The GALAH Survey: A New Sample of Extremely Metal-poor Stars Using a Machine-learning Classification Algorithm

Extremely metal-poor (EMP) stars provide a valuable probe of early chemical enrichment in the Milky Way. Here we leverage a large sample of ∼600,000 high-resolution stellar spectra from the GALAH survey plus a machine-learning algorithm to find 54 candidates with estimated [Fe/H] ≤−3.0, six of which...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal Vol. 930; no. 1; pp. 47 - 67
Main Authors: Hughes, Arvind C. N., Spitler, Lee R., Zucker, Daniel B., Nordlander, Thomas, Simpson, Jeffrey, Da Costa, Gary S., Ting, Yuan-Sen, Li, Chengyuan, Bland-Hawthorn, Joss, Buder, Sven, Casey, Andrew R., De Silva, Gayandhi M., D’Orazi, Valentina, Freeman, Ken C., Hayden, Michael R., Kos, Janez, Lewis, Geraint F., Lin, Jane, Lind, Karin, Martell, Sarah L., Schlesinger, Katharine J., Sharma, Sanjib, Zwitter, Tomaž
Format: Journal Article
Language:English
Published: Philadelphia The American Astronomical Society 01.05.2022
IOP Publishing
Subjects:
ISSN:0004-637X, 1538-4357, 1538-4357
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first