Control of the antiferromagnetic domain configuration and Néel axis orientation with epitaxial strain
In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagneti...
Saved in:
| Published in: | Communications materials Vol. 6; no. 1; pp. 153 - 10 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
18.07.2025
Nature Publishing Group Nature Nature Portfolio |
| Subjects: | |
| ISSN: | 2662-4443, 2662-4443 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO
3
(LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states—from compressive to tensile—and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications.
Precise control over antiferromagnetic domain configurations and Néel axis orientation is essential for technological advancement of spintronic devices. Here, the authors use epitaxial strain to tailor the magnetic properties of LaFeO
3
thin films, demonstrating a crystal engineering approach which may have much wider applicability. |
|---|---|
| AbstractList | In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO
3
(LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states—from compressive to tensile—and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications.
Precise control over antiferromagnetic domain configurations and Néel axis orientation is essential for technological advancement of spintronic devices. Here, the authors use epitaxial strain to tailor the magnetic properties of LaFeO
3
thin films, demonstrating a crystal engineering approach which may have much wider applicability. In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO3 (LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states—from compressive to tensile—and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications.Precise control over antiferromagnetic domain configurations and Néel axis orientation is essential for technological advancement of spintronic devices. Here, the authors use epitaxial strain to tailor the magnetic properties of LaFeO3 thin films, demonstrating a crystal engineering approach which may have much wider applicability. Abstract In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO3 (LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states—from compressive to tensile—and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications. In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO 3 (LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states-from compressive to tensile-and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications. |
| ArticleNumber | 153 |
| Author | Maccherozzi, Francesco Wadhwa, Payal Elnaggar, Hebatalla Vinai, Giovanni Davidson, Bruce A. Backes, Dirk Petrov, Aleksandr Yu Filippetti, Alessio Rossi, Giorgio Polewczyk, Vincent Torelli, Piero Sarpi, Brice |
| Author_xml | – sequence: 1 givenname: Vincent orcidid: 0000-0003-0932-6376 surname: Polewczyk fullname: Polewczyk, Vincent email: vincent.polewczyk@cnrs.fr organization: CNR—Istituto Officina dei Materiali (IOM), Université Paris-Saclay, UVSQ, CNRS, GEMaC – sequence: 2 givenname: Aleksandr Yu surname: Petrov fullname: Petrov, Aleksandr Yu organization: CNR—Istituto Officina dei Materiali (IOM) – sequence: 3 givenname: Brice surname: Sarpi fullname: Sarpi, Brice organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 4 givenname: Dirk orcidid: 0000-0002-1019-3323 surname: Backes fullname: Backes, Dirk organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 5 givenname: Hebatalla orcidid: 0000-0002-4223-4054 surname: Elnaggar fullname: Elnaggar, Hebatalla organization: Sorbonne Université, CNRS UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie – sequence: 6 givenname: Payal surname: Wadhwa fullname: Wadhwa, Payal organization: Dipartimento di Fisica, Università di Cagliari – sequence: 7 givenname: Alessio orcidid: 0000-0002-9144-7005 surname: Filippetti fullname: Filippetti, Alessio organization: CNR—Istituto Officina dei Materiali (IOM), Dipartimento di Fisica, Università di Cagliari – sequence: 8 givenname: Giorgio surname: Rossi fullname: Rossi, Giorgio organization: CNR—Istituto Officina dei Materiali (IOM), Dipartimento di Fisica, Università degli Studi di Milano – sequence: 9 givenname: Piero surname: Torelli fullname: Torelli, Piero organization: CNR—Istituto Officina dei Materiali (IOM) – sequence: 10 givenname: Giovanni orcidid: 0000-0003-4882-663X surname: Vinai fullname: Vinai, Giovanni organization: CNR—Istituto Officina dei Materiali (IOM) – sequence: 11 givenname: Francesco orcidid: 0000-0003-4074-2319 surname: Maccherozzi fullname: Maccherozzi, Francesco organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 12 givenname: Bruce A. orcidid: 0000-0003-1616-9380 surname: Davidson fullname: Davidson, Bruce A. organization: CNR—Istituto Officina dei Materiali (IOM), Stewart Blusson Quantum Matter Institute, University of British Columbia |
| BackLink | https://hal.science/hal-05170473$$DView record in HAL |
| BookMark | eNp9kctOHDEQRa0IJJ4_wMpSVll08Ku7zRKNkoA0IhtYW9Xt8oxHjT3YnkzySfmO_FgMjfLYsKpS1bm3VLon5CDEgIRccPaRM6kvs5JCdQ0TbcOYll2zf0eORdeJRiklD_7pj8h5zhvGKsp5p9gxcYsYSooTjY6WNVIIxTtMKT7CKmDxI7W19YGOMTi_2iUoPoaKWXr36ydOFL77TGPyGMq82vuyprj1pW5gormkKj8jhw6mjOev9ZQ8fP50v7hpll-_3C6ul82oeFcalGIcLRMCFVg-tMIJBcNoteiVGBzT1vWit-0oWqcH60BBRcBx6NG61spTcjv72ggbs03-EdIPE8Gbl0FMKwOpfjWhEa7TckBt0WlVb0IvGbeqx1ZIvLpS1evD7LWG6T-rm-uleZ6xlvdM9fIbr-z7md2m-LTDXMwm7lKorxopJJdtp5WslJipMcWcE7o_tpyZ5yjNHKWp-ZiXKM2-iuQsyhUOK0x_rd9Q_QZwpKWZ |
| Cites_doi | 10.1038/s41565-018-0079-1 10.1063/1.3484147 10.21203/rs.3.rs-4380373/v1 10.1103/PhysRevB.83.064101 10.1016/j.tsf.2004.10.056 10.3938/jkps.76.273 10.1021/acs.jpcc.1c02323 10.1103/PhysRevB.57.11623 10.1103/RevModPhys.21.541 10.1103/PhysRevB.92.094407 10.1103/PhysRevB.73.020401 10.1103/PhysRevB.75.174439 10.1038/srep02542 10.1038/s41467-022-28311-x 10.1016/j.apsusc.2019.03.312 10.1016/j.physrep.2005.08.004 10.1038/ncomms2189 10.1006/jssc.1994.1083 10.1021/acs.nanolett.9b03837 10.1063/5.0005302 10.1126/science.aaz4247 10.1103/PhysRevB.94.045123 10.1023/A:1009947517710 10.1016/j.physrep.2020.08.006 10.1126/science.287.5455.1014 10.3367/UFNr.2018.01.038279 10.1103/PhysRevLett.95.187205 10.1088/0022-3727/49/43/433001 10.1088/1361-6528/aaa812 10.1103/PhysRevB.81.212409 10.1038/ncomms3351 10.1103/RevModPhys.90.015005 10.1063/1.1657530 10.1103/PhysRevB.67.214433 10.1107/S1600577520015027 10.1103/PhysRevB.90.125120 10.1016/j.jmmm.2013.11.003 10.1021/acs.jpcc.3c07864 10.1103/PhysRevB.97.094423 10.1103/PhysRevB.76.064428 10.1038/s41467-020-20155-7 10.1063/1.4990663 10.1038/nnano.2016.18 10.1107/S0909049500016460 10.1088/1361-648X/ab274f 10.1103/PhysRevLett.118.057701 10.1038/s41586-018-0490-7 10.1103/PhysRevB.103.224435 10.1063/1.1714088 10.1016/j.jmmm.2020.167257 10.1103/PhysRevMaterials.4.034405 10.1016/0022-3697(57)90095-1 10.1103/PhysRevB.96.214411 10.1103/PhysRevB.82.094403 10.1103/PhysRevB.89.024402 10.1103/PhysRevB.78.235122 10.1002/adma.201802439 10.1016/j.surfrep.2008.12.003 10.1016/j.commatsci.2021.110839 10.1103/PhysRevLett.86.2878 10.1103/PhysRevB.46.4511 10.1088/0953-8984/20/26/264014 10.1103/PhysRevLett.73.2712 10.1103/PhysRev.156.562 10.1140/epjb/e2013-30995-4 10.1103/PhysRevB.54.11169 10.1103/PhysRevMaterials.5.034413 10.1038/s41598-024-54661-1 10.1103/PhysRevB.67.024431 10.1103/PhysRevLett.83.1862 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES DOA |
| DOI | 10.1038/s43246-025-00836-w |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2662-4443 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_2f683be8def84d02a7301d47e523e994 oai:HAL:hal-05170473v1 10_1038_s43246_025_00836_w |
| GroupedDBID | 0R~ AAJSJ AASML ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. NAO OK1 PDBOC PHGZM PHGZT PIMPY PQGLB SNYQT AAYXX AFFHD CITATION 8FE 8FG ABUWG AZQEC D1I DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES |
| ID | FETCH-LOGICAL-c416t-e32ccd022e4ad1b52f24abcd82742bf08df727d5c25f8bdfa4a2f2af1a7edf5d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531143400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2662-4443 |
| IngestDate | Tue Oct 14 18:41:24 EDT 2025 Tue Oct 14 20:26:45 EDT 2025 Sat Aug 23 13:33:47 EDT 2025 Sat Nov 29 07:34:07 EST 2025 Sat Jul 19 01:10:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-e32ccd022e4ad1b52f24abcd82742bf08df727d5c25f8bdfa4a2f2af1a7edf5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0932-6376 0000-0002-4223-4054 0000-0003-4074-2319 0000-0003-1616-9380 0000-0002-9144-7005 0000-0002-1019-3323 0000-0003-4882-663X |
| OpenAccessLink | https://doaj.org/article/2f683be8def84d02a7301d47e523e994 |
| PQID | 3231356843 |
| PQPubID | 5061814 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f683be8def84d02a7301d47e523e994 hal_primary_oai_HAL_hal_05170473v1 proquest_journals_3231356843 crossref_primary_10_1038_s43246_025_00836_w springer_journals_10_1038_s43246_025_00836_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-18 |
| PublicationDateYYYYMMDD | 2025-07-18 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Communications materials |
| PublicationTitleAbbrev | Commun Mater |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature – name: Nature Portfolio |
| References | C Kittel (836_CR10) 1949; 21 V Baltz (836_CR3) 2018; 90 M Coll (836_CR24) 2019; 482 SI Csiszar (836_CR41) 2005; 95 F Yang (836_CR34) 2010; 97 P Chen (836_CR32) 2020; 30 P Wadley (836_CR13) 2018; 13 AB Shick (836_CR19) 2010; 81 Y Jia (836_CR46) 2015; 92 A Brataas (836_CR6) 2020; 885 G Vinai (836_CR47) 2020; 91 D Treves (836_CR29) 1965; 36 J Stöhr (836_CR44) 1999; 83 RO Kuzian (836_CR31) 2014; 89 JH Haeni (836_CR64) 2000; 4 M Abbate (836_CR56) 1992; 46 J Nogués (836_CR5) 2005; 422 A Fischer (836_CR52) 1994; 73 D Pesquera (836_CR20) 2012; 3 JW Seo (836_CR38) 2008; 20 M Lorenz (836_CR25) 2016; 49 L Šmejkal (836_CR4) 2022; 12 Z Huang (836_CR35) 2018; 30 G Kresse (836_CR68) 1996; 54 J Kuneš (836_CR57) 2003; 67 C Song (836_CR18) 2018; 29 M Finazzi (836_CR53) 2009; 64 K Kjærnes (836_CR11) 2021; 103 R Lebrun (836_CR9) 2020; 11 M Eibschütz (836_CR30) 1967; 156 MJ Grzybowski (836_CR45) 2017; 118 JK Grepstad (836_CR40) 2005; 486 G Colizzi (836_CR63) 2008; 78 P Vaidya (836_CR2) 2020; 368 AA Bukharaev (836_CR17) 2018; 188 S Czekaj (836_CR36) 2006; 73 HV Gomonay (836_CR15) 2007; 75 D Phuyal (836_CR71) 2020; 4 836_CR48 S Reimers (836_CR14) 2022; 13 V Polewczyk (836_CR55) 2020; 515 J Park (836_CR51) 2020; 76 D Alders (836_CR58) 1998; 57 Q Che (836_CR69) 2024; 128 Y Jia (836_CR39) 2017; 96 T Jungwirth (836_CR1) 2016; 11 SE Dann (836_CR27) 1994; 109 RV Chopdekar (836_CR61) 2013; 86 RL White (836_CR26) 1969; 40 A Ross (836_CR7) 2020; 20 V Polewczyk (836_CR22) 2021; 5 LV Pourovskii (836_CR72) 2019; 31 A Scholl (836_CR37) 2000; 287 M Zhu (836_CR42) 2024; 14 GM Pierantozzi (836_CR21) 2021; 125 H Ohldag (836_CR43) 2001; 86 MW Haverkort (836_CR60) 2010; 82 A Ruosi (836_CR67) 2014; 90 F Motti (836_CR23) 2018; 97 A Scholl (836_CR49) 2001; 8 O Gomonay (836_CR16) 2014; 354 A Vailionis (836_CR50) 2011; 83 R Mishra (836_CR54) 2016; 94 G Colizzi (836_CR62) 2007; 76 MP Warusawithana (836_CR66) 2013; 4 R Lebrun (836_CR8) 2018; 561 B Cui (836_CR33) 2013; 3 J Lüning (836_CR12) 2003; 67 WC Koehler (836_CR28) 1957; 2 TW Zhang (836_CR65) 2017; 111 H Elnaggar (836_CR59) 2021; 28 Y Yang (836_CR70) 2021; 200 |
| References_xml | – volume: 13 start-page: 362 year: 2018 ident: 836_CR13 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0079-1 – volume: 97 start-page: 092503 year: 2010 ident: 836_CR34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3484147 – ident: 836_CR48 doi: 10.21203/rs.3.rs-4380373/v1 – volume: 83 year: 2011 ident: 836_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.064101 – volume: 486 start-page: 108 year: 2005 ident: 836_CR40 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.10.056 – volume: 30 start-page: 1 year: 2020 ident: 836_CR32 publication-title: Adv. Funct. Mater. – volume: 76 start-page: 273 year: 2020 ident: 836_CR51 publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.76.273 – volume: 125 start-page: 14430 year: 2021 ident: 836_CR21 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c02323 – volume: 57 start-page: 11623 year: 1998 ident: 836_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.11623 – volume: 21 start-page: 541 year: 1949 ident: 836_CR10 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.21.541 – volume: 92 start-page: 094407 year: 2015 ident: 836_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.094407 – volume: 73 start-page: 020401(R) year: 2006 ident: 836_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.020401 – volume: 75 start-page: 174439 year: 2007 ident: 836_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.174439 – volume: 3 year: 2013 ident: 836_CR33 publication-title: Sci. Rep. doi: 10.1038/srep02542 – volume: 13 year: 2022 ident: 836_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28311-x – volume: 482 start-page: 1 year: 2019 ident: 836_CR24 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.312 – volume: 422 start-page: 65 year: 2005 ident: 836_CR5 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.08.004 – volume: 3 year: 2012 ident: 836_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms2189 – volume: 109 start-page: 134 year: 1994 ident: 836_CR27 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1994.1083 – volume: 20 start-page: 306 year: 2020 ident: 836_CR7 publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b03837 – volume: 91 start-page: 085109 year: 2020 ident: 836_CR47 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0005302 – volume: 368 start-page: 160 year: 2020 ident: 836_CR2 publication-title: Science doi: 10.1126/science.aaz4247 – volume: 94 year: 2016 ident: 836_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.045123 – volume: 4 start-page: 385 year: 2000 ident: 836_CR64 publication-title: J. Electroceramics doi: 10.1023/A:1009947517710 – volume: 885 start-page: 1 year: 2020 ident: 836_CR6 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.08.006 – volume: 287 start-page: 1014 year: 2000 ident: 836_CR37 publication-title: Science doi: 10.1126/science.287.5455.1014 – volume: 188 start-page: 1288 year: 2018 ident: 836_CR17 publication-title: Uspekhi Fiz. Nauk doi: 10.3367/UFNr.2018.01.038279 – volume: 95 start-page: 187205 year: 2005 ident: 836_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.187205 – volume: 49 start-page: 433001 year: 2016 ident: 836_CR25 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/49/43/433001 – volume: 29 start-page: 112001 year: 2018 ident: 836_CR18 publication-title: Nanotechnology doi: 10.1088/1361-6528/aaa812 – volume: 81 start-page: 212409 year: 2010 ident: 836_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.212409 – volume: 4 year: 2013 ident: 836_CR66 publication-title: Nat. Commun. doi: 10.1038/ncomms3351 – volume: 90 start-page: 015005 year: 2018 ident: 836_CR3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015005 – volume: 40 start-page: 1061 year: 1969 ident: 836_CR26 publication-title: J. Appl. Phys. doi: 10.1063/1.1657530 – volume: 67 year: 2003 ident: 836_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.214433 – volume: 28 start-page: 247 year: 2021 ident: 836_CR59 publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577520015027 – volume: 90 year: 2014 ident: 836_CR67 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.125120 – volume: 354 start-page: 125 year: 2014 ident: 836_CR16 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.11.003 – volume: 128 start-page: 5515 year: 2024 ident: 836_CR69 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.3c07864 – volume: 97 year: 2018 ident: 836_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.094423 – volume: 76 start-page: 064428 year: 2007 ident: 836_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.064428 – volume: 11 year: 2020 ident: 836_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20155-7 – volume: 111 start-page: 011601 year: 2017 ident: 836_CR65 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990663 – volume: 11 start-page: 231 year: 2016 ident: 836_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.18 – volume: 8 start-page: 101 year: 2001 ident: 836_CR49 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049500016460 – volume: 31 start-page: 373001 year: 2019 ident: 836_CR72 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab274f – volume: 118 start-page: 057701 year: 2017 ident: 836_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.057701 – volume: 561 start-page: 222 year: 2018 ident: 836_CR8 publication-title: Nature doi: 10.1038/s41586-018-0490-7 – volume: 103 start-page: 224435 year: 2021 ident: 836_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.224435 – volume: 36 start-page: 1033 year: 1965 ident: 836_CR29 publication-title: J. Appl. Phys. doi: 10.1063/1.1714088 – volume: 515 start-page: 167257 year: 2020 ident: 836_CR55 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.167257 – volume: 4 start-page: 034405 year: 2020 ident: 836_CR71 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.4.034405 – volume: 2 start-page: 100 year: 1957 ident: 836_CR28 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(57)90095-1 – volume: 96 start-page: 1 year: 2017 ident: 836_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.214411 – volume: 82 start-page: 094403 year: 2010 ident: 836_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.094403 – volume: 12 start-page: 040501 year: 2022 ident: 836_CR4 publication-title: Phys. Rev. X – volume: 89 start-page: 024402 year: 2014 ident: 836_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.024402 – volume: 78 start-page: 235122 year: 2008 ident: 836_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.235122 – volume: 30 start-page: 1802439 year: 2018 ident: 836_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201802439 – volume: 64 start-page: 139 year: 2009 ident: 836_CR53 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2008.12.003 – volume: 200 start-page: 110839 year: 2021 ident: 836_CR70 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110839 – volume: 86 start-page: 2878 year: 2001 ident: 836_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2878 – volume: 46 start-page: 4511 year: 1992 ident: 836_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.4511 – volume: 20 start-page: 264014 year: 2008 ident: 836_CR38 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/26/264014 – volume: 73 start-page: 2712 year: 1994 ident: 836_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.2712 – volume: 156 start-page: 562 year: 1967 ident: 836_CR30 publication-title: Phys. Rev. doi: 10.1103/PhysRev.156.562 – volume: 86 year: 2013 ident: 836_CR61 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-30995-4 – volume: 54 start-page: 11169 year: 1996 ident: 836_CR68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 5 start-page: 034413 year: 2021 ident: 836_CR22 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.034413 – volume: 14 year: 2024 ident: 836_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-024-54661-1 – volume: 67 start-page: 024431 year: 2003 ident: 836_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.024431 – volume: 83 start-page: 1862 year: 1999 ident: 836_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1862 |
| SSID | ssj0002511640 |
| Score | 2.2973838 |
| Snippet | In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical... Abstract In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is... |
| SourceID | doaj hal proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 153 |
| SubjectTerms | 639/301/119/995 639/301/119/997 Antiferromagnetism Chemistry and Materials Science Compressive properties Condensed Matter Configurations Crystallography Dichroism Electrons Emission microscopy Epitaxial growth Ferrites Lanthanum compounds Magnetic properties Materials Science Molecular beam epitaxy Photoelectrons Physics Symmetry Tensile strain Thin films |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMXHgJEoCALcYOoSexsvCfUVq16qFYVAqk3y88lEiQl2T7-Er-DP8aM420pEly4Rc7IcvKNPU_PALwtee15qSkPh3M0UIzDLaXrHKVDoC6qBTexuv5xs1zK09PFSXK4jSmtcnMmxoPa9ZZ85DscFRFez6XgH86-59Q1iqKrqYXGXdiiSmViBlt7B8uTj9deFlKg56JIt2UKLndGKkFHebd1TurHPL-8JZFi4X6UM18oLfI3nfOPMGmUPocP_3fdj-BB0jvZ7sQoj-GO755A2J8S1VkfGCqCTFPmkB-G_ptedXS7kTl8bDuGRnNoV-cTtyCZY8ufP_xXpq_akfVDmy4wdYzcusxTJ5IrZGw2xg4UT-Hz4cGn_aM8NV7ILepn69zzylqH0t0L7UpTV6ES2lgnKa5rQiFdQLXH1baqgzQuaKGRRIdSN96F2vFnMOv6zj8HJq3wDcKuq6YStTCa2wLn0maBliVSZ_Bu8_PV2VRfQ8W4OJdqgkohVCpCpS4z2CN8rimpNnYc6IeVSltNVWEuufHS-SAFfoWmQ8yJxqPN7RcLkcEbRPfWHEe7x4rGqGBZIRp-UWawvYFTpV09qhssM3i_YYib139f94t_z_YS7leRIZu8lNswWw_n_hXcsxfrdhxeJ57-BYM_AIs priority: 102 providerName: ProQuest |
| Title | Control of the antiferromagnetic domain configuration and Néel axis orientation with epitaxial strain |
| URI | https://link.springer.com/article/10.1038/s43246-025-00836-w https://www.proquest.com/docview/3231356843 https://hal.science/hal-05170473 https://doaj.org/article/2f683be8def84d02a7301d47e523e994 |
| Volume | 6 |
| WOSCitedRecordID | wos001531143400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2662-4443 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511640 issn: 2662-4443 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2662-4443 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511640 issn: 2662-4443 databaseCode: KB. dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2662-4443 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511640 issn: 2662-4443 databaseCode: BENPR dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2662-4443 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511640 issn: 2662-4443 databaseCode: PIMPY dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hwoELAgEi0FYW4gahiX823mO3alVEWa0QSOVk2bFdIpUsSrY_r9Tn4MWYcbKwRUJcuESRM4qsmXHmm3j8DcCrUqggSkt1OEJgguI8LimrcowOkbqoFsIldv2Taj7Xp6fTxUarL6oJG-iBB8Xt8TjRwgXtQ9TSF9ySS3pZBcygwnSamEAR9WwkU_QNJuA8kcV4SqYQeq8n6jmqt1U5wY5JfnUrEiXCfowvX6kccgNr_rE9mqLO0UN4MMJFtj9M8xHcCe1jiAdDfTlbRob4jVkq-Aldt_xmz1o6lMg83jYtw1w3NmcXg5FRzLP5j5twzux107Nl14znjlpGf2NZoAYi1-iPrE-NI57A56PDTwfH-dgvIa8RVq3yIHhdo4p4kNaXTvHIpXW117Qd62KhfUS04lXNVdTORystithY2ir4qLx4Clvtsg3PgOlahgqtZXnFpZLOirrAd1k3xYQQpTN4vdad-T7QYpi0nS20GTRtUNMmadpcZTAj9f6SJErrNICGNqOhzb8MncFLNM6tdxzvnxgaI56xQlbissxge207My7G3gjEsEJNtBQZvFnb8_fjv8_7-f-Y9wu4z5PXVXmpt2Fr1V2EHbhXX66avtuFu7PD-eLjbnJfvL6fvcWxxbsPiy8_ATwF9Rg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceAgQWwpYCE4QNbGdjfeAUClUu-p2tYcilZNxYntZiSYl2XbLT-LCn-CPMZNHS5Hg1gO3yLFGcfzNw54XwPNIxE5EhuJwhMADSmqRpUwcoHbw1EU1FGldXX-STKfq8HA4W4MfXS4MhVV2MrEW1LbI6I58S6AhIuKBkuLN8deAukaRd7VrodHAYs99W-GRrXo9fof7-4Lz3fcHO6Og7SoQZGh8LAMneJZZVF1OGhulMfdcmjSzipyWqQ-V9ajTbZzx2KvUeiMNTjE-MomzPrYC6V6DdYlgVz1Yn433Zx_Pb3XIYB_IsM3OCYXaqqjkHcX5xgGZO4NgdUkD1o0CUK99pjDM32zcP9yytbbbvf2__ac7cKu1q9l2wwh3Yc3l98DvNIH4rPAMDV1mKDLKlWVxZOY5ZW8yi4-LnGVF7hfzk4YbcJpl05_f3RdmzhYVK8pFm6CVM7q2Zo46rZwh47Kq7rBxHz5cydIeQC8vcvcQmMqkSxDWhidcxjI1IguRlkmHeHLG2X142W22Pm7qh-ja7y-UbqChERq6hoZe9eEt4eF8JtX-rgeKcq5bUaK5HyiROmWdVxJXYUhIW5m4mAs3HMo-PEM0XaIx2p5oGqOCbKFMxGnUh80OPrqVWpW-wE4fXnUAvHj99-_e-De1p3BjdLA_0ZPxdO8R3OQ1MyRBpDahtyxP3GO4np0uF1X5pOUnBp-uGpq_AH8KYhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+the+antiferromagnetic+domain+configuration+and+N%C3%A9el+axis+orientation+with+epitaxial+strain&rft.jtitle=Communications+materials&rft.au=Polewczyk%2C+Vincent&rft.au=Petrov%2C+Aleksandr+Yu&rft.au=Sarpi%2C+Brice&rft.au=Backes%2C+Dirk&rft.date=2025-07-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2662-4443&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs43246-025-00836-w&rft.externalDocID=10_1038_s43246_025_00836_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4443&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4443&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4443&client=summon |