Probability Distribution Functions of Sunspot Magnetic Flux
We investigated the probability distributions of sunspot area and magnetic flux by using data from the Royal Greenwich Observatory and USAF/NOAA. We constructed a sample of 2995 regions with maximum-development areas ≥500 MSH (millionths of solar hemisphere), covering 146.7 yr (1874–2020). The data...
Uložené v:
| Vydané v: | The Astrophysical journal Ročník 943; číslo 1; s. 10 - 30 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
The American Astronomical Society
01.01.2023
IOP Publishing |
| Predmet: | |
| ISSN: | 0004-637X, 1538-4357 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We investigated the probability distributions of sunspot area and magnetic flux by using data from the Royal Greenwich Observatory and USAF/NOAA. We constructed a sample of 2995 regions with maximum-development areas ≥500 MSH (millionths of solar hemisphere), covering 146.7 yr (1874–2020). The data were fitted by a power-law distribution and four two-parameter distributions (tapered-power-law, gamma, lognormal, and Weibull distributions). The power-law model was unfavorable compared to the four models in terms of AIC, and was not acceptable according to the classical Kolmogorov–Smirnov test. The lognormal and Weibull distributions were excluded because their behavior extended to smaller regions (
S
≪ 500 MSH) do not connect to previously published results. Therefore, our choices were tapered-power-law and gamma distributions. The power-law portion of the tapered-power-law and gamma distributions was found to have a power exponent of 1.35–1.9. Due to the exponential falloff of these distributions, the expected frequencies of large sunspots are low. The largest sunspot group observed had an area of 6132 MSH, and the frequency of sunspots larger than 10
4
MSH was estimated to be every 3–8 × 10
4
yr. We also estimated the distributions of the Sun-as-a-star total sunspot areas. The largest total area covered by sunspots on record was 1.67% of the visible disk, and can be up to 2.7% by artificially increasing the lifetimes of large sunspots in an area evolution model. These values are still smaller than those found on active Sun-like stars. |
|---|---|
| AbstractList | We investigated the probability distributions of sunspot area and magnetic flux by using data from the Royal Greenwich Observatory and USAF/NOAA. We constructed a sample of 2995 regions with maximum-development areas ≥500 MSH (millionths of solar hemisphere), covering 146.7 yr (1874–2020). The data were fitted by a power-law distribution and four two-parameter distributions (tapered-power-law, gamma, lognormal, and Weibull distributions). The power-law model was unfavorable compared to the four models in terms of AIC, and was not acceptable according to the classical Kolmogorov–Smirnov test. The lognormal and Weibull distributions were excluded because their behavior extended to smaller regions ( S ≪ 500 MSH) do not connect to previously published results. Therefore, our choices were tapered-power-law and gamma distributions. The power-law portion of the tapered-power-law and gamma distributions was found to have a power exponent of 1.35–1.9. Due to the exponential falloff of these distributions, the expected frequencies of large sunspots are low. The largest sunspot group observed had an area of 6132 MSH, and the frequency of sunspots larger than 10 ^4 MSH was estimated to be every 3–8 × 10 ^4 yr. We also estimated the distributions of the Sun-as-a-star total sunspot areas. The largest total area covered by sunspots on record was 1.67% of the visible disk, and can be up to 2.7% by artificially increasing the lifetimes of large sunspots in an area evolution model. These values are still smaller than those found on active Sun-like stars. We investigated the probability distributions of sunspot area and magnetic flux by using data from the Royal Greenwich Observatory and USAF/NOAA. We constructed a sample of 2995 regions with maximum-development areas ≥500 MSH (millionths of solar hemisphere), covering 146.7 yr (1874–2020). The data were fitted by a power-law distribution and four two-parameter distributions (tapered-power-law, gamma, lognormal, and Weibull distributions). The power-law model was unfavorable compared to the four models in terms of AIC, and was not acceptable according to the classical Kolmogorov–Smirnov test. The lognormal and Weibull distributions were excluded because their behavior extended to smaller regions (S ≪ 500 MSH) do not connect to previously published results. Therefore, our choices were tapered-power-law and gamma distributions. The power-law portion of the tapered-power-law and gamma distributions was found to have a power exponent of 1.35–1.9. Due to the exponential falloff of these distributions, the expected frequencies of large sunspots are low. The largest sunspot group observed had an area of 6132 MSH, and the frequency of sunspots larger than 104 MSH was estimated to be every 3–8 × 104 yr. We also estimated the distributions of the Sun-as-a-star total sunspot areas. The largest total area covered by sunspots on record was 1.67% of the visible disk, and can be up to 2.7% by artificially increasing the lifetimes of large sunspots in an area evolution model. These values are still smaller than those found on active Sun-like stars. We investigated the probability distributions of sunspot area and magnetic flux by using data from the Royal Greenwich Observatory and USAF/NOAA. We constructed a sample of 2995 regions with maximum-development areas ≥500 MSH (millionths of solar hemisphere), covering 146.7 yr (1874–2020). The data were fitted by a power-law distribution and four two-parameter distributions (tapered-power-law, gamma, lognormal, and Weibull distributions). The power-law model was unfavorable compared to the four models in terms of AIC, and was not acceptable according to the classical Kolmogorov–Smirnov test. The lognormal and Weibull distributions were excluded because their behavior extended to smaller regions ( S ≪ 500 MSH) do not connect to previously published results. Therefore, our choices were tapered-power-law and gamma distributions. The power-law portion of the tapered-power-law and gamma distributions was found to have a power exponent of 1.35–1.9. Due to the exponential falloff of these distributions, the expected frequencies of large sunspots are low. The largest sunspot group observed had an area of 6132 MSH, and the frequency of sunspots larger than 10 4 MSH was estimated to be every 3–8 × 10 4 yr. We also estimated the distributions of the Sun-as-a-star total sunspot areas. The largest total area covered by sunspots on record was 1.67% of the visible disk, and can be up to 2.7% by artificially increasing the lifetimes of large sunspots in an area evolution model. These values are still smaller than those found on active Sun-like stars. |
| Author | Sakurai, Takashi Toriumi, Shin |
| Author_xml | – sequence: 1 givenname: Takashi orcidid: 0000-0002-6019-5167 surname: Sakurai fullname: Sakurai, Takashi organization: Tokyo Institute of Technology Earth-Life Science Institute, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan – sequence: 2 givenname: Shin orcidid: 0000-0002-1276-2403 surname: Toriumi fullname: Toriumi, Shin organization: Japan Aerospace Exploration Agency Institute of Space and Astronautical Science, Sagamihara, Kanagawa 229-5210, Japan |
| BookMark | eNp9kN1LwzAUxYNMcJu--1jw1bqkaZMWn2Q6HUwUVPAt3KTpyKjNTFJw_72t9QMEfbq5l3MOv5wJGjW20QgdE3xG85TPSEbzOKUZn4GCJIc9NP4-jdAYY5zGjPLnAzTxftOvSVGM0fm9sxKkqU3YRZfGB2dkG4xtokXbqP7hI1tFD23jtzZEt7BudDAqWtTt2yHar6D2-uhzTtHT4upxfhOv7q6X84tVrFLCQqwqkrKMg-YZJyllmWK6kDlWADmuOjwtUw6lwgkQwiUGDVQWOsspyQrWKaZoOeSWFjZi68wLuJ2wYMTHwbq1ANdB1VowUtKSYVUS6D4oU8kgJ7TAVVKSBHPeZZ0MWVtnX1vtg9jY1jUdvkg44wktKGGdig0q5az3TldCmQB9G8GBqQXBoi9d9A2LvmExlN4Z8S_jF-4_ltPBYuz2B-ZP-TslKZOM |
| CitedBy_id | crossref_primary_10_1007_s11207_025_02537_6 crossref_primary_10_1051_0004_6361_202245635 crossref_primary_10_3847_2041_8213_ad8c37 crossref_primary_10_3847_1538_4357_adc816 crossref_primary_10_1007_s11207_023_02200_y crossref_primary_10_3390_physics5010002 |
| Cites_doi | 10.1051/0004-6361:20053415 10.1007/s00159-009-0020-6 10.12942/lrsp-2005-8 10.12942/lrsp-2011-6 10.18637/jss.v039.i11 10.1007/s11207-008-9226-4 10.1051/0004-6361/202037547 10.1109/TAC.1974.1100705 10.1086/524129 10.1007/BF00712873 10.1086/166206 10.1175/2010JAMC2478.1 10.1214/aoms/1177729437 10.1007/s000240050276 10.1086/308325 10.1007/BF00146575 10.1051/0004-6361/200912044 10.1088/0004-637X/771/2/127 10.1134/S1063773719060045 10.1007/lrsp-2015-1 10.1051/0004-6361/201321152 10.1046/j.1365-246x.2002.01594.x 10.1137/070710111 10.1093/pasj/psv002 10.1007/s001590100013 10.1111/j.2517-6161.1970.tb00821.x 10.1088/0004-637X/723/2/1006 10.1007/BF00733429 10.1029/2009JA014299 10.1007/s11207-011-9841-3 10.3847/1538-4357/834/1/56 10.1007/s11207-010-9656-7 10.1007/s11207-011-9834-2 10.1002/9781118445112.stat02711.pub2 10.1088/2041-8205/804/2/L28 10.1023/A:1004971807172 10.1051/0004-6361/200913275 10.1007/BF00150871 10.1007/s41116-019-0019-7 10.1023/A:1022425402664 10.1046/j.1365-246x.2001.01348.x 10.1007/lrsp-2015-4 10.1016/j.asr.2007.01.087 10.1146/annurev.aa.25.090187.000503 10.1007/s00265-010-1029-6 10.1007/s11207-014-0529-3 10.1007/s11207-013-0425-2 10.1007/BF00156663 10.1038/srep40045 10.1086/309303 10.1007/BF00675537 10.1007/s11207-011-9842-2 10.1007/s11207-008-9174-z 10.1364/AO.15.000040 10.1007/s11207-021-01853-x 10.1038/nature11063 10.1086/146010 10.1088/0004-637X/800/1/48 10.1086/345792 10.1007/BF00170984 10.1086/311962 10.1029/2001JA000503 10.1017/S0021900200112756 10.1007/s00159-003-0018-4 10.1093/pasj/psx013 10.1007/BF02924307 |
| ContentType | Journal Article |
| Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
| DOI | 10.3847/1538-4357/aca28a |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Journals Open Access url: http://iopscience.iop.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1538-4357 |
| ExternalDocumentID | oai_doaj_org_article_61d3d60cd1a042b4b6a81390f2d12077 10_3847_1538_4357_aca28a apjaca28a |
| GrantInformation_xml | – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP21H01124 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP20K04033 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ National Institutes of Natural Sciences (NINS) grantid: 01321802 funderid: https://doi.org/10.13039/501100006321 – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP15H05814 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP15H05816 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP16K17671 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP21H04492 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ Japan Society for the Promotion of Science (JSPS) grantid: JP20KK0072 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT ∣ National Institutes of Natural Sciences (NINS) grantid: 01311904 funderid: https://doi.org/10.13039/501100006321 |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW 2WC AAYXX AEINN CITATION 7TG 8FD H8D KL. L7M |
| ID | FETCH-LOGICAL-c416t-cf14657ae75714365c6e9b80caa80f357eb47adc02a117b0aea3b9e58315960f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915835900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-637X |
| IngestDate | Fri Oct 03 12:51:53 EDT 2025 Wed Aug 13 09:45:42 EDT 2025 Sat Nov 29 05:43:52 EST 2025 Tue Nov 18 21:45:37 EST 2025 Wed Aug 21 03:31:56 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-cf14657ae75714365c6e9b80caa80f357eb47adc02a117b0aea3b9e58315960f3 |
| Notes | AAS38806 The Sun and the Heliosphere ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6019-5167 0000-0002-1276-2403 |
| OpenAccessLink | https://doaj.org/article/61d3d60cd1a042b4b6a81390f2d12077 |
| PQID | 2767239316 |
| PQPubID | 4562441 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2767239316 crossref_citationtrail_10_3847_1538_4357_aca28a doaj_primary_oai_doaj_org_article_61d3d60cd1a042b4b6a81390f2d12077 iop_journals_10_3847_1538_4357_aca28a crossref_primary_10_3847_1538_4357_aca28a |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | The Astrophysical journal |
| PublicationTitleAbbrev | APJ |
| PublicationTitleAlternate | Astrophys. J |
| PublicationYear | 2023 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Weibull (apjaca28abib79) 1939 Scherrer (apjaca28abib55) 2012; 275 Buehler (apjaca28abib9) 2013; 555 Hudson (apjaca28abib30) 1982; 76 Maehara (apjaca28abib40) 2017; 69 Vere-Jones (apjaca28abib78) 2001; 144 Muñoz-Jaramillo (apjaca28abib44) 2015; 800 Toriumi (apjaca28abib73) 2019; 16 Utsu (apjaca28abib75) 1999; 155 Balmaceda (apjaca28abib15) 2009; 114 Kopecký (apjaca28abib36) 1956; 7 Zwaan (apjaca28abib82) 1987; 25 Crow (apjaca28abib17) 2020 Foukal (apjaca28abib21) 2014; 289 Smyrli (apjaca28abib61) 2010; 521 Hathaway (apjaca28abib26) 2015; 12 Serra (apjaca28abib58) 2017; 7 Johnson (apjaca28abib32) 2011; 50 Vaquero (apjaca28abib77) 2007; 40 Berdyugina (apjaca28abib6) 2005; 2 Hathaway (apjaca28abib28) 2002; 211 Sun (apjaca28abib69) 2015; 804 van Driel-Gesztelyi (apjaca28abib76) 2015; 12 Harvey (apjaca28abib25) 1993; 148 Baumann (apjaca28abib5) 2005; 443 Tian (apjaca28abib71) 2008; 673 Nagovitsyn (apjaca28abib45) 2019; 45 Anderson (apjaca28abib2) 1952; 23 Johnson (apjaca28abib31) 1994 Arge (apjaca28abib4) 2002; 107 Maehara (apjaca28abib41) 2012; 485 Toriumi (apjaca28abib72) 2017; 834 Shibata (apjaca28abib59) 2011; 8 Efron (apjaca28abib19) 1993 Clauset (apjaca28abib14) 2009; 51 Kagan (apjaca28abib33) 2002; 148 Schaefer (apjaca28abib53) 2000; 529 Howard (apjaca28abib29) 1992; 137 Kopecký (apjaca28abib35) 1953; 4 Gnevyshev (apjaca28abib22) 1938; 24 Gopalswamy (apjaca28abib23) 2018 Antalova (apjaca28abib3) 1986; 14 Sammis (apjaca28abib52) 2000; 540 Criscuoli (apjaca28abib16) 2009; 506 Hathaway (apjaca28abib27) 2008; 250 Priest (apjaca28abib51) 2002; 10 Spruit (apjaca28abib64) 1977; 55 Bogdan (apjaca28abib8) 1988; 327 Christie (apjaca28abib13) 1907 Kopp (apjaca28abib38) 2021; 296 Notsu (apjaca28abib46) 2015; 67 Stephens (apjaca28abib65) 1970; 32 Simard (apjaca28abib60) 2011; 39 Burnham (apjaca28abib11) 2011; 65 Wingo (apjaca28abib80) 1989; 30 Kagan (apjaca28abib34) 2001; 38A Stephens (apjaca28abib66) 2016 Cattaneo (apjaca28abib12) 1999; 515 Deming (apjaca28abib18) 1943 Mandal (apjaca28abib42) 2020; 640 Akaike (apjaca28abib1) 1974; 19 Press (apjaca28abib50) 1992 Tsuneta (apjaca28abib74) 2008; 249 Spencer Jones (apjaca28abib63) 1955 Notsu (apjaca28abib47) 2013; 771 Scherrer (apjaca28abib54) 1995; 162 Livingston (apjaca28abib39) 1976; 15 Pesnell (apjaca28abib49) 2012; 275 Solanki (apjaca28abib62) 2003; 11 Strassmeier (apjaca28abib67) 1999; 347 Zhang (apjaca28abib81) 2010; 723 Kopecky (apjaca28abib37) 1984; 93 Hagenaar (apjaca28abib24) 2003; 584 Maunder (apjaca28abib43) 1909 Strassmeier (apjaca28abib68) 2009; 17 Fligge (apjaca28abib20) 1997; 173 Schrijver (apjaca28abib57) 1994; 150 Schou (apjaca28abib56) 2012; 275 Thornton (apjaca28abib70) 2011; 269 Parker (apjaca28abib48) 1955; 121 Bobra (apjaca28abib7) 2014; 289 Burnham (apjaca28abib10) 2002 |
| References_xml | – volume: 443 start-page: 1061 year: 2005 ident: apjaca28abib5 publication-title: A&A doi: 10.1051/0004-6361:20053415 – volume: 17 start-page: 251 year: 2009 ident: apjaca28abib68 publication-title: A&ARv doi: 10.1007/s00159-009-0020-6 – volume: 2 start-page: 8 year: 2005 ident: apjaca28abib6 publication-title: LRSP doi: 10.12942/lrsp-2005-8 – volume: 7 start-page: 116 year: 1956 ident: apjaca28abib36 publication-title: BAICz – volume: 8 start-page: 6 year: 2011 ident: apjaca28abib59 publication-title: LRSP doi: 10.12942/lrsp-2011-6 – volume: 39 start-page: 1 year: 2011 ident: apjaca28abib60 publication-title: J. Stat. Software doi: 10.18637/jss.v039.i11 – volume: 347 start-page: 225 year: 1999 ident: apjaca28abib67 publication-title: A&A – volume: 250 start-page: 269 year: 2008 ident: apjaca28abib27 publication-title: SoPh doi: 10.1007/s11207-008-9226-4 – volume: 640 start-page: A78 year: 2020 ident: apjaca28abib42 publication-title: A&A doi: 10.1051/0004-6361/202037547 – volume: 19 start-page: 716 year: 1974 ident: apjaca28abib1 publication-title: ITAC doi: 10.1109/TAC.1974.1100705 – volume: 673 start-page: 532 year: 2008 ident: apjaca28abib71 publication-title: ApJ doi: 10.1086/524129 – volume: 150 start-page: 1 year: 1994 ident: apjaca28abib57 publication-title: SoPh doi: 10.1007/BF00712873 – volume: 327 start-page: 451 year: 1988 ident: apjaca28abib8 publication-title: ApJ doi: 10.1086/166206 – volume: 50 start-page: 296 year: 2011 ident: apjaca28abib32 publication-title: JApMC doi: 10.1175/2010JAMC2478.1 – volume: 23 start-page: 193 year: 1952 ident: apjaca28abib2 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729437 – volume: 155 start-page: 509 year: 1999 ident: apjaca28abib75 publication-title: PApGe doi: 10.1007/s000240050276 – start-page: 1874 year: 1955 ident: apjaca28abib63 – year: 1939 ident: apjaca28abib79 – volume: 529 start-page: 1026 year: 2000 ident: apjaca28abib53 publication-title: ApJ doi: 10.1086/308325 – volume: 137 start-page: 51 year: 1992 ident: apjaca28abib29 publication-title: SoPh doi: 10.1007/BF00146575 – volume: 506 start-page: 1429 year: 2009 ident: apjaca28abib16 publication-title: A&A doi: 10.1051/0004-6361/200912044 – volume: 771 start-page: 127 year: 2013 ident: apjaca28abib47 publication-title: ApJ doi: 10.1088/0004-637X/771/2/127 – start-page: 306 year: 1993 ident: apjaca28abib19 – volume: 45 start-page: 396 year: 2019 ident: apjaca28abib45 publication-title: AstL doi: 10.1134/S1063773719060045 – volume: 12 start-page: 1 year: 2015 ident: apjaca28abib76 publication-title: LRSP doi: 10.1007/lrsp-2015-1 – volume: 555 start-page: A33 year: 2013 ident: apjaca28abib9 publication-title: A&A doi: 10.1051/0004-6361/201321152 – volume: 148 start-page: 520 year: 2002 ident: apjaca28abib33 publication-title: GeoJI doi: 10.1046/j.1365-246x.2002.01594.x – volume: 51 start-page: 661 year: 2009 ident: apjaca28abib14 publication-title: SIAMR doi: 10.1137/070710111 – volume: 67 start-page: 33 year: 2015 ident: apjaca28abib46 publication-title: PASJ doi: 10.1093/pasj/psv002 – volume: 10 start-page: 313 year: 2002 ident: apjaca28abib51 publication-title: A&ARv doi: 10.1007/s001590100013 – volume: 32 start-page: 115 year: 1970 ident: apjaca28abib65 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1970.tb00821.x – start-page: 184 year: 1943 ident: apjaca28abib18 – volume: 723 start-page: 1006 year: 2010 ident: apjaca28abib81 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1006 – volume: 162 start-page: 129 year: 1995 ident: apjaca28abib54 publication-title: SoPh doi: 10.1007/BF00733429 – volume: 114 start-page: A07104 year: 2009 ident: apjaca28abib15 publication-title: JGRA doi: 10.1029/2009JA014299 – volume: 275 start-page: 3 year: 2012 ident: apjaca28abib49 publication-title: SoPh doi: 10.1007/s11207-011-9841-3 – volume: 834 start-page: 56 year: 2017 ident: apjaca28abib72 publication-title: ApJ doi: 10.3847/1538-4357/834/1/56 – volume: 269 start-page: 13 year: 2011 ident: apjaca28abib70 publication-title: SoPh doi: 10.1007/s11207-010-9656-7 – volume: 275 start-page: 207 year: 2012 ident: apjaca28abib55 publication-title: SoPh doi: 10.1007/s11207-011-9834-2 – year: 2016 ident: apjaca28abib66 doi: 10.1002/9781118445112.stat02711.pub2 – volume: 804 start-page: L28 year: 2015 ident: apjaca28abib69 publication-title: ApJL doi: 10.1088/2041-8205/804/2/L28 – year: 2020 ident: apjaca28abib17 – volume: 173 start-page: 427 year: 1997 ident: apjaca28abib20 publication-title: SoPh doi: 10.1023/A:1004971807172 – volume: 521 start-page: A56 year: 2010 ident: apjaca28abib61 publication-title: A&A doi: 10.1051/0004-6361/200913275 – volume: 55 start-page: 3 year: 1977 ident: apjaca28abib64 publication-title: SoPh doi: 10.1007/BF00150871 – volume: 24 start-page: 37 year: 1938 ident: apjaca28abib22 publication-title: Pulkovo Obs. Circ. – volume: 16 start-page: 3 year: 2019 ident: apjaca28abib73 publication-title: LRSP doi: 10.1007/s41116-019-0019-7 – volume: 211 start-page: 357 year: 2002 ident: apjaca28abib28 publication-title: SoPh doi: 10.1023/A:1022425402664 – volume: 144 start-page: 517 year: 2001 ident: apjaca28abib78 publication-title: GeoJI doi: 10.1046/j.1365-246x.2001.01348.x – volume: 12 start-page: 4 year: 2015 ident: apjaca28abib26 publication-title: LRSP doi: 10.1007/lrsp-2015-4 – volume: 40 start-page: 929 year: 2007 ident: apjaca28abib77 publication-title: AdSpR doi: 10.1016/j.asr.2007.01.087 – volume: 25 start-page: 83 year: 1987 ident: apjaca28abib82 publication-title: ARA&A doi: 10.1146/annurev.aa.25.090187.000503 – volume: 14 start-page: 163 year: 1986 ident: apjaca28abib3 publication-title: CoSka – volume: 65 start-page: 23 year: 2011 ident: apjaca28abib11 publication-title: Behav. Ecol. Sociobiol. doi: 10.1007/s00265-010-1029-6 – volume: 289 start-page: 3549 year: 2014 ident: apjaca28abib7 publication-title: SoPh doi: 10.1007/s11207-014-0529-3 – start-page: 660 year: 1992 ident: apjaca28abib50 – volume: 289 start-page: 1517 year: 2014 ident: apjaca28abib21 publication-title: SoPh doi: 10.1007/s11207-013-0425-2 – volume: 93 start-page: 181 year: 1984 ident: apjaca28abib37 publication-title: SoPh doi: 10.1007/BF00156663 – volume: 7 start-page: 40045 year: 2017 ident: apjaca28abib58 publication-title: NatSR doi: 10.1038/srep40045 – volume: 540 start-page: 583 year: 2000 ident: apjaca28abib52 publication-title: ApJ doi: 10.1086/309303 – volume: 148 start-page: 85 year: 1993 ident: apjaca28abib25 publication-title: SoPh doi: 10.1007/BF00675537 – start-page: 575 year: 1994 ident: apjaca28abib31 – volume: 275 start-page: 229 year: 2012 ident: apjaca28abib56 publication-title: SoPh doi: 10.1007/s11207-011-9842-2 – volume: 249 start-page: 167 year: 2008 ident: apjaca28abib74 publication-title: SoPh doi: 10.1007/s11207-008-9174-z – volume: 15 start-page: 40 year: 1976 ident: apjaca28abib39 publication-title: ApOpt doi: 10.1364/AO.15.000040 – year: 1909 ident: apjaca28abib43 – volume: 296 start-page: 133 year: 2021 ident: apjaca28abib38 publication-title: SoPh doi: 10.1007/s11207-021-01853-x – volume: 485 start-page: 478 year: 2012 ident: apjaca28abib41 publication-title: Natur doi: 10.1038/nature11063 – volume: 121 start-page: 491 year: 1955 ident: apjaca28abib48 publication-title: ApJ doi: 10.1086/146010 – volume: 800 start-page: 48 year: 2015 ident: apjaca28abib44 publication-title: ApJ doi: 10.1088/0004-637X/800/1/48 – volume: 584 start-page: 1107 year: 2003 ident: apjaca28abib24 publication-title: ApJ doi: 10.1086/345792 – volume: 76 start-page: 211 year: 1982 ident: apjaca28abib30 publication-title: SoPh doi: 10.1007/BF00170984 – start-page: 210 year: 2002 ident: apjaca28abib10 – volume: 515 start-page: L39 year: 1999 ident: apjaca28abib12 publication-title: ApJL doi: 10.1086/311962 – year: 1907 ident: apjaca28abib13 – volume: 107 start-page: 1319 year: 2002 ident: apjaca28abib4 publication-title: JGRA doi: 10.1029/2001JA000503 – volume: 38A start-page: 158 year: 2001 ident: apjaca28abib34 publication-title: J. Appl. Probab. doi: 10.1017/S0021900200112756 – volume: 4 start-page: 1 year: 1953 ident: apjaca28abib35 publication-title: BAICz – volume: 11 start-page: 153 year: 2003 ident: apjaca28abib62 publication-title: A&ARv doi: 10.1007/s00159-003-0018-4 – volume: 69 start-page: 41 year: 2017 ident: apjaca28abib40 publication-title: PASJ doi: 10.1093/pasj/psx013 – start-page: 37 year: 2018 ident: apjaca28abib23 – volume: 30 start-page: 39 year: 1989 ident: apjaca28abib80 publication-title: Stat. Pap. doi: 10.1007/BF02924307 |
| SSID | ssj0004299 |
| Score | 2.4456773 |
| Snippet | We investigated the probability distributions of sunspot area and magnetic flux by using data from the Royal Greenwich Observatory and USAF/NOAA. We... |
| SourceID | doaj proquest crossref iop |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10 |
| SubjectTerms | Astrophysics Distribution functions Magnetic flux Power law Probability distribution Probability distribution functions Solar activity Solar magnetic fields Solar photosphere Starspots Statistical analysis Sunspots Weibull distribution |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFH-IVvBirVV27VZy0EIP4yaTmSTDnqx26UHtgop7G5JMIoLuyn6I_ve-TMaVUpFCb2F4k4T3nTeT3wPY05XPKbMssUaZJEs1TYqM-yQthKkE9UZFENcTeXamhsNisAS9xV2Y8X3j-g9wGIGCIwuDfXP0pd3aRjHKy662OlWYHK1whWEclfk3v3q9FJkWTe6bJYLLYfxG-eYMf8SkGrofIw0u_5d_roNO_-N_bXcD1ptckxxG0k-w5Eab0Dqchur3-O6JfCP1OBY3ppuwOoijz9AbTNDO6_9mn8hxwNZt2mKRPsbBWlXJ2JPzeQBGn5FTfT0KlyFJ_3b-uAWX_Z8XR7-Sps1CYjEbmyXWo7fMpXYyD83QRW6FK4yiVmtFPW7cmUzqytJUMyYN1U5zU7hccUyFUJx8G5ZH45FrAUF7dnjgdlT5KjNOK8-ULgrrwmR4EGxD94XRpW0wyEMrjNsSzyKBW2XgVhm4VUZuteH74o37iL_xDu2PILsFXUDOrh-gWMpGLKVgFUcltBXTqCImM0IrzIKpTyuWUinbsI-SLBtLnr6zWOdFN16JUylkwJRjYucfp_kCa6GBfSzqdGB5Npm7r_DBPsxuppPdWqOfAaNu9D8 priority: 102 providerName: IOP Publishing |
| Title | Probability Distribution Functions of Sunspot Magnetic Flux |
| URI | https://iopscience.iop.org/article/10.3847/1538-4357/aca28a https://www.proquest.com/docview/2767239316 https://doaj.org/article/61d3d60cd1a042b4b6a81390f2d12077 |
| Volume | 943 |
| WOSCitedRecordID | wos000915835900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Journals Open Access customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA4iCl7EFetGDip4GJrMlgyeqnbw4FJQ0duQZBIp1FY6rdiLv92XZOqCUC9eQhiSmczLW7N8D6EDUZqEUEUDJbkM4lCQIIsjE4RZKsuUGMk9iOslu77mj49Z51uqL3smzMMDe8I1U1pG0EmVVAB_yVimgoPXQkxY0pAwd4-csGwaTE1vRIKW9ZuSEajfphNrcAxYUygR8p9GyGH1g2npDl5-KWRnZfIVtFy7h7jlh7WK5nR_DW21KrtgPXie4CPs6n49olpDix1fW0cnnSGIpjvqOsHnFg63zmSFczBdjrvwwODbscUyH-Er8dS39xdx3hu_baD7vH13dhHUmRECBQ7UKFAGFFzChGaJzV-eJirVmeRECcGJgf_UMmaiVCQUlDJJhBaRzHTCI_BeYAaiTTTfH_T1FsIgghpiZE24KWOpBTeUiyxT2r4MYrcGak5JVagaNtxmr-gVED5Y4haWuIUlbuGJ20DHnz1ePGTGjLanlvqf7SzYtXsALFDULFD8xQINdAhzV9TCV8342O50dr8ahyxlFgaOptv_MZYdtGQT0vtFml00PxqO9R5aUK-jbjXcd0wK5dV7G8qb6OEDQd3qmA |
| linkProvider | Directory of Open Access Journals |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD5o1eJL1ap0bdU8qODDuMlckgx9aq2DYl0XVNy3kGQSKdTdZS9i_70nl7aIUgTfwnAmE849J5PvADzTvW8os6ywRpqiLjUt2rryRdly03PqjUwgrsdiNJKTSTvOfU7jXZjZPLv-VzhMQMGJhcG-K_Slw2ijGOXFUFtdSj2c9_463Ag4JUGtP1ZfLy9Glm3Of-uCV2KSzin_OstvcSnC92O0wSX84aNj4Onu_PeS78JWzjnJQSK_B9fcdBt2DpahCj77fkZekDhORY7lNtwap9F92B8v0N7j_7Nn5Chg7Ob2WKTDeBhVlsw8-bQOAOkr8kF_m4ZLkaQ7Xf98AF-6N59fvy1yu4XCYla2KqxHr9kI7UQTmqLzxnLXGkmt1pJ6XLwztdC9paVmTBiqna5M6xpZYUqEYq0ewsZ0NnU7QNCuHW68HZW-r43T0jOp29a6MBluCAcwPGe2shmLPLTEOFW4JwkcU4FjKnBMJY4N4OXFG_OEw3EF7WGQ3wVdQNCOD1A0KotGcdZXqIy2ZxrVxNSGa4nZMPVlz0oqxACeozRVtujlFR_bO9ePS-JScBGw5Rh_9I_TPIXN8VGnjt-N3u_C7dDTPtV59mBjtVi7x3DT_lidLBdPooL_AkDn-ac |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probability+Distribution+Functions+of+Sunspot+Magnetic+Flux&rft.jtitle=The+Astrophysical+journal&rft.au=Sakurai%2C+Takashi&rft.au=Toriumi%2C+Shin&rft.date=2023-01-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=943&rft.issue=1&rft.spage=10&rft_id=info:doi/10.3847%2F1538-4357%2Faca28a&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_aca28a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |