-making for financial trading: A fusion approach of machine learning and portfolio selection
  publication-title: Expert Systems With Applications
– reference: Wang, Z., de Freitas, N., & Lanctot, M. (2015). Dueling network architectures for deep reinforcement learning. CoRR, abs/1511.06581.
– reference: Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
– reference: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. A. (2013). Playing Atari with deep reinforcement learning. CoRR, abs/1312.5602.
– volume: 30
  start-page: 543
  year: 2006
  end-page: 552
  ident: b0065
  article-title: An automated FX trading system using adaptive reinforcement learning
  publication-title: Expert Systems With Applications
– reference: Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., & Legg, S. (2018). Noisy networks for exploration. CoRR, abs/1706.10295.
– volume: 38
  start-page: 110
  year: 2011
  end-page: 124
  ident: b0135
  article-title: Event-driven trading and the “New News”
  publication-title: The Journal of Portfolio Management
– year: 2013
  ident: b0060
  article-title: Algorithmic trading: winning strategies and their rationale
– year: 2018
  ident: b0205
  article-title: Reinforcement learning: An introduction
– year: 2009
  ident: b0055
  article-title: Quantitative trading: how to build your own algorithmic trading business
– reference: .
– volume: 44
  start-page: 61
  year: 2011
  end-page: 69
  ident: b0170
  article-title: Algorithmic trading
  publication-title: Computer
– reference: , 1–8.
– reference: van Hasselt, H. P., Guez, A., & Silver, D. (2015). Deep reinforcement learning with double Q-Learning. CoRR, abs/1509.06461.
– year: 2009
  ident: b0160
  article-title: Inside the black box
– year: 2016
  ident: b0080
  article-title: Deep learning
– reference: Boukas, I., Ernst, D., Théate, T., Bolland, A., Huynen, A., Buchwald, M., Wynants, C., & Cornélusse, B. (2020). A deep reinforcement learning framework for continuous intraday market bidding. ArXiv, abs/2004.05940.
– volume: 73
  start-page: 783
  year: 2018
  ident: 10.1016/j.eswa.2021.114632_b0050
  article-title: Reinforcement learning applied to Forex trading
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.09.017
– year: 2016
  ident: 10.1016/j.eswa.2021.114632_b0010
  article-title: High-frequency trading strategy based on deep neural networks
– start-page: 458
  year: 2014
  ident: 10.1016/j.eswa.2021.114632_b0020
  article-title: Pseudo-mathematics and financial charlatanism: the effects of backtest overfitting on out-of-sample performance
  publication-title: Notice of the American Mathematical Society
  doi: 10.1090/noti1105
– volume: 115
  start-page: 635
  year: 2019
  ident: 10.1016/j.eswa.2021.114632_b0175
  article-title: Decision-making for financial trading: A fusion approach of machine learning and portfolio selection
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2018.08.003
– year: 2010
  ident: 10.1016/j.eswa.2021.114632_b0210
– volume: 12
  start-page: 875
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2021.114632_b0155
  article-title: Learning to trade via direct reinforcement
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.935097
– volume: 30
  start-page: 543
  year: 2006
  ident: 10.1016/j.eswa.2021.114632_b0065
  article-title: An automated FX trading system using adaptive reinforcement learning
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2005.10.012
– volume: 66
  start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.114632_b0095
  article-title: Does algorithmic trading improve liquidity?
  publication-title: Journal of Finance
  doi: 10.1111/j.1540-6261.2010.01624.x
– volume: 158
  year: 2020
  ident: 10.1016/j.eswa.2021.114632_b0180
  article-title: An intelligent financial portfolio trading strategy using Deep Q-Learning
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2020.113573
– ident: 10.1016/j.eswa.2021.114632_b0185
– ident: 10.1016/j.eswa.2021.114632_b0015
  doi: 10.1109/MSP.2017.2743240
– ident: 10.1016/j.eswa.2021.114632_b0040
  doi: 10.1007/s10994-021-06020-8
– ident: 10.1016/j.eswa.2021.114632_b0140
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.eswa.2021.114632_b0150
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 28
  start-page: 653
  year: 2017
  ident: 10.1016/j.eswa.2021.114632_b0070
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2522401
– ident: 10.1016/j.eswa.2021.114632_b0110
– ident: 10.1016/j.eswa.2021.114632_b0225
– year: 2018
  ident: 10.1016/j.eswa.2021.114632_b0205
– volume: 2
  start-page: 124
  year: 2005
  ident: 10.1016/j.eswa.2021.114632_b0105
  article-title: Why most published research findings are false
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0020124
– ident: 10.1016/j.eswa.2021.114632_b0190
– volume: 26
  start-page: 823
  year: 2014
  ident: 10.1016/j.eswa.2021.114632_b0165
  article-title: An automated framework for incorporating news into stock trading strategies
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.133
– volume: 44
  start-page: 61
  year: 2011
  ident: 10.1016/j.eswa.2021.114632_b0170
  article-title: Algorithmic trading
  publication-title: Computer
  doi: 10.1109/MC.2011.31
– volume: 12
  year: 2017
  ident: 10.1016/j.eswa.2021.114632_b0025
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PloS one
  doi: 10.1371/journal.pone.0180944
– year: 2013
  ident: 10.1016/j.eswa.2021.114632_b0060
– ident: 10.1016/j.eswa.2021.114632_b0130
  doi: 10.1016/j.eswa.2019.112872
– ident: 10.1016/j.eswa.2021.114632_b0090
– volume: 117
  start-page: 125
  year: 2019
  ident: 10.1016/j.eswa.2021.114632_b0115
  article-title: Improving financial trading decisions using Deep Q-Learning: Predicting the number of shares, action strategies, and transfer learning
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2018.09.036
– volume: 130
  start-page: 145
  year: 2019
  ident: 10.1016/j.eswa.2021.114632_b0005
  article-title: A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2019.04.013
– volume: 38
  start-page: 110
  year: 2011
  ident: 10.1016/j.eswa.2021.114632_b0135
  article-title: Event-driven trading and the “New News”
  publication-title: The Journal of Portfolio Management
  doi: 10.3905/jpm.2011.38.1.110
– ident: 10.1016/j.eswa.2021.114632_b0235
– ident: 10.1016/j.eswa.2021.114632_b0100
  doi: 10.1609/aaai.v32i1.11796
– ident: 10.1016/j.eswa.2021.114632_b0120
– year: 2010
  ident: 10.1016/j.eswa.2021.114632_b0045
– year: 2016
  ident: 10.1016/j.eswa.2021.114632_b0080
– ident: 10.1016/j.eswa.2021.114632_b0145
– ident: 10.1016/j.eswa.2021.114632_b0075
– volume: 56
  start-page: 76
  year: 2013
  ident: 10.1016/j.eswa.2021.114632_b0215
  article-title: Algorithmic trading review
  publication-title: Communications of the ACM
  doi: 10.1145/2500117
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.eswa.2021.114632_b0085
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.eswa.2021.114632_b0035
  doi: 10.1016/j.jocs.2010.12.007
– year: 2009
  ident: 10.1016/j.eswa.2021.114632_b0055
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.eswa.2021.114632_b0200
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: 10.1016/j.eswa.2021.114632_b0030
– ident: 10.1016/j.eswa.2021.114632_b0220
– volume: 521
  year: 2015
  ident: 10.1016/j.eswa.2021.114632_b0125
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 279
  year: 1992
  ident: 10.1016/j.eswa.2021.114632_b0230
  article-title: Technical note: Q-Learning
  publication-title: Machine Learning
– ident: 10.1016/j.eswa.2021.114632_b0195
– year: 2009
  ident: 10.1016/j.eswa.2021.114632_b0160
SSID ssj0017007
Score 2.6686528
Snippet •Reinforcement learning (RL) formalization of the algorithmic trading problem.•Novel trading strategy based on deep reinforcement learning (DRL), denominated...
This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem of...
SourceID liege
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114632
SubjectTerms Algorithmic trading
Algorithms
Artificial intelligence
Business & economic sciences
Computer science
Deep learning
Deep reinforcement learning
Engineering, computing & technology
Finance
Ingénierie, informatique & technologie
Machine learning
Performance assessment
Program trading
Sciences informatiques
Sciences économiques & de gestion
Scientific papers
Securities markets
Stock exchanges
Trading policy
Title An application of deep reinforcement learning to algorithmic trading
URI https://dx.doi.org/10.1016/j.eswa.2021.114632
https://www.proquest.com/docview/2521112896
https://orbi.uliege.be/handle/2268/246457
Volume 173
WOSCitedRecordID wos000636782600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg5cCFb0THQD5wg6DFcWLnGNEi4DBxKFJvlmO_dKlKUqXp2J8_O3aydhMVO3CJoiiJovd-8fv5fSL0IaSSqxTSICq4DqgswiBnlAY0Byl1CprHqhs2wc7P-WKR_vRTHLfdOAFWVfzqKt38V1Wba0bZtnT2HuoeXmoumHOjdHM0ajfHf1J8VjlqqQYyOAXYGDl2PVJV5w7s26ouLfXM1su6KdsLmyVvTNdgzFZDlh40rW_53BfD7YW9b1JLXNBduoF784syl7shqWbWVK66ZCp_l778zDsbSDgkpnoPmDfXB25EFtDQTdq5sxw7z8DqM2z_2B5PJOxaE3uH5kHv61s26aD7dd3kpditl0IqkYMwhJELYiOy7CEaExanfITG2ffZ4scQP2JnrlC-_zq77eYsChKzHPnSKZfld_vL_kZPxmubw3DHYHcsZP4MPfHbB5w5tT9HD6B6gZ72ozmwX6lfomlW4T0U4LrAFgX4AAW4RwFua7yHAuxR8Ar9-jqbf_kW-IEZgTK8ug2AShulpjTVRQIkLgpJklhRmmsSKa1DCVFBICwMyZRFTBMNLM45gVgSUIbqv0ajqq7gDcJ5ylMdnam8SGKqmeKMQWS2ugpIDqGmExT2chLKd5O3Q03Wok8bXAkrW2FlK5xsJ-jj8MzG9VI5enfci194NuhYnjDoOvrcp05XDjaXRByH0ASd9ioV_i_eCmJIrdmI8DQ5ud_b3qLHN7_NKRq1zQ7eoUfqsi23zXuP0msKWpta
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Application+of+Deep+Reinforcement+Learning+to+Algorithmic+Trading&rft.jtitle=Expert+systems+with+applications&rft.au=Th%C3%A9ate%2C+Thibaut&rft.au=Ernst%2C+Damien&rft.date=2021-07-01&rft.pub=Elsevier&rft.issn=0957-4174&rft_id=info:doi/10.1016%2Fj.eswa.2021.114632&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_246457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon