A Deep-learning Anomaly-detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anticoincidence System

Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal Jg. 945; H. 2; S. 106 - 117
Hauptverfasser: Parmiggiani, N., Bulgarelli, A., Ursi, A., Macaluso, A., Di Piano, A., Fioretti, V., Aboudan, A., Baroncelli, L., Addis, A., Tavani, M., Pittori, C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia The American Astronomical Society 01.03.2023
IOP Publishing
Schlagworte:
ISSN:0004-637X, 1538-4357
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p -value distribution, using more than 10 7 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline.
AbstractList Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p-value distribution, using more than 107 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline.
Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p -value distribution, using more than 10 7 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline.
Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p -value distribution, using more than 10 ^7 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline.
Author Di Piano, A.
Parmiggiani, N.
Bulgarelli, A.
Baroncelli, L.
Addis, A.
Pittori, C.
Ursi, A.
Aboudan, A.
Tavani, M.
Macaluso, A.
Fioretti, V.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0002-4535-5329
  surname: Parmiggiani
  fullname: Parmiggiani, N.
  organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy
– sequence: 2
  givenname: A.
  orcidid: 0000-0001-6347-0649
  surname: Bulgarelli
  fullname: Bulgarelli, A.
  organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy
– sequence: 3
  givenname: A.
  orcidid: 0000-0002-7253-9721
  surname: Ursi
  fullname: Ursi, A.
  organization: INAF/IAPS Roma , via del Fosso del Cavaliere 100, I-00133 Roma, Italy
– sequence: 4
  givenname: A.
  orcidid: 0000-0002-1348-250X
  surname: Macaluso
  fullname: Macaluso, A.
  organization: German Research Center for Artificial Intelligence (DFKI) , D-66123 Saarbruecken, Germany
– sequence: 5
  givenname: A.
  orcidid: 0000-0002-9894-7491
  surname: Di Piano
  fullname: Di Piano, A.
  organization: Università degli Studi di Modena e Reggio Emilia , DIEF, Via Pietro Vivarelli 10, I-41125 Modena, Italy
– sequence: 6
  givenname: V.
  orcidid: 0000-0002-6082-5384
  surname: Fioretti
  fullname: Fioretti, V.
  organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy
– sequence: 7
  givenname: A.
  orcidid: 0000-0002-8290-2184
  surname: Aboudan
  fullname: Aboudan, A.
  organization: CISAS G. Colombo University of Padova , via Venezia 15, I-35131 Padova, Italy
– sequence: 8
  givenname: L.
  orcidid: 0000-0002-9215-4992
  surname: Baroncelli
  fullname: Baroncelli, L.
  organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy
– sequence: 9
  givenname: A.
  orcidid: 0000-0002-0886-8045
  surname: Addis
  fullname: Addis, A.
  organization: INAF/OAS Bologna , Via P. Gobetti 93/3, I-40129 Bologna, Italy
– sequence: 10
  givenname: M.
  orcidid: 0000-0003-2893-1459
  surname: Tavani
  fullname: Tavani, M.
  organization: Università degli Studi di Roma ’Tor Vergata’ , via della Ricerca Scientifica 1, I-00133 Roma, Italy
– sequence: 11
  givenname: C.
  orcidid: 0000-0001-6661-9779
  surname: Pittori
  fullname: Pittori, C.
  organization: ASI Space Science Data Center (SSDC) , Via del Politecnico snc, I-00133 Roma, Italy
BookMark eNp9kcFrFDEYxYNUcFu9ewx4dWwmmUxmjmut68KKUBW8hcw3X9oss8maZA9D_3lnOq2CoKeQx_s9Ht87J2c-eCTkdcneiaZSl6UUTVEJqS4NdIaZZ2T1WzojK8ZYVdRC_XhBzlPaz1_etityv6YfEI_FgCZ652_p2oeDGcaix4yQXfD0M-a70NMc6LZHn50d6cYcDqa4MSN9f4opJ-o8zXdIb0zGwwTGRIN9UNab7e56Cs0OgvPgpgRA-nVMk_EleW7NkPDV43tBvn-8_nb1qdh92Wyv1rsCqrLOBUCHHCSUHEAqZrmy0IEAgbXsu1YxLG3Xd2irrjW8A8W4aBSKpmS1sNyKC7Jdcvtg9voY3cHEUQfj9IMQ4q02cSo4oG6gRQHcKACsFBNNq7pKcsH6XjVG4pT1Zsk6xvDzhCnrfThFP9XXXDW1lJVkYnLViwtiSCmi1eCyma-Zo3GDLpmeR9PzQnpeSC-jTSD7C3yq-x_k7YK4cPxT5p_2X0lDq-4
CitedBy_id crossref_primary_10_1016_j_ascom_2023_100726
crossref_primary_10_3847_1538_4365_ad2de5
crossref_primary_10_3847_1538_4365_ada0b0
crossref_primary_10_3390_universe10020057
crossref_primary_10_1134_S1063773725700136
crossref_primary_10_3847_1538_4357_ad64cd
crossref_primary_10_3847_1538_4365_acd4b6
Cites_doi 10.1016/j.ascom.2022.100570
10.1109/ITNEC52019.2021.9587207
10.1007/s10686-019-09644-w
10.22323/1.395.0933
10.3847/0004-637X/829/1/7
10.1145/3439950
10.1086/186969
10.1016/j.nima.2005.10.016
10.21629/JSEE.2017.01.18
10.3847/1538-4357/ac3df7
10.1109/ACCESS.2018.2886457
10.1016/j.nima.2008.01.023
10.1007/s11704-015-4478-2
10.1051/0004-6361/200810527
10.1038/nature14539
10.3847/1538-4357/abfa15
10.3847/1538-4357/aaf28f
10.1007/s12210-019-00857-x
10.1016/j.asoc.2021.107751
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/acba0a
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_8c9e3c2a7cce4703897b45230dd78a5e
10_3847_1538_4357_acba0a
apjacba0a
GrantInformation_xml – fundername: Agenzia Spaziale Italiana (ASI)
  grantid: I/028/12/6 and I/028/12.7-2022
  funderid: https://doi.org/10.13039/501100003981
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
2WC
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-ccbe2c5c12cc570f27fcbc3c3e65db970e1fbdbef4b9a2bc702387e381063f2f3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000948441600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-637X
IngestDate Fri Oct 03 12:44:39 EDT 2025
Wed Aug 13 11:35:31 EDT 2025
Tue Nov 18 22:34:20 EST 2025
Sat Nov 29 05:43:54 EST 2025
Sun Aug 18 15:10:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-ccbe2c5c12cc570f27fcbc3c3e65db970e1fbdbef4b9a2bc702387e381063f2f3
Notes High-Energy Phenomena and Fundamental Physics
AAS40663
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8290-2184
0000-0002-7253-9721
0000-0003-2893-1459
0000-0001-6661-9779
0000-0001-6347-0649
0000-0002-9215-4992
0000-0002-4535-5329
0000-0002-6082-5384
0000-0002-1348-250X
0000-0002-9894-7491
0000-0002-0886-8045
OpenAccessLink https://doaj.org/article/8c9e3c2a7cce4703897b45230dd78a5e
PQID 2786554503
PQPubID 4562441
PageCount 12
ParticipantIDs crossref_primary_10_3847_1538_4357_acba0a
iop_journals_10_3847_1538_4357_acba0a
doaj_primary_oai_doaj_org_article_8c9e3c2a7cce4703897b45230dd78a5e
proquest_journals_2786554503
crossref_citationtrail_10_3847_1538_4357_acba0a
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Zhao (apjacba0abib20) 2017; 28
Ursi (apjacba0abib17) 2022; 925
Lien (apjacba0abib6) 2016; 829
Tavani (apjacba0abib15) 2009; 502
Munir (apjacba0abib7) 2019; 7
Kingma (apjacba0abib3) 2015
Zhang (apjacba0abib19) 2021
Ursi (apjacba0abib18) 2019; 871
Thill (apjacba0abib16) 2021; 112
Parmiggiani (apjacba0abib11) 2021; 37
Goodfellow (apjacba0abib2) 2016
Pang (apjacba0abib8) 2021; 54
Bulgarelli (apjacba0abib1) 2019; 48
Lecun (apjacba0abib5) 2015; 521
The AGILE-SSDC Team (apjacba0abib13) 2019; 30
Parmiggiani (apjacba0abib9) 2022; 39
Zheng (apjacba0abib21) 2016; 10
Perotti (apjacba0abib12) 2006; 556
Parmiggiani (apjacba0abib10) 2021; 914
Tavani (apjacba0abib14) 2008; 588
Kouveliotou (apjacba0abib4) 1993; 413
References_xml – volume: 39
  start-page: 100570
  year: 2022
  ident: apjacba0abib9
  publication-title: A&C
  doi: 10.1016/j.ascom.2022.100570
– start-page: 571
  year: 2021
  ident: apjacba0abib19
  doi: 10.1109/ITNEC52019.2021.9587207
– volume: 48
  start-page: 199
  year: 2019
  ident: apjacba0abib1
  publication-title: ExA
  doi: 10.1007/s10686-019-09644-w
– volume: 37
  start-page: 933
  year: 2021
  ident: apjacba0abib11
  publication-title: Proc. ICRC (Berlin)
  doi: 10.22323/1.395.0933
– volume: 829
  start-page: 7
  year: 2016
  ident: apjacba0abib6
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/1/7
– volume: 54
  start-page: 1
  year: 2021
  ident: apjacba0abib8
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3439950
– volume: 413
  start-page: L101
  year: 1993
  ident: apjacba0abib4
  publication-title: ApJL
  doi: 10.1086/186969
– year: 2016
  ident: apjacba0abib2
– volume: 556
  start-page: 228
  year: 2006
  ident: apjacba0abib12
  publication-title: NIMPA
  doi: 10.1016/j.nima.2005.10.016
– year: 2015
  ident: apjacba0abib3
– volume: 28
  start-page: 162
  year: 2017
  ident: apjacba0abib20
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 925
  start-page: 152
  year: 2022
  ident: apjacba0abib17
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac3df7
– volume: 7
  start-page: 1991
  year: 2019
  ident: apjacba0abib7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– volume: 588
  start-page: 52
  year: 2008
  ident: apjacba0abib14
  publication-title: NIMPA
  doi: 10.1016/j.nima.2008.01.023
– volume: 10
  start-page: 96
  year: 2016
  ident: apjacba0abib21
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-4478-2
– volume: 502
  start-page: 995
  year: 2009
  ident: apjacba0abib15
  publication-title: A&A
  doi: 10.1051/0004-6361/200810527
– volume: 521
  start-page: 436
  year: 2015
  ident: apjacba0abib5
  publication-title: Natur
  doi: 10.1038/nature14539
– volume: 914
  start-page: 67
  year: 2021
  ident: apjacba0abib10
  publication-title: ApJ
  doi: 10.3847/1538-4357/abfa15
– volume: 871
  start-page: 27
  year: 2019
  ident: apjacba0abib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf28f
– volume: 30
  start-page: 217
  year: 2019
  ident: apjacba0abib13
  publication-title: RLSFN
  doi: 10.1007/s12210-019-00857-x
– volume: 112
  year: 2021
  ident: apjacba0abib16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107751
SSID ssj0004299
Score 2.4605606
Snippet Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms Anomalies
Artificial neural networks
Astronomy
Astrophysics
Charged particles
Convolutional neural networks
Data acquisition
Deep learning
Gamma ray astronomy
Gamma ray bursts
Gamma rays
Gamma-ray detectors
Identification methods
Modelling
Neural networks
Real time
Space missions
Time series
Time series analysis
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA6lVfDFalV6bZU8qOBDvL1k95LFp622VdBaiuK9LckkkUJv9-huC0f_eSfJ9oooRfBlCSG_mJlkvmSTbwh5iRjc5sIULDCBsFzbjCktgUnlSlEqbrw3MdiEPD5Ws1l5skberd7CtIth6X-LyUQUnEQY5rfAtXQc5yh6eTnWYHSG4GhDKHTjaMxfxY_bR5G8HLBvzqZCztI_yr-28JtPitT96Gmw-z_W5-h0Djf_a7iPyMMBa9IqFX1M1lyzRbarLpx-t_MlfU1jOh1udFvk_klKPSHXFf3g3IINMSV-0gor6PMls66Pd7ca-iWGnqZ9S9NbX7-kR3o-1-xUL-n-JYLKjp41FPElPUU8Ow_Xbjra-phTHX36fICN4sDacNgfA5vSxJ7-lHw_PPj2_iMbwjQwQDTXMwDjOBQw4QCFzDyXHgwIEG5aWFPKzE28scb53JSaG5ABJkgXqMWmwnMvnpH1pm3cNqGG61zYbIJf3DaqolSgbMEt4E6RT70ZkfGNomoYOMxDKI3zGvcyQdp1kHYdpF0naY_Im1WNReLvuKPsftD9qlxg3o4ZqNZ6UGutoHQCONozuFwGekJp8nC0bq1UunAj8gotoR5Wgu6OzvZubOu2MJfhnXBeZGLnH5vZJQ84yjPditsj6_3FpXtO7sFVf9ZdvIgz4hfeJwwh
  priority: 102
  providerName: IOP Publishing
Title A Deep-learning Anomaly-detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anticoincidence System
URI https://iopscience.iop.org/article/10.3847/1538-4357/acba0a
https://www.proquest.com/docview/2786554503
https://doaj.org/article/8c9e3c2a7cce4703897b45230dd78a5e
Volume 945
WOSCitedRecordID wos000948441600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SFHwRrUpPq-RBBR_C7SW7l93Hq16rYGspin1bkkkiB93do7sVDsG_3ZlkrypCffElhCXZDZnJfO3kN4y9QBvc5coWgpBARG5cJkqjQejSV6oqpQ3BxmIT-uSkPD-vTn8r9UU5YQkeOG3ctITKK5A4H3yuCQ5O25xCmc7p0hSepG-mq60ztb0RiVI2_ZRUKH6n8VijYaCnBqzJ_lRCEasfVcuqW_8lkKOWObzP7o3mIV-kZT1gt3y7y_YWPQWsu2bDX_HYT_GIfpfdOU29h-z7gr_1fi3GMhBfOTr2jbnYCOeHmG7V8uNYLZoPHU_Xc8OGH5mmMeLMbPjBFdqBPV-1HE1CfoYmaEOZMj3vQnyyOHr_YYkvxYV1FJ-PtUh5Ajx_xD4fLj-9eSfGygoC0AAbBID1EgqYSYBCZ0HqABYUKD8vnK105mfBOutDbisjLWjS7NoTGthcBRnUY7bTdq3fY9xKkyuXzbBFT68sqhJKV0gH6NzJebATNt1udQ0j7DhVv7io0f0g4tREnJqIUyfiTNjr6xnrBLlxw9gDot71OALLjg-QheqRhep_sdCEvUTa1-Ph7W_42P6WO34Nlpqu9uZFpp78j7U8ZXepoH3KcttnO8PllX_GbsO3YdVfPo9Mju3xjyW2H9WXn3cqAwo
linkProvider Directory of Open Access Journals
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgfIgXPgZoZRv4AZB48JraSZ08ZmwdE6NUE4i-RfbZRpPWpFoypIp_fmc724SGJiReIiuyHevufHe--H5HyFv0wU0qdMY8EghLlUlYriQwmdtCFDnXzulQbEJOp_l8Xsz6OqchF6ZZ9qp_B5sRKDiS0O9vgbp0GPYoWnk5VKBVooZL4-6Sex6nxIv1V_HjOjGSF73_m7KxkPP4n_Kvs_xhlwJ8P1obXMINHR0Mz-TJfy_5KXnc-5y0jN2fkTu2XicbZeuj4M1iRd_T0I5BjnadPJjF1nPyu6R71i5ZX1viJy1xgDpdMWO7cIerpl9CCWraNTTm_LoVPVCLhWLHakV3z9G5bOlJTdHPpMfo1y789ZuWNi68KQ8Oj_ZxUlxY44P-ocApjSjqL8j3yf63j59YX66BAXp1HQPQlkMGIw6QycRx6UCDAGHHmdGFTOzIaaOtS3WhuAbp3QVpPcTYWDjuxEuyVje13SBUc5UKk4zwicfHPCtyyE3GDeCJkY-dHpDhJbMq6LHMfUmN0wrPNJ7ilad45SleRYoPyIerEcuI43FL313P_6t-HoE7vEDWVj1rqxwKK4CjXINNpYcplDr1IXZjZK4yOyDvUBqqXiO0t3xs61K-rjtz6fOF0ywRr_5xmjfk4WxvUh0dTj9vkkccSRsvym2Rte7s3G6T-_CrO2nPXocNcgE4wRGJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-learning+Anomaly-detection+Method+to+Identify+Gamma-Ray+Bursts+in+the+Ratemeters+of+the+AGILE+Anticoincidence+System&rft.jtitle=The+Astrophysical+journal&rft.au=N.+Parmiggiani&rft.au=A.+Bulgarelli&rft.au=A.+Ursi&rft.au=A.+Macaluso&rft.date=2023-03-01&rft.pub=IOP+Publishing&rft.eissn=1538-4357&rft.volume=945&rft.issue=2&rft.spage=106&rft_id=info:doi/10.3847%2F1538-4357%2Facba0a&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c9e3c2a7cce4703897b45230dd78a5e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon