Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization
Graphical abstract Graphical Abstract AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction...
Gespeichert in:
| Veröffentlicht in: | Journal of computational design and engineering Jg. 6; H. 3; S. 414 - 428 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford University Press
01.07.2019
한국CDE학회 |
| Schlagworte: | |
| ISSN: | 2288-5048, 2288-4300, 2288-5048 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Graphical abstract
Graphical Abstract
AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares metaheuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations.
Highlights
Benchmarks optimization algorithms on structural, energy, and daylighting problems.Benchmarks metaheuristic, direct search, and model-based optimization methods.Challenges the popularity of genetic algorithms in architectural design optimization.Presents model-based methods as a more efficient and reliable alternative. |
|---|---|
| AbstractList | This article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares metaheuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations.
Highlights Benchmarks optimization algorithms on structural, energy, and daylighting problems. Benchmarks metaheuristic, direct search, and model-based optimization methods. Challenges the popularity of genetic algorithms in architectural design optimization. Presents model-based methods as a more efficient and reliable alternative. Graphical abstract Graphical Abstract AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares metaheuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations. Highlights Benchmarks optimization algorithms on structural, energy, and daylighting problems.Benchmarks metaheuristic, direct search, and model-based optimization methods.Challenges the popularity of genetic algorithms in architectural design optimization.Presents model-based methods as a more efficient and reliable alternative. This article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simula-tions in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares meta-heuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations. KCI Citation Count: 15 |
| Author | Wortmann, Thomas |
| Author_xml | – sequence: 1 givenname: Thomas surname: Wortmann fullname: Wortmann, Thomas email: thomas_wortmann@alumni.sutd.edu.sg organization: Singapore University of Technology and Design, Singapore |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487344$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqNkD9PwzAQxS1UJErpF2DyypBgO_8ctlJBqVQJCZXZMo6duk3syHEq4NOTpAyIATHdnfR-d-_eJZgYayQA1xiFGOH0dh_uRSFDgjANUR4ihM_AlBBKgwTFdPKjvwDztt2jXpGRCOF8Cg4raaTXAsqjrTqvrYHHNoSqM2IceNM4-65rPkx38F4asau5O2hTQl6V1mm_q1uorIPciZ32UvjO8QoWstWlgbbxutafI34FzhWvWjn_rjPw-viwXT4Fm-fVernYBCLGqQ-ESKlUOI-yiBKV07wgIsOxkiniWJI06u3jrHePi1y9RQQpjAoR4ZjTRCQki2bg5rTXOMUOQjPL9VhLyw6OLV62a5bQhKYE91py0gpn29ZJxRrXf-s-GEZsSJft2ZAuG9JlKGf98R6ivyCh_fiid1xXf6PBCbVd859TX3RXktw |
| CitedBy_id | crossref_primary_10_1080_19401493_2022_2143568 crossref_primary_10_1093_jcde_qwad083 crossref_primary_10_1080_19401493_2020_1821094 crossref_primary_10_1155_2024_9786711 crossref_primary_10_1088_2053_1591_ad0c07 crossref_primary_10_1080_13467581_2024_2390601 crossref_primary_10_4271_2020_01_0919 crossref_primary_10_1080_00038628_2023_2254305 crossref_primary_10_1016_j_jobe_2021_102225 crossref_primary_10_1093_jcde_qwad109 crossref_primary_10_1177_14780771231177508 crossref_primary_10_1093_jcde_qwab063 crossref_primary_10_1093_jcde_qwac034 crossref_primary_10_1016_j_scs_2023_104800 crossref_primary_10_1080_09613218_2022_2121907 crossref_primary_10_1088_1748_3190_ad1b2a crossref_primary_10_1016_j_autcon_2020_103132 crossref_primary_10_1109_ACCESS_2021_3066135 crossref_primary_10_1016_j_buildenv_2025_112788 crossref_primary_10_1108_SASBE_11_2021_0202 crossref_primary_10_1080_19401493_2022_2106309 crossref_primary_10_1177_14780771251316125 crossref_primary_10_1080_19401493_2024_2346833 crossref_primary_10_1007_s10845_024_02340_3 crossref_primary_10_1093_jcde_qwac100 |
| Cites_doi | 10.1002/9780470770801 10.1007/s10957-006-9101-0 10.1111/itor.12001 10.1007/978-3-7091-1251-9_6 10.1007/s10898-007-9256-8 10.1016/j.buildenv.2004.01.022 10.1007/s10898-012-9951-y 10.1016/j.enbuild.2013.01.016 10.1016/j.advengsoft.2013.03.001 10.1016/S0304-3975(02)00094-4 10.1002/ad.1568 10.1016/j.asoc.2015.04.010 10.1017/S0890060415000451 10.1137/080724083 10.1137/1.9780898718768 10.1109/CEC.2016.7744323 10.1002/9780470496916 10.1016/j.compstruc.2009.01.002 10.3390/en10050637 10.1007/BF00941892 10.1016/j.rser.2013.02.004 10.1007/978-3-642-20859-1_3 10.1007/978-981-10-5197-5_9 10.1162/106365601750190398 |
| ContentType | Journal Article |
| Copyright | Society for Computational Design and Engineering 2018 |
| Copyright_xml | – notice: Society for Computational Design and Engineering 2018 |
| DBID | TOX AAYXX CITATION ACYCR |
| DOI | 10.1016/j.jcde.2018.09.001 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2288-5048 |
| EndPage | 428 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_5858621 10_1016_j_jcde_2018_09_001 10.1016/j.jcde.2018.09.001 |
| GroupedDBID | .UV 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAPXW AAVAP AAXUO ABEJV ABGNP ABMAC ABPTD ABXVV ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMNDL AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ H13 JDI KQ8 KSI M41 M~E NCXOZ O9- OK1 ROL ROX SSZ TOX AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION IAO 4.4 ABJCF ACYCR ADMLS AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FRF GNUQQ HCIFZ IGS IPNFZ ITC M7S ML0 PHGZM PHGZT PIMPY PMFND PTHSS RIG |
| ID | FETCH-LOGICAL-c416t-cc68ef1937382f989d2c714fe60a1e263001170191d9fb320f10dc314a85c5273 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474297500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2288-5048 2288-4300 |
| IngestDate | Sat May 31 03:24:04 EDT 2025 Sat Nov 29 03:52:52 EST 2025 Tue Nov 18 22:29:52 EST 2025 Tue Jan 28 07:47:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Benchmarking Model-based methods Architectural design optimization Black-box optimization Genetic algorithms |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c416t-cc68ef1937382f989d2c714fe60a1e263001170191d9fb320f10dc314a85c5273 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.jcde.2018.09.001 |
| PageCount | 15 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5858621 crossref_primary_10_1016_j_jcde_2018_09_001 crossref_citationtrail_10_1016_j_jcde_2018_09_001 oup_primary_10_1016_j_jcde_2018_09_001 |
| PublicationCentury | 2000 |
| PublicationDate | 20190701 2019-07-01 2019-07 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 20190701 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational design and engineering |
| PublicationYear | 2019 |
| Publisher | Oxford University Press 한국CDE학회 |
| Publisher_xml | – name: Oxford University Press – name: 한국CDE학회 |
| References | Koziel (2020071623193859000_b0095) 2011 Rowan (2020071623193859000_b0120) 1990 Evins (2020071623193859000_b0040) 2013; 22 Wortmann (2020071623193859000_b0185) 2017 Costa (2020071623193859000_b0025) 2014 Brownlee (2020071623193859000_b0010) 2015; 33 Wortmann (2020071623193859000_b0165) 2018 Wright (2020071623193859000_b0190) 2005 Wortmann (2020071623193859000_b0175) 2016 Hare (2020071623193859000_b0060) 2013; 59 Droste (2020071623193859000_b0035) 2002; 287 Wortmann (2020071623193859000_b0180) 2017 Touloupaki (2020071623193859000_b0140) 2017; 10 Attia (2020071623193859000_b0005) 2013; 60 Hansen (2020071623193859000_b0055) 2001; 9 Johnson (2020071623193859000_b0080) 2010 Hansen (2020071623193859000_b0050) 2018 Rutten (2020071623193859000_b0125) 2013; 83 Holmström (2020071623193859000_b0070) 2008; 41 Imbert (2020071623193859000_b0075) 2013 Wienold (2020071623193859000_b0155) 2010 De Landa (2020071623193859000_b0030) 2002 Nocedal (2020071623193859000_b0110) 2006 Jones (2020071623193859000_b0085) 1993; 79 Forrester (2020071623193859000_b0045) 2008 Waibel (2020071623193859000_b0145) 2018 Rios (2020071623193859000_b0115) 2013; 56 Yang (2020071623193859000_b0195) 2016 Conn (2020071623193859000_b0020) 2009 Wortmann (2020071623193859000_b0170) 2015; 29 Talbi (2020071623193859000_b0135) 2009 Cichocka (2020071623193859000_b0015) 2017 Wetter (2020071623193859000_b0150) 2004; 39 Hasançebi (2020071623193859000_b0065) 2009; 87 Kaelo (2020071623193859000_b0090) 2006; 130 Mardaljevic (2020071623193859000_b0100) 2012 Sörensen (2020071623193859000_b0130) 2015; 22 Moré (2020071623193859000_b0105) 2009; 20 Wortmann (2020071623193859000_b0160) 2017; 1 |
| References_xml | – volume-title: Daylight glare in offices year: 2010 ident: 2020071623193859000_b0155 – volume-title: Engineering design via surrogate modelling: A practical guide year: 2008 ident: 2020071623193859000_b0045 doi: 10.1002/9780470770801 – volume: 130 start-page: 253 issue: 2 year: 2006 ident: 2020071623193859000_b0090 article-title: Some variants of the controlled random search algorithm for global optimization publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-006-9101-0 – volume: 1 start-page: 176 issue: 2 year: 2017 ident: 2020071623193859000_b0160 article-title: Model-based optimization for architectural design: Optimizing daylight and glare in grasshopper publication-title: Technology | Architecture + Design – volume: 22 start-page: 3 issue: 1 year: 2015 ident: 2020071623193859000_b0130 article-title: Metaheuristics-the metaphor exposed publication-title: International Transactions in Operational Research doi: 10.1111/itor.12001 – start-page: 77 volume-title: Advances in architectural geometry 2012 year: 2013 ident: 2020071623193859000_b0075 doi: 10.1007/978-3-7091-1251-9_6 – start-page: 51 volume-title: Proceedings of the symposium on simulation for architecture & urban design year: 2017 ident: 2020071623193859000_b0185 – volume-title: BB-O: A black-box optimization library year: 2018 ident: 2020071623193859000_b0145 – volume: 41 start-page: 447 issue: 3 year: 2008 ident: 2020071623193859000_b0070 article-title: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9256-8 – volume: 39 start-page: 989 issue: 8 year: 2004 ident: 2020071623193859000_b0150 article-title: A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization publication-title: Building and Environment doi: 10.1016/j.buildenv.2004.01.022 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 2020071623193859000_b0115 article-title: Derivative-free optimization: A review of algorithms and comparison of software implementations publication-title: Journal of Global Optimization doi: 10.1007/s10898-012-9951-y – volume-title: Functional stability analysis of numerical algorithms (Ph.D. Dissertation) year: 1990 ident: 2020071623193859000_b0120 – volume: 60 start-page: 110 year: 2013 ident: 2020071623193859000_b0005 article-title: Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2013.01.016 – volume-title: RBFOpt: An open-source library for black-box optimization with costly function evaluations (Optimization Online No. 4538) year: 2014 ident: 2020071623193859000_b0025 – volume: 59 start-page: 19 year: 2013 ident: 2020071623193859000_b0060 article-title: A survey of non-gradient optimization methods in structural engineering publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.03.001 – start-page: 259 volume-title: City networks – planning for health and sustainability year: 2017 ident: 2020071623193859000_b0180 – volume: 287 start-page: 131 issue: 1 year: 2002 ident: 2020071623193859000_b0035 article-title: Optimization with randomized search heuristics—The (A)NFL theorem, realistic scenarios, and difficult functions publication-title: Theoretical Computer Science doi: 10.1016/S0304-3975(02)00094-4 – start-page: 177 volume-title: Proceedings of the 21th CAADRIA conference year: 2016 ident: 2020071623193859000_b0175 – volume-title: pycma: Python implementation of CMA-ES. CMA-ES: Python year: 2018 ident: 2020071623193859000_b0050 – volume: 83 start-page: 132 issue: 2 year: 2013 ident: 2020071623193859000_b0125 article-title: Galapagos: On the logic and limitations of generic solvers publication-title: Architectural Design doi: 10.1002/ad.1568 – volume: 33 start-page: 114 year: 2015 ident: 2020071623193859000_b0010 article-title: Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.04.010 – volume: 29 start-page: 471 issue: 4 year: 2015 ident: 2020071623193859000_b0170 article-title: Advantages of surrogate models for architectural design optimization publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing doi: 10.1017/S0890060415000451 – volume: 20 start-page: 172 issue: 1 year: 2009 ident: 2020071623193859000_b0105 article-title: Benchmarking derivative-free optimization algorithms publication-title: SIAM Journal on Optimization doi: 10.1137/080724083 – volume-title: Efficient, visual, and interactive architectural design optimization with model-based methods (Ph.D. Dissertation) year: 2018 ident: 2020071623193859000_b0165 – volume-title: Introduction to derivative-free optimization year: 2009 ident: 2020071623193859000_b0020 doi: 10.1137/1.9780898718768 – start-page: 4199 volume-title: 2016 IEEE congress on evolutionary computation (CEC) year: 2016 ident: 2020071623193859000_b0195 article-title: Impacts of problem scale and sampling strategy on surrogate model accuracy: An application of surrogate-based optimization in building design doi: 10.1109/CEC.2016.7744323 – volume-title: Metaheuristics: From design to implementation year: 2009 ident: 2020071623193859000_b0135 doi: 10.1002/9780470496916 – volume: 87 start-page: 284 issue: 5–6 year: 2009 ident: 2020071623193859000_b0065 article-title: Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures publication-title: Computers & Structures doi: 10.1016/j.compstruc.2009.01.002 – volume-title: Daylighting, artificial lighting and non-visual effects study for a residential building (Velux Technical Report) year: 2012 ident: 2020071623193859000_b0100 – volume-title: The NLopt nonlinear-optimization package year: 2010 ident: 2020071623193859000_b0080 – volume: 10 start-page: 637 issue: 5 year: 2017 ident: 2020071623193859000_b0140 article-title: Performance simulation integrated in parametric 3D modeling as a method for early stage design optimization—A review publication-title: Energies doi: 10.3390/en10050637 – volume-title: Proceedings of building simulation year: 2005 ident: 2020071623193859000_b0190 – volume-title: Numerical optimization year: 2006 ident: 2020071623193859000_b0110 – start-page: 117 volume-title: Designing for a digital world year: 2002 ident: 2020071623193859000_b0030 – volume: 79 start-page: 157 issue: 1 year: 1993 ident: 2020071623193859000_b0085 article-title: Lipschitzian optimization without the Lipschitz constant publication-title: Journal of Optimization Theory and Applications doi: 10.1007/BF00941892 – volume: 22 start-page: 230 year: 2013 ident: 2020071623193859000_b0040 article-title: A review of computational optimisation methods applied to sustainable building design publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2013.02.004 – start-page: 33 volume-title: Computational optimization, methods and algorithms year: 2011 ident: 2020071623193859000_b0095 doi: 10.1007/978-3-642-20859-1_3 – start-page: 151 volume-title: Computer-aided architectural design. Future trajectories year: 2017 ident: 2020071623193859000_b0015 doi: 10.1007/978-981-10-5197-5_9 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 2020071623193859000_b0055 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evolutionary Computation doi: 10.1162/106365601750190398 |
| SSID | ssj0001723019 ssib053376903 |
| Score | 2.3716893 |
| Snippet | Graphical abstract
Graphical Abstract
AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy,... This article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications... |
| SourceID | nrf crossref oup |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 414 |
| SubjectTerms | 기계공학 |
| Title | Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization |
| URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487344 |
| Volume | 6 |
| WOSCitedRecordID | wos000474297500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Computational Design and Engineering , 2019, 6(3), , pp.414-428 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: TOX dateStart: 20140101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CwcuvNHuAisLIS5RqthNmpgbIBBcFg5F6s1yHWe3r3SVlqr_YP82M7bz6MKi3QOXtLISJ-18Gc-MZ74h5G1s8glXE-Rt5eCgGCVCNclMmAzyREQFEsxo22wiPTvLxmPxo9e7qmthtou0LLPdTlz-V1HDGAgbS2fvIO5mUhiA7yB0OILY4XgrwSORNLKwmq2_TbBd9wNcv1xTcCQR302XTVbHR3j4i6WyMfNALc5X1XRz4Wgags42A27m2GyPYAVaZunLN2-wbbXtFVHHGf11GKI3Lf1hsxyAA7D0rZo76Uo-EmGLn-pIhFVYnIMoksgxZ_bNX8a8xh12gDXoaM_Y1ZP6hTh2VeN_6HgXbpj1ZzpHnlOW9R3naLui1bv41xa6Jv2wzmybSZxD4hwyEpjed0Du8TQRqB5H38dtsC4FT802iWl-jy_AcrmC1x9lz8g5KKvClU92LJfRY_LQi4V-cFB5QnqmfEoeefeDeuW-fkbmHjm0QQ4F5NAaOXQPOe9pFze0xQ0F3NA93FAnf9rFzXPy88vn0aevoe_FEWow2Teh1sPMFGDtp_BSFyITOdcpiwszjBQzHInbmKX2Z7koJgMeFSzK9YDFKks0kvy9IIflqjRHhOpcgEHEUmbyYawwiqZTBWZ0pGDePOXHhNV_ntSeqB77pSzkzXI7JkFzzaWjafnn2W9AJnKupxLZ1fHzfCXnlQQf8psEBxrcfDjpHYjsFrOd3OneL8mD9t15RQ431S_zmtzX2810XZ3akNCpBd9vRRqpgw |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evolution+vs.+function+approximation%3A+Benchmarking+algorithms+for+architectural+design+optimization&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Wortmann%2C+Thomas&rft.date=2019-07-01&rft.issn=2288-5048&rft.eissn=2288-5048&rft.volume=6&rft.issue=3&rft.spage=414&rft.epage=428&rft_id=info:doi/10.1016%2Fj.jcde.2018.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcde_2018_09_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon |