A Deep-learning Anomaly-detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anticoincidence System
Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other fac...
Uložené v:
| Vydané v: | The Astrophysical journal Ročník 945; číslo 2; s. 106 - 117 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
The American Astronomical Society
01.03.2023
IOP Publishing |
| Predmet: | |
| ISSN: | 0004-637X, 1538-4357 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated
p
-value distribution, using more than 10
7
background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline. |
|---|---|
| AbstractList | Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p-value distribution, using more than 107 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline. Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p -value distribution, using more than 10 7 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline. Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p -value distribution, using more than 10 ^7 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline. |
| Author | Di Piano, A. Parmiggiani, N. Bulgarelli, A. Baroncelli, L. Addis, A. Pittori, C. Ursi, A. Aboudan, A. Tavani, M. Macaluso, A. Fioretti, V. |
| Author_xml | – sequence: 1 givenname: N. orcidid: 0000-0002-4535-5329 surname: Parmiggiani fullname: Parmiggiani, N. organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy – sequence: 2 givenname: A. orcidid: 0000-0001-6347-0649 surname: Bulgarelli fullname: Bulgarelli, A. organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy – sequence: 3 givenname: A. orcidid: 0000-0002-7253-9721 surname: Ursi fullname: Ursi, A. organization: INAF/IAPS Roma , via del Fosso del Cavaliere 100, I-00133 Roma, Italy – sequence: 4 givenname: A. orcidid: 0000-0002-1348-250X surname: Macaluso fullname: Macaluso, A. organization: German Research Center for Artificial Intelligence (DFKI) , D-66123 Saarbruecken, Germany – sequence: 5 givenname: A. orcidid: 0000-0002-9894-7491 surname: Di Piano fullname: Di Piano, A. organization: Università degli Studi di Modena e Reggio Emilia , DIEF, Via Pietro Vivarelli 10, I-41125 Modena, Italy – sequence: 6 givenname: V. orcidid: 0000-0002-6082-5384 surname: Fioretti fullname: Fioretti, V. organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy – sequence: 7 givenname: A. orcidid: 0000-0002-8290-2184 surname: Aboudan fullname: Aboudan, A. organization: CISAS G. Colombo University of Padova , via Venezia 15, I-35131 Padova, Italy – sequence: 8 givenname: L. orcidid: 0000-0002-9215-4992 surname: Baroncelli fullname: Baroncelli, L. organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy – sequence: 9 givenname: A. orcidid: 0000-0002-0886-8045 surname: Addis fullname: Addis, A. organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy – sequence: 10 givenname: M. orcidid: 0000-0003-2893-1459 surname: Tavani fullname: Tavani, M. organization: Università degli Studi di Roma ’Tor Vergata’ , via della Ricerca Scientifica 1, I-00133 Roma, Italy – sequence: 11 givenname: C. orcidid: 0000-0001-6661-9779 surname: Pittori fullname: Pittori, C. organization: ASI Space Science Data Center (SSDC) , Via del Politecnico snc, I-00133 Roma, Italy |
| BookMark | eNp9kcFrFDEYxYNUcFu9ewx4dWwmmUxmjmut68KKUBW8hcw3X9oss8maZA9D_3lnOq2CoKeQx_s9Ht87J2c-eCTkdcneiaZSl6UUTVEJqS4NdIaZZ2T1WzojK8ZYVdRC_XhBzlPaz1_etityv6YfEI_FgCZ652_p2oeDGcaix4yQXfD0M-a70NMc6LZHn50d6cYcDqa4MSN9f4opJ-o8zXdIb0zGwwTGRIN9UNab7e56Cs0OgvPgpgRA-nVMk_EleW7NkPDV43tBvn-8_nb1qdh92Wyv1rsCqrLOBUCHHCSUHEAqZrmy0IEAgbXsu1YxLG3Xd2irrjW8A8W4aBSKpmS1sNyKC7Jdcvtg9voY3cHEUQfj9IMQ4q02cSo4oG6gRQHcKACsFBNNq7pKcsH6XjVG4pT1Zsk6xvDzhCnrfThFP9XXXDW1lJVkYnLViwtiSCmi1eCyma-Zo3GDLpmeR9PzQnpeSC-jTSD7C3yq-x_k7YK4cPxT5p_2X0lDq-4 |
| CitedBy_id | crossref_primary_10_1016_j_ascom_2023_100726 crossref_primary_10_3847_1538_4365_ad2de5 crossref_primary_10_3847_1538_4365_ada0b0 crossref_primary_10_3390_universe10020057 crossref_primary_10_1134_S1063773725700136 crossref_primary_10_3847_1538_4357_ad64cd crossref_primary_10_3847_1538_4365_acd4b6 |
| Cites_doi | 10.1016/j.ascom.2022.100570 10.1109/ITNEC52019.2021.9587207 10.1007/s10686-019-09644-w 10.22323/1.395.0933 10.3847/0004-637X/829/1/7 10.1145/3439950 10.1086/186969 10.1016/j.nima.2005.10.016 10.21629/JSEE.2017.01.18 10.3847/1538-4357/ac3df7 10.1109/ACCESS.2018.2886457 10.1016/j.nima.2008.01.023 10.1007/s11704-015-4478-2 10.1051/0004-6361/200810527 10.1038/nature14539 10.3847/1538-4357/abfa15 10.3847/1538-4357/aaf28f 10.1007/s12210-019-00857-x 10.1016/j.asoc.2021.107751 |
| ContentType | Journal Article |
| Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
| DOI | 10.3847/1538-4357/acba0a |
| DatabaseName | Institute of Physics Journals Open Access IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1538-4357 |
| ExternalDocumentID | oai_doaj_org_article_8c9e3c2a7cce4703897b45230dd78a5e 10_3847_1538_4357_acba0a apjacba0a |
| GrantInformation_xml | – fundername: Agenzia Spaziale Italiana (ASI) grantid: I/028/12/6 and I/028/12.7-2022 funderid: https://doi.org/10.13039/501100003981 |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW 2WC AAYXX AEINN CITATION 7TG 8FD H8D KL. L7M |
| ID | FETCH-LOGICAL-c416t-ccbe2c5c12cc570f27fcbc3c3e65db970e1fbdbef4b9a2bc702387e381063f2f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000948441600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-637X |
| IngestDate | Fri Oct 03 12:44:39 EDT 2025 Wed Aug 13 11:35:31 EDT 2025 Tue Nov 18 22:34:20 EST 2025 Sat Nov 29 05:43:54 EST 2025 Sun Aug 18 15:10:26 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-ccbe2c5c12cc570f27fcbc3c3e65db970e1fbdbef4b9a2bc702387e381063f2f3 |
| Notes | High-Energy Phenomena and Fundamental Physics AAS40663 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8290-2184 0000-0002-7253-9721 0000-0003-2893-1459 0000-0001-6661-9779 0000-0001-6347-0649 0000-0002-9215-4992 0000-0002-4535-5329 0000-0002-6082-5384 0000-0002-1348-250X 0000-0002-9894-7491 0000-0002-0886-8045 |
| OpenAccessLink | https://doaj.org/article/8c9e3c2a7cce4703897b45230dd78a5e |
| PQID | 2786554503 |
| PQPubID | 4562441 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_3847_1538_4357_acba0a iop_journals_10_3847_1538_4357_acba0a doaj_primary_oai_doaj_org_article_8c9e3c2a7cce4703897b45230dd78a5e proquest_journals_2786554503 crossref_citationtrail_10_3847_1538_4357_acba0a |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | The Astrophysical journal |
| PublicationTitleAbbrev | APJ |
| PublicationTitleAlternate | Astrophys. J |
| PublicationYear | 2023 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Zhao (apjacba0abib20) 2017; 28 Ursi (apjacba0abib17) 2022; 925 Lien (apjacba0abib6) 2016; 829 Tavani (apjacba0abib15) 2009; 502 Munir (apjacba0abib7) 2019; 7 Kingma (apjacba0abib3) 2015 Zhang (apjacba0abib19) 2021 Ursi (apjacba0abib18) 2019; 871 Thill (apjacba0abib16) 2021; 112 Parmiggiani (apjacba0abib11) 2021; 37 Goodfellow (apjacba0abib2) 2016 Pang (apjacba0abib8) 2021; 54 Bulgarelli (apjacba0abib1) 2019; 48 Lecun (apjacba0abib5) 2015; 521 The AGILE-SSDC Team (apjacba0abib13) 2019; 30 Parmiggiani (apjacba0abib9) 2022; 39 Zheng (apjacba0abib21) 2016; 10 Perotti (apjacba0abib12) 2006; 556 Parmiggiani (apjacba0abib10) 2021; 914 Tavani (apjacba0abib14) 2008; 588 Kouveliotou (apjacba0abib4) 1993; 413 |
| References_xml | – volume: 39 start-page: 100570 year: 2022 ident: apjacba0abib9 publication-title: A&C doi: 10.1016/j.ascom.2022.100570 – start-page: 571 year: 2021 ident: apjacba0abib19 doi: 10.1109/ITNEC52019.2021.9587207 – volume: 48 start-page: 199 year: 2019 ident: apjacba0abib1 publication-title: ExA doi: 10.1007/s10686-019-09644-w – volume: 37 start-page: 933 year: 2021 ident: apjacba0abib11 publication-title: Proc. ICRC (Berlin) doi: 10.22323/1.395.0933 – volume: 829 start-page: 7 year: 2016 ident: apjacba0abib6 publication-title: ApJ doi: 10.3847/0004-637X/829/1/7 – volume: 54 start-page: 1 year: 2021 ident: apjacba0abib8 publication-title: ACM Comput. Surv. doi: 10.1145/3439950 – volume: 413 start-page: L101 year: 1993 ident: apjacba0abib4 publication-title: ApJL doi: 10.1086/186969 – year: 2016 ident: apjacba0abib2 – volume: 556 start-page: 228 year: 2006 ident: apjacba0abib12 publication-title: NIMPA doi: 10.1016/j.nima.2005.10.016 – year: 2015 ident: apjacba0abib3 – volume: 28 start-page: 162 year: 2017 ident: apjacba0abib20 publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 – volume: 925 start-page: 152 year: 2022 ident: apjacba0abib17 publication-title: ApJ doi: 10.3847/1538-4357/ac3df7 – volume: 7 start-page: 1991 year: 2019 ident: apjacba0abib7 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886457 – volume: 588 start-page: 52 year: 2008 ident: apjacba0abib14 publication-title: NIMPA doi: 10.1016/j.nima.2008.01.023 – volume: 10 start-page: 96 year: 2016 ident: apjacba0abib21 publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-4478-2 – volume: 502 start-page: 995 year: 2009 ident: apjacba0abib15 publication-title: A&A doi: 10.1051/0004-6361/200810527 – volume: 521 start-page: 436 year: 2015 ident: apjacba0abib5 publication-title: Natur doi: 10.1038/nature14539 – volume: 914 start-page: 67 year: 2021 ident: apjacba0abib10 publication-title: ApJ doi: 10.3847/1538-4357/abfa15 – volume: 871 start-page: 27 year: 2019 ident: apjacba0abib18 publication-title: ApJ doi: 10.3847/1538-4357/aaf28f – volume: 30 start-page: 217 year: 2019 ident: apjacba0abib13 publication-title: RLSFN doi: 10.1007/s12210-019-00857-x – volume: 112 year: 2021 ident: apjacba0abib16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107751 |
| SSID | ssj0004299 |
| Score | 2.4605606 |
| Snippet | Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed... |
| SourceID | doaj proquest crossref iop |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106 |
| SubjectTerms | Anomalies Artificial neural networks Astronomy Astrophysics Charged particles Convolutional neural networks Data acquisition Deep learning Gamma ray astronomy Gamma ray bursts Gamma rays Gamma-ray detectors Identification methods Modelling Neural networks Real time Space missions Time series Time series analysis |
| SummonAdditionalLinks | – databaseName: Institute of Physics Journals Open Access dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1daxQxMJRWwRerVelplTyo4EO8bZLdbPBpq20Vai3Fj3tbktlECr3do7sVDv-8k2R7RZQi-BbCZBJmJjOzs5kZQp5njhvbSM0yVwomeSaZKSBjXnMvlDfGx2DO1yN1fFzOZvpkjbxZ5cJ0i1H1v8ZhKhScSBjut0BdOo13FK28mhqwJkPnaEOUaMZRmD-Jb9dJkVyPvq9khVCz9I_yrxh-s0mxdD9aGtz-D_0cjc7B5n8d9x65O_qatEqg98maa7fIdtWH6Hc3X9KXNI5TcKPfIrdP0ugB-VnRd84t2NhT4jutcIE5X7LGDfHtVks_xtbTdOhoyvX1S3po5nPDTs2S7l2iU9nTs5aif0lP0Z-dh2c3Pe18nKkOPxztI1I8WBeC_bGxKU3V0x-SLwf7n9--Z2ObBgbozQ0MwDoOOexygFxlnisPFgQIV-SN1Spzu9421nlpteEWVHATlAulxQrhUSQekfW2a902oYILKxshClMoCbkxGnFa0DkiyIySEzK9YlQNYw3z0ErjvMZvmUDtOlC7DtSuE7Un5NVqxSLV77gBdi_wfgUXKm_HCWRrPbK1LkE7AdwoACdVKE-orAyh9aZRpcndhLxASahHTdDfsNnOlWxdA3MV8oRlnonH_4jmCbnDkZ7pVdwOWR8uLt1Tcgt-DGf9xbN4I34BtmUNHg priority: 102 providerName: IOP Publishing |
| Title | A Deep-learning Anomaly-detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anticoincidence System |
| URI | https://iopscience.iop.org/article/10.3847/1538-4357/acba0a https://www.proquest.com/docview/2786554503 https://doaj.org/article/8c9e3c2a7cce4703897b45230dd78a5e |
| Volume | 945 |
| WOSCitedRecordID | wos000948441600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SFHwRrUpPq-RBBR_CpUl2c3m86rUKbS3Fj74tyWwiB93do7sVDsG_3UmyVxWhvvgSQshmQ2YyM5lMfkPIC-6FdbUyjPuZZEpwxWwJnAUjgtTB2pCcOZ-P9MnJ7PzcnP6W6ivGhGV44Lxw0xkYL0FYDeCVjnBw2qnoyqxrPbOFj9KXa7M5TG1eRKKUzZeSEsXvNG1rNAz01IKz_E8llLD6UbUsu9VfAjlpmYP75N5oHtJ5ntYDcsu322Rn3keHddes6Sua6tkf0W-TO6e59pB8n9O33q_YmAbiK8WDfWMv1qz2Qwq3aulxyhZNh47m57lhTQ9t01h2Ztd0_wrtwJ4uW4omIT1DE7SJkTI97UJqmR--P1rgoDixLvrnUy5SmgHPH5FPB4uPb96xMbMCAzTABgbgvIAC9gRAoXkQOoADCdKXRe2M5n4vuNr5oJyxwoGOml37iAZWyoBUfEy22q71O4RKIZ2qpSxtqRUU1hoc04EpcAButZqQ6WapKxhhx2P2i4sKjx-ROFUkThWJU2XiTMjr6y9WGXLjhr77kXrX_SJYdmpAFqpGFqr-xUIT8hJpX42bt7_hZ7sb7vjVWej4tFcVXD75H3N5Su7GhPY5ym2XbA2XV_4ZuQ3fhmV_-TwxOZbHPxZYfpBffgJjxgQH |
| linkProvider | Directory of Open Access Journals |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9gfIgXBgO0gw3yAEg8hOuStLk-dh83Jo7jNPFxb1XiJmjSrj2tHdKJfx4n6TZNoAmJt6hy3MhxbNeNfybkdWK5NpXMWWJHgkmeSKYzSJjLuRPKae1CMufbRE2no_k8n_V9TkMtTLPsTf97HEag4ChCf74F2tJhOKPo5dVQg9GJHi4rd5vc8TglXq0_i-9XhZE87-NfyTKh5vE_5V-5XPNLAb4fvQ0u4Q8bHRzPeP2_l_yIPOxjTlpE8sfklq03yGbR-ix4s1jRtzSMY5Kj3SD3ZnH0hPwq6L61S9b3lvhBC5ygT1essl24w1XTT6EFNe0aGmt-3Yoe6sVCs2O9orvnGFy29KSmGGfSY4xrF_76TUsbF54Uh0eTA2SKC2t80j80OKURRf0p-To--LL3gfXtGhhgVNcxAGM5pLDDAVKVOK4cGBAgbJZWJleJ3XGmMtZJk2tuQPlwQVkPMZYJh6rxjKzVTW03CRVcGFkJkelMSUi1zpGngTxFBolWckCGF5tVQo9l7ltqnJb4TeMlXnqJl17iZZT4gLy7nLGMOB430O76_b-k8wjc4QFubdlvbTmC3ArgWgFYqTxMoTLSp9irSo10agfkDWpD2VuE9oaXbV3o1xUxV75eWKaJeP6PbF6R-7P9cTk5mn58QR5wFG28KLdF1rqzc7tN7sLP7qQ9exkOyG8d9hKG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-learning+Anomaly-detection+Method+to+Identify+Gamma-Ray+Bursts+in+the+Ratemeters+of+the+AGILE+Anticoincidence+System&rft.jtitle=The+Astrophysical+journal&rft.au=Parmiggiani%2C+N.&rft.au=Bulgarelli%2C+A.&rft.au=Ursi%2C+A.&rft.au=Macaluso%2C+A.&rft.date=2023-03-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=945&rft.issue=2&rft.spage=106&rft_id=info:doi/10.3847%2F1538-4357%2Facba0a&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_acba0a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |