Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization

Graphical abstract Graphical Abstract AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational design and engineering Jg. 6; H. 3; S. 414 - 428
1. Verfasser: Wortmann, Thomas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford University Press 01.07.2019
한국CDE학회
Schlagworte:
ISSN:2288-5048, 2288-4300, 2288-5048
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graphical abstract Graphical Abstract AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares metaheuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations. Highlights Benchmarks optimization algorithms on structural, energy, and daylighting problems.Benchmarks metaheuristic, direct search, and model-based optimization methods.Challenges the popularity of genetic algorithms in architectural design optimization.Presents model-based methods as a more efficient and reliable alternative.
AbstractList This article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares metaheuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations. Highlights Benchmarks optimization algorithms on structural, energy, and daylighting problems. Benchmarks metaheuristic, direct search, and model-based optimization methods. Challenges the popularity of genetic algorithms in architectural design optimization. Presents model-based methods as a more efficient and reliable alternative.
Graphical abstract Graphical Abstract AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simulations in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares metaheuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations. Highlights Benchmarks optimization algorithms on structural, energy, and daylighting problems.Benchmarks metaheuristic, direct search, and model-based optimization methods.Challenges the popularity of genetic algorithms in architectural design optimization.Presents model-based methods as a more efficient and reliable alternative.
This article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications of parametric design and performance simula-tions in architecture, engineering, and construction allow the harnessing of simulation-based, or black-box, optimization in the search for less resource- and/or energy consuming designs. In architectural design optimization (ADO) practice and research, the most commonly applied black-box algorithms are genetic algorithms or other metaheuristics, to the neglect of more current, global direct search or model-based, methods. Model-based methods construct a surrogate model (i.e., an approximation of a fitness landscape) that they refine during the optimization process. This benchmark compares meta-heuristic, direct search, and model-based methods, and concludes that, for the given evaluation budget and problems, the model-based method (RBFOpt) is the most efficient and robust, while the tested genetic algorithms perform poorly. As such, this article challenges the popularity of genetic algorithms in ADO, as well as the practice of using them for one-to-one comparisons to justify algorithmic innovations. KCI Citation Count: 15
Author Wortmann, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Wortmann
  fullname: Wortmann, Thomas
  email: thomas_wortmann@alumni.sutd.edu.sg
  organization: Singapore University of Technology and Design, Singapore
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487344$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkD9PwzAQxS1UJErpF2DyypBgO_8ctlJBqVQJCZXZMo6duk3syHEq4NOTpAyIATHdnfR-d-_eJZgYayQA1xiFGOH0dh_uRSFDgjANUR4ihM_AlBBKgwTFdPKjvwDztt2jXpGRCOF8Cg4raaTXAsqjrTqvrYHHNoSqM2IceNM4-65rPkx38F4asau5O2hTQl6V1mm_q1uorIPciZ32UvjO8QoWstWlgbbxutafI34FzhWvWjn_rjPw-viwXT4Fm-fVernYBCLGqQ-ESKlUOI-yiBKV07wgIsOxkiniWJI06u3jrHePi1y9RQQpjAoR4ZjTRCQki2bg5rTXOMUOQjPL9VhLyw6OLV62a5bQhKYE91py0gpn29ZJxRrXf-s-GEZsSJft2ZAuG9JlKGf98R6ivyCh_fiid1xXf6PBCbVd859TX3RXktw
CitedBy_id crossref_primary_10_1080_19401493_2022_2143568
crossref_primary_10_1093_jcde_qwad083
crossref_primary_10_1080_19401493_2020_1821094
crossref_primary_10_1155_2024_9786711
crossref_primary_10_1088_2053_1591_ad0c07
crossref_primary_10_1080_13467581_2024_2390601
crossref_primary_10_4271_2020_01_0919
crossref_primary_10_1080_00038628_2023_2254305
crossref_primary_10_1016_j_jobe_2021_102225
crossref_primary_10_1093_jcde_qwad109
crossref_primary_10_1177_14780771231177508
crossref_primary_10_1093_jcde_qwab063
crossref_primary_10_1093_jcde_qwac034
crossref_primary_10_1016_j_scs_2023_104800
crossref_primary_10_1080_09613218_2022_2121907
crossref_primary_10_1088_1748_3190_ad1b2a
crossref_primary_10_1016_j_autcon_2020_103132
crossref_primary_10_1109_ACCESS_2021_3066135
crossref_primary_10_1016_j_buildenv_2025_112788
crossref_primary_10_1108_SASBE_11_2021_0202
crossref_primary_10_1080_19401493_2022_2106309
crossref_primary_10_1177_14780771251316125
crossref_primary_10_1080_19401493_2024_2346833
crossref_primary_10_1007_s10845_024_02340_3
crossref_primary_10_1093_jcde_qwac100
Cites_doi 10.1002/9780470770801
10.1007/s10957-006-9101-0
10.1111/itor.12001
10.1007/978-3-7091-1251-9_6
10.1007/s10898-007-9256-8
10.1016/j.buildenv.2004.01.022
10.1007/s10898-012-9951-y
10.1016/j.enbuild.2013.01.016
10.1016/j.advengsoft.2013.03.001
10.1016/S0304-3975(02)00094-4
10.1002/ad.1568
10.1016/j.asoc.2015.04.010
10.1017/S0890060415000451
10.1137/080724083
10.1137/1.9780898718768
10.1109/CEC.2016.7744323
10.1002/9780470496916
10.1016/j.compstruc.2009.01.002
10.3390/en10050637
10.1007/BF00941892
10.1016/j.rser.2013.02.004
10.1007/978-3-642-20859-1_3
10.1007/978-981-10-5197-5_9
10.1162/106365601750190398
ContentType Journal Article
Copyright Society for Computational Design and Engineering 2018
Copyright_xml – notice: Society for Computational Design and Engineering 2018
DBID TOX
AAYXX
CITATION
ACYCR
DOI 10.1016/j.jcde.2018.09.001
DatabaseName Oxford Journals Open Access Collection
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2288-5048
EndPage 428
ExternalDocumentID oai_kci_go_kr_ARTI_5858621
10_1016_j_jcde_2018_09_001
10.1016/j.jcde.2018.09.001
GroupedDBID .UV
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
ABEJV
ABGNP
ABMAC
ABPTD
ABXVV
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
H13
JDI
KQ8
KSI
M41
M~E
NCXOZ
O9-
OK1
ROL
ROX
SSZ
TOX
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
IAO
4.4
ABJCF
ACYCR
ADMLS
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRF
GNUQQ
HCIFZ
IGS
IPNFZ
ITC
M7S
ML0
PHGZM
PHGZT
PIMPY
PMFND
PTHSS
RIG
ID FETCH-LOGICAL-c416t-cc68ef1937382f989d2c714fe60a1e263001170191d9fb320f10dc314a85c5273
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474297500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2288-5048
2288-4300
IngestDate Sat May 31 03:24:04 EDT 2025
Sat Nov 29 03:52:52 EST 2025
Tue Nov 18 22:29:52 EST 2025
Tue Jan 28 07:47:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Benchmarking
Model-based methods
Architectural design optimization
Black-box optimization
Genetic algorithms
Language English
License This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-cc68ef1937382f989d2c714fe60a1e263001170191d9fb320f10dc314a85c5273
OpenAccessLink http://dx.doi.org/10.1016/j.jcde.2018.09.001
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_5858621
crossref_primary_10_1016_j_jcde_2018_09_001
crossref_citationtrail_10_1016_j_jcde_2018_09_001
oup_primary_10_1016_j_jcde_2018_09_001
PublicationCentury 2000
PublicationDate 20190701
2019-07-01
2019-07
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 20190701
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational design and engineering
PublicationYear 2019
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Koziel (2020071623193859000_b0095) 2011
Rowan (2020071623193859000_b0120) 1990
Evins (2020071623193859000_b0040) 2013; 22
Wortmann (2020071623193859000_b0185) 2017
Costa (2020071623193859000_b0025) 2014
Brownlee (2020071623193859000_b0010) 2015; 33
Wortmann (2020071623193859000_b0165) 2018
Wright (2020071623193859000_b0190) 2005
Wortmann (2020071623193859000_b0175) 2016
Hare (2020071623193859000_b0060) 2013; 59
Droste (2020071623193859000_b0035) 2002; 287
Wortmann (2020071623193859000_b0180) 2017
Touloupaki (2020071623193859000_b0140) 2017; 10
Attia (2020071623193859000_b0005) 2013; 60
Hansen (2020071623193859000_b0055) 2001; 9
Johnson (2020071623193859000_b0080) 2010
Hansen (2020071623193859000_b0050) 2018
Rutten (2020071623193859000_b0125) 2013; 83
Holmström (2020071623193859000_b0070) 2008; 41
Imbert (2020071623193859000_b0075) 2013
Wienold (2020071623193859000_b0155) 2010
De Landa (2020071623193859000_b0030) 2002
Nocedal (2020071623193859000_b0110) 2006
Jones (2020071623193859000_b0085) 1993; 79
Forrester (2020071623193859000_b0045) 2008
Waibel (2020071623193859000_b0145) 2018
Rios (2020071623193859000_b0115) 2013; 56
Yang (2020071623193859000_b0195) 2016
Conn (2020071623193859000_b0020) 2009
Wortmann (2020071623193859000_b0170) 2015; 29
Talbi (2020071623193859000_b0135) 2009
Cichocka (2020071623193859000_b0015) 2017
Wetter (2020071623193859000_b0150) 2004; 39
Hasançebi (2020071623193859000_b0065) 2009; 87
Kaelo (2020071623193859000_b0090) 2006; 130
Mardaljevic (2020071623193859000_b0100) 2012
Sörensen (2020071623193859000_b0130) 2015; 22
Moré (2020071623193859000_b0105) 2009; 20
Wortmann (2020071623193859000_b0160) 2017; 1
References_xml – volume-title: Daylight glare in offices
  year: 2010
  ident: 2020071623193859000_b0155
– volume-title: Engineering design via surrogate modelling: A practical guide
  year: 2008
  ident: 2020071623193859000_b0045
  doi: 10.1002/9780470770801
– volume: 130
  start-page: 253
  issue: 2
  year: 2006
  ident: 2020071623193859000_b0090
  article-title: Some variants of the controlled random search algorithm for global optimization
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-006-9101-0
– volume: 1
  start-page: 176
  issue: 2
  year: 2017
  ident: 2020071623193859000_b0160
  article-title: Model-based optimization for architectural design: Optimizing daylight and glare in grasshopper
  publication-title: Technology | Architecture + Design
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  ident: 2020071623193859000_b0130
  article-title: Metaheuristics-the metaphor exposed
  publication-title: International Transactions in Operational Research
  doi: 10.1111/itor.12001
– start-page: 77
  volume-title: Advances in architectural geometry 2012
  year: 2013
  ident: 2020071623193859000_b0075
  doi: 10.1007/978-3-7091-1251-9_6
– start-page: 51
  volume-title: Proceedings of the symposium on simulation for architecture & urban design
  year: 2017
  ident: 2020071623193859000_b0185
– volume-title: BB-O: A black-box optimization library
  year: 2018
  ident: 2020071623193859000_b0145
– volume: 41
  start-page: 447
  issue: 3
  year: 2008
  ident: 2020071623193859000_b0070
  article-title: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9256-8
– volume: 39
  start-page: 989
  issue: 8
  year: 2004
  ident: 2020071623193859000_b0150
  article-title: A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2004.01.022
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 2020071623193859000_b0115
  article-title: Derivative-free optimization: A review of algorithms and comparison of software implementations
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-012-9951-y
– volume-title: Functional stability analysis of numerical algorithms (Ph.D. Dissertation)
  year: 1990
  ident: 2020071623193859000_b0120
– volume: 60
  start-page: 110
  year: 2013
  ident: 2020071623193859000_b0005
  article-title: Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2013.01.016
– volume-title: RBFOpt: An open-source library for black-box optimization with costly function evaluations (Optimization Online No. 4538)
  year: 2014
  ident: 2020071623193859000_b0025
– volume: 59
  start-page: 19
  year: 2013
  ident: 2020071623193859000_b0060
  article-title: A survey of non-gradient optimization methods in structural engineering
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.03.001
– start-page: 259
  volume-title: City networks – planning for health and sustainability
  year: 2017
  ident: 2020071623193859000_b0180
– volume: 287
  start-page: 131
  issue: 1
  year: 2002
  ident: 2020071623193859000_b0035
  article-title: Optimization with randomized search heuristics—The (A)NFL theorem, realistic scenarios, and difficult functions
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(02)00094-4
– start-page: 177
  volume-title: Proceedings of the 21th CAADRIA conference
  year: 2016
  ident: 2020071623193859000_b0175
– volume-title: pycma: Python implementation of CMA-ES. CMA-ES: Python
  year: 2018
  ident: 2020071623193859000_b0050
– volume: 83
  start-page: 132
  issue: 2
  year: 2013
  ident: 2020071623193859000_b0125
  article-title: Galapagos: On the logic and limitations of generic solvers
  publication-title: Architectural Design
  doi: 10.1002/ad.1568
– volume: 33
  start-page: 114
  year: 2015
  ident: 2020071623193859000_b0010
  article-title: Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.010
– volume: 29
  start-page: 471
  issue: 4
  year: 2015
  ident: 2020071623193859000_b0170
  article-title: Advantages of surrogate models for architectural design optimization
  publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
  doi: 10.1017/S0890060415000451
– volume: 20
  start-page: 172
  issue: 1
  year: 2009
  ident: 2020071623193859000_b0105
  article-title: Benchmarking derivative-free optimization algorithms
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/080724083
– volume-title: Efficient, visual, and interactive architectural design optimization with model-based methods (Ph.D. Dissertation)
  year: 2018
  ident: 2020071623193859000_b0165
– volume-title: Introduction to derivative-free optimization
  year: 2009
  ident: 2020071623193859000_b0020
  doi: 10.1137/1.9780898718768
– start-page: 4199
  volume-title: 2016 IEEE congress on evolutionary computation (CEC)
  year: 2016
  ident: 2020071623193859000_b0195
  article-title: Impacts of problem scale and sampling strategy on surrogate model accuracy: An application of surrogate-based optimization in building design
  doi: 10.1109/CEC.2016.7744323
– volume-title: Metaheuristics: From design to implementation
  year: 2009
  ident: 2020071623193859000_b0135
  doi: 10.1002/9780470496916
– volume: 87
  start-page: 284
  issue: 5–6
  year: 2009
  ident: 2020071623193859000_b0065
  article-title: Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2009.01.002
– volume-title: Daylighting, artificial lighting and non-visual effects study for a residential building (Velux Technical Report)
  year: 2012
  ident: 2020071623193859000_b0100
– volume-title: The NLopt nonlinear-optimization package
  year: 2010
  ident: 2020071623193859000_b0080
– volume: 10
  start-page: 637
  issue: 5
  year: 2017
  ident: 2020071623193859000_b0140
  article-title: Performance simulation integrated in parametric 3D modeling as a method for early stage design optimization—A review
  publication-title: Energies
  doi: 10.3390/en10050637
– volume-title: Proceedings of building simulation
  year: 2005
  ident: 2020071623193859000_b0190
– volume-title: Numerical optimization
  year: 2006
  ident: 2020071623193859000_b0110
– start-page: 117
  volume-title: Designing for a digital world
  year: 2002
  ident: 2020071623193859000_b0030
– volume: 79
  start-page: 157
  issue: 1
  year: 1993
  ident: 2020071623193859000_b0085
  article-title: Lipschitzian optimization without the Lipschitz constant
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00941892
– volume: 22
  start-page: 230
  year: 2013
  ident: 2020071623193859000_b0040
  article-title: A review of computational optimisation methods applied to sustainable building design
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2013.02.004
– start-page: 33
  volume-title: Computational optimization, methods and algorithms
  year: 2011
  ident: 2020071623193859000_b0095
  doi: 10.1007/978-3-642-20859-1_3
– start-page: 151
  volume-title: Computer-aided architectural design. Future trajectories
  year: 2017
  ident: 2020071623193859000_b0015
  doi: 10.1007/978-981-10-5197-5_9
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 2020071623193859000_b0055
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evolutionary Computation
  doi: 10.1162/106365601750190398
SSID ssj0001723019
ssib053376903
Score 2.3716893
Snippet Graphical abstract Graphical Abstract AbstractThis article presents benchmark results from seven simulation-based problems from structural, building energy,...
This article presents benchmark results from seven simulation-based problems from structural, building energy, and daylight optimization. Growing applications...
SourceID nrf
crossref
oup
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 414
SubjectTerms 기계공학
Title Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487344
Volume 6
WOSCitedRecordID wos000474297500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2019, 6(3), , pp.414-428
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: TOX
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CwcuvNHuAisLIS5RqthNmpgbIBBcFg5F6s1yHWe3r3SVlqr_YP82M7bz6MKi3QOXtLISJ-18Gc-MZ74h5G1s8glXE-Rt5eCgGCVCNclMmAzyREQFEsxo22wiPTvLxmPxo9e7qmthtou0LLPdTlz-V1HDGAgbS2fvIO5mUhiA7yB0OILY4XgrwSORNLKwmq2_TbBd9wNcv1xTcCQR302XTVbHR3j4i6WyMfNALc5X1XRz4Wgags42A27m2GyPYAVaZunLN2-wbbXtFVHHGf11GKI3Lf1hsxyAA7D0rZo76Uo-EmGLn-pIhFVYnIMoksgxZ_bNX8a8xh12gDXoaM_Y1ZP6hTh2VeN_6HgXbpj1ZzpHnlOW9R3naLui1bv41xa6Jv2wzmybSZxD4hwyEpjed0Du8TQRqB5H38dtsC4FT802iWl-jy_AcrmC1x9lz8g5KKvClU92LJfRY_LQi4V-cFB5QnqmfEoeefeDeuW-fkbmHjm0QQ4F5NAaOXQPOe9pFze0xQ0F3NA93FAnf9rFzXPy88vn0aevoe_FEWow2Teh1sPMFGDtp_BSFyITOdcpiwszjBQzHInbmKX2Z7koJgMeFSzK9YDFKks0kvy9IIflqjRHhOpcgEHEUmbyYawwiqZTBWZ0pGDePOXHhNV_ntSeqB77pSzkzXI7JkFzzaWjafnn2W9AJnKupxLZ1fHzfCXnlQQf8psEBxrcfDjpHYjsFrOd3OneL8mD9t15RQ431S_zmtzX2810XZ3akNCpBd9vRRqpgw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evolution+vs.+function+approximation%3A+Benchmarking+algorithms+for+architectural+design+optimization&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Wortmann%2C+Thomas&rft.date=2019-07-01&rft.issn=2288-5048&rft.eissn=2288-5048&rft.volume=6&rft.issue=3&rft.spage=414&rft.epage=428&rft_id=info:doi/10.1016%2Fj.jcde.2018.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcde_2018_09_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon