Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization

Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distri...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 35; no. 6; pp. 2093 - 2102
Main Authors: Assavapokee, Tiravat, Realff, Matthew J., Ammons, Jane C., Hong, I-Hsuan
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.06.2008
Elsevier Science
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 1873-765X, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distributions for uncertain parameter values. In these situations, decision makers are not able to search for the long-term decision setting with the best long-run average performance. Instead, decision makers are searching for the robust long-term decision setting that performs relatively well across all possible realizations of uncertainty without attempting to assign an assumed probability distribution to any ambiguous parameter. In this paper, we propose an iterative algorithm for solving min–max regret and min–max relative regret robust optimization problems for two-stage decision-making under uncertainty (ambiguity) where the structure of the first-stage problem is a mixed integer (binary) linear programming model and the structure of the second-stage problem is a linear programming model. The algorithm guarantees termination at an optimal robust solution, if one exists. A number of applications of the proposed algorithm are demonstrated. All results illustrate good performance of the proposed algorithm.
AbstractList Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distributions for uncertain parameter values. In these situations, decision makers are not able to search for the long-term decision setting with the best long-run average performance. Instead, decision makers are searching for the robust long-term decision setting that performs relatively well across all possible realizations of uncertainty without attempting to assign an assumed probability distribution to any ambiguous parameter. In this paper, we propose an iterative algorithm for solving min-max regret and min-max relative regret robust optimization problems for two-stage decision-making under uncertainty (ambiguity) where the structure of the first-stage problem is a mixed integer (binary) linear programming model and the structure of the second-stage problem is a linear programming model. The algorithm guarantees termination at an optimal robust solution, if one exists. A number of applications of the proposed algorithm are demonstrated. All results illustrate good performance of the proposed algorithm.
Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distributions for uncertain parameter values. In these situations, decision makers are not able to search for the long-term decision setting with the best long-run average performance. Instead, decision makers are searching for the robust long-term decision setting that performs relatively well across all possible realizations of uncertainty without attempting to assign an assumed probability distribution to any ambiguous parameter. In this paper, we propose an iterative algorithm for solving min-max regret and min-max relative regret robust optimization problems for two-stage decision-making under uncertainty (ambiguity) where the structure of the first-stage problem is a mixed integer (binary) linear programming model and the structure of the second-stage problem is a linear programming model. The algorithm guarantees termination at an optimal robust solution, if one exists. A number of applications of the proposed algorithm are demonstrated. All results illustrate good performance of the proposed algorithm. [PUBLICATION ABSTRACT]
Author Assavapokee, Tiravat
Realff, Matthew J.
Ammons, Jane C.
Hong, I-Hsuan
Author_xml – sequence: 1
  givenname: Tiravat
  surname: Assavapokee
  fullname: Assavapokee, Tiravat
  email: Tiravat.Assavapokee@mail.uh.edu
  organization: Industrial Engineering, University of Houston, E206 Engineering Building 2, Houston, TX 77204-4008, USA
– sequence: 2
  givenname: Matthew J.
  surname: Realff
  fullname: Realff, Matthew J.
  email: Matthew.Realff@chbe.gatech.edu
  organization: Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
– sequence: 3
  givenname: Jane C.
  surname: Ammons
  fullname: Ammons, Jane C.
  email: jane.ammons@isye.gatech.edu
  organization: Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA
– sequence: 4
  givenname: I-Hsuan
  surname: Hong
  fullname: Hong, I-Hsuan
  email: ihong@isye.gatech.edu
  organization: Georgia Institute of Technology, Atlanta, GA 30332-0205, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20006607$$DView record in Pascal Francis
BookMark eNp9kU1uFDEQhS0UJCaBA7BrIcGuB_-07W6xQhF_UiQWgMTOqnaXg0fd9mB7opAVd-CGnARPZrIgi3hjufy-Vy6_U3ISYkBCnjO6ZpSp15u1jWnNKVX1vKZMPCIr1mvRaiW_n5AVFVS2VHb9E3Ka84bWpTlbkZsvFgMkH5uEM1xD8TE0MF_G5MuPpXExNc4HX7DJR2E7QsapWXz4-_vPAtcVvExYGgj_F-fqdYV3tymOu1yauC1-8Te3bZ6Sxw7mjM-O-xn59v7d1_OP7cXnD5_O3160tmOq1AFop1zXU5CgHB9GhppPYydxEhMI1glnrZUahslOHMeeaWCjq_qRTbLj4oy8OvhuU_y5w1zM4usw8wwB4y4bQQc9cK6r8MU94SbuUqhvM2yQvaB8kFX08iiCbGF2CYL12WyTXyD9MjUBqhTdm-mDzqaYc0JnrC-3c5cEfjaMmn1wZmNqcHtM7Us1uEqye-Sd-UPMmwOD9SOvPCaTrcdgcfIJbTFT9A_Q_wD9XbdQ
CODEN CMORAP
CitedBy_id crossref_primary_10_1007_s00170_012_4369_8
crossref_primary_10_3390_math13111727
crossref_primary_10_1007_s10957_007_9334_6
crossref_primary_10_1016_j_ejor_2013_09_036
crossref_primary_10_1080_24725854_2019_1659524
crossref_primary_10_3390_math10132176
crossref_primary_10_1007_s10696_012_9147_2
crossref_primary_10_1080_00207543_2025_2453648
crossref_primary_10_1287_mnsc_2021_00160
crossref_primary_10_3724_SP_J_1004_2012_00270
crossref_primary_10_1016_j_jlp_2020_104131
crossref_primary_10_1016_j_renene_2020_05_055
crossref_primary_10_1080_03155986_2023_2286889
crossref_primary_10_1007_s11465_014_0294_x
crossref_primary_10_1016_j_ijhydene_2025_151499
crossref_primary_10_1109_TEPM_2006_881769
crossref_primary_10_1016_j_ejor_2019_11_059
crossref_primary_10_1016_j_engappai_2025_110846
crossref_primary_10_1016_j_asoc_2017_05_023
crossref_primary_10_1016_j_asoc_2017_10_020
crossref_primary_10_1016_j_cie_2021_107890
crossref_primary_10_1016_j_ejor_2025_06_010
crossref_primary_10_1007_s10479_022_04667_7
crossref_primary_10_1016_j_ifacol_2022_09_597
crossref_primary_10_1111_exsy_12534
crossref_primary_10_1177_0954405415578723
crossref_primary_10_4028_www_scientific_net_AMR_1039_514
crossref_primary_10_1007_s10957_013_0319_3
crossref_primary_10_1016_j_renene_2018_07_099
crossref_primary_10_1007_s10479_014_1756_6
crossref_primary_10_1002_nav_21871
crossref_primary_10_1016_j_ejor_2012_01_056
crossref_primary_10_1016_j_jmsy_2020_12_013
crossref_primary_10_1287_opre_2021_2159
Cites_doi 10.1287/opre.1030.0065
10.1007/s10107-003-0396-4
10.1007/PL00011380
10.1016/S0167-6377(00)00025-0
10.1007/PL00011424
10.1007/BF01300861
10.1007/978-1-4757-2620-6
10.1023/B:ANOR.0000004764.76984.30
10.1287/moor.23.4.769
10.1016/S0167-6377(99)00016-4
ContentType Journal Article
Copyright 2006
2008 INIST-CNRS
Copyright Pergamon Press Inc. Jun 2008
Copyright_xml – notice: 2006
– notice: 2008 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Jun 2008
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2006.10.013
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1873-765X
0305-0548
EndPage 2102
ExternalDocumentID 1378673171
20006607
10_1016_j_cor_2006_10_013
S0305054806002735
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c416t-76046f480a5a6f29b1e72db45ed3da3143fccc57a9dcd2eb817a1bf80ab1d5423
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251294600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sun Sep 28 01:27:47 EDT 2025
Sun Nov 09 08:46:49 EST 2025
Mon Jul 21 09:13:45 EDT 2025
Tue Nov 18 22:23:31 EST 2025
Sat Nov 29 03:23:32 EST 2025
Fri Feb 23 02:33:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Scenarios
Robust optimization
Min–max regret
Scenario-based decision-making
Min–max relative regret
Termination problem
Psychology
Iterative method
Probability distribution
Modeling
Linear model
Optimization
Min-max regret
Uncertain system
Min-max relative regret
Mathematical programming
Script
Decision support system
Decision making
Linear programming
Mixed integer programming
Long term
Mixed model
Optimal solution
Minimax method
Mixed problem
Ambiguity
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-76046f480a5a6f29b1e72db45ed3da3143fccc57a9dcd2eb817a1bf80ab1d5423
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 195830295
PQPubID 45870
PageCount 10
ParticipantIDs proquest_miscellaneous_30979227
proquest_journals_195830295
pascalfrancis_primary_20006607
crossref_citationtrail_10_1016_j_cor_2006_10_013
crossref_primary_10_1016_j_cor_2006_10_013
elsevier_sciencedirect_doi_10_1016_j_cor_2006_10_013
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: New York
PublicationTitle Computers & operations research
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
– name: Pergamon Press Inc
References Ben-Tal, Nemirovski (bib4) 2000; 88
Chopra, Meindl (bib13) 2003
Ben-Tal, El-Ghaoui, Nemirovski (bib5) 2000
Breton, El Hachem (bib11) 1995; 4
Kouvelis, Yu (bib1) 1997
Ben-Tal, Nemirovski (bib3) 1999; 25
Zakovic, Rustem (bib10) 2002; 124
Rustem, Howe (bib12) 2002
Ben-Tal, Nemirovski (bib2) 1998; 23
Averbakh (bib7) 2001; 90
Averbakh (bib6) 2000; 27/2
Bertsimas, Sim (bib8) 2003; 98
Bertsimas, Sim (bib9) 2004; 52/1
Ben-Tal (10.1016/j.cor.2006.10.013_bib3) 1999; 25
Averbakh (10.1016/j.cor.2006.10.013_bib6) 2000; 27/2
Ben-Tal (10.1016/j.cor.2006.10.013_bib5) 2000
Kouvelis (10.1016/j.cor.2006.10.013_bib1) 1997
Ben-Tal (10.1016/j.cor.2006.10.013_bib4) 2000; 88
Rustem (10.1016/j.cor.2006.10.013_bib12) 2002
Chopra (10.1016/j.cor.2006.10.013_bib13) 2003
Breton (10.1016/j.cor.2006.10.013_bib11) 1995; 4
Ben-Tal (10.1016/j.cor.2006.10.013_bib2) 1998; 23
Bertsimas (10.1016/j.cor.2006.10.013_bib9) 2004; 52/1
Averbakh (10.1016/j.cor.2006.10.013_bib7) 2001; 90
Bertsimas (10.1016/j.cor.2006.10.013_bib8) 2003; 98
Zakovic (10.1016/j.cor.2006.10.013_bib10) 2002; 124
References_xml – volume: 98
  start-page: 49
  year: 2003
  end-page: 71
  ident: bib8
  article-title: Robust discrete optimization and network flows
  publication-title: Mathematical Programming Series B
– volume: 90
  start-page: 263
  year: 2001
  end-page: 272
  ident: bib7
  article-title: On the complexity of a class of combinatorial optimization problems with uncertainty
  publication-title: Mathematical Programming
– volume: 124
  start-page: 81
  year: 2002
  end-page: 110
  ident: bib10
  article-title: Semi-infinite programming and applications to minimax problems
  publication-title: Annals of Operations Research
– volume: 27/2
  start-page: 57
  year: 2000
  end-page: 65
  ident: bib6
  article-title: Minmax regret solutions for minimax optimization problems with uncertainty
  publication-title: Operations Research Letters
– volume: 4
  start-page: 317
  year: 1995
  end-page: 345
  ident: bib11
  article-title: Algorithms for the solution of stochastic dynamic minimax problems
  publication-title: Computational Optimization and Applications
– year: 2003
  ident: bib13
  article-title: Supply chain management: strategy planning and operations
– year: 1997
  ident: bib1
  article-title: Robust discrete optimization and its applications
– year: 2000
  ident: bib5
  article-title: Robust semidefinite programming
  publication-title: Semidefinite programming and applications
– volume: 52/1
  start-page: 35
  year: 2004
  end-page: 53
  ident: bib9
  article-title: The price of robustness
  publication-title: Operations Research
– year: 2002
  ident: bib12
  article-title: Algorithms for worst-case design and applications to risk management
– volume: 25
  start-page: 1
  year: 1999
  end-page: 13
  ident: bib3
  article-title: Robust solutions to uncertain programs
  publication-title: Operations Research Letters
– volume: 88
  start-page: 411
  year: 2000
  end-page: 424
  ident: bib4
  article-title: Robust solutions of linear programming problems contaminated with uncertain data
  publication-title: Mathematical Programming
– volume: 23
  start-page: 769
  year: 1998
  end-page: 805
  ident: bib2
  article-title: Robust convex optimization
  publication-title: Mathematical Methods of Operations Research
– volume: 52/1
  start-page: 35
  year: 2004
  ident: 10.1016/j.cor.2006.10.013_bib9
  article-title: The price of robustness
  publication-title: Operations Research
  doi: 10.1287/opre.1030.0065
– year: 2002
  ident: 10.1016/j.cor.2006.10.013_bib12
– volume: 98
  start-page: 49
  year: 2003
  ident: 10.1016/j.cor.2006.10.013_bib8
  article-title: Robust discrete optimization and network flows
  publication-title: Mathematical Programming Series B
  doi: 10.1007/s10107-003-0396-4
– volume: 88
  start-page: 411
  year: 2000
  ident: 10.1016/j.cor.2006.10.013_bib4
  article-title: Robust solutions of linear programming problems contaminated with uncertain data
  publication-title: Mathematical Programming
  doi: 10.1007/PL00011380
– volume: 27/2
  start-page: 57
  year: 2000
  ident: 10.1016/j.cor.2006.10.013_bib6
  article-title: Minmax regret solutions for minimax optimization problems with uncertainty
  publication-title: Operations Research Letters
  doi: 10.1016/S0167-6377(00)00025-0
– volume: 90
  start-page: 263
  year: 2001
  ident: 10.1016/j.cor.2006.10.013_bib7
  article-title: On the complexity of a class of combinatorial optimization problems with uncertainty
  publication-title: Mathematical Programming
  doi: 10.1007/PL00011424
– volume: 4
  start-page: 317
  year: 1995
  ident: 10.1016/j.cor.2006.10.013_bib11
  article-title: Algorithms for the solution of stochastic dynamic minimax problems
  publication-title: Computational Optimization and Applications
  doi: 10.1007/BF01300861
– year: 2000
  ident: 10.1016/j.cor.2006.10.013_bib5
  article-title: Robust semidefinite programming
– year: 2003
  ident: 10.1016/j.cor.2006.10.013_bib13
– year: 1997
  ident: 10.1016/j.cor.2006.10.013_bib1
  doi: 10.1007/978-1-4757-2620-6
– volume: 124
  start-page: 81
  year: 2002
  ident: 10.1016/j.cor.2006.10.013_bib10
  article-title: Semi-infinite programming and applications to minimax problems
  publication-title: Annals of Operations Research
  doi: 10.1023/B:ANOR.0000004764.76984.30
– volume: 23
  start-page: 769
  year: 1998
  ident: 10.1016/j.cor.2006.10.013_bib2
  article-title: Robust convex optimization
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1287/moor.23.4.769
– volume: 25
  start-page: 1
  year: 1999
  ident: 10.1016/j.cor.2006.10.013_bib3
  article-title: Robust solutions to uncertain programs
  publication-title: Operations Research Letters
  doi: 10.1016/S0167-6377(99)00016-4
SSID ssj0000721
Score 2.0996542
Snippet Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2093
SubjectTerms Algorithms
Applied sciences
Computer science; control theory; systems
Data processing. List processing. Character string processing
Decision making
Decision making models
Decision theory. Utility theory
Exact sciences and technology
Integer programming
Linear programming
Mathematical programming
Memory organisation. Data processing
Min–max regret
Min–max relative regret
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Parameter estimation
Robust optimization
Scenario-based decision-making
Scenarios
Software
Studies
Uncertainty
Title Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization
URI https://dx.doi.org/10.1016/j.cor.2006.10.013
https://www.proquest.com/docview/195830295
https://www.proquest.com/docview/30979227
Volume 35
WOSCitedRecordID wos000251294600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFyEQ4lFAlIXFB_bCKlLeTo4VtOqiqqygi3qLnMRZurRJSNqqP5ofwTi2k4aFCg5cotaO-8h8Hn9jzwOhN0ynDtgdkWYTEvGQnAjmHGBZp0bsM170qkpf_GVCplNvPvcvOp0fKhZmuyRp6u12fv5fRQ1tIGweOvsP4q4_FBrgNQgdriB2uP6V4D9HLAUDOKvCVHZCvnR5lRWL9ddV5VWYLDjRPCvljRpfyeKz1SLVVnQHw8AEF37nTdNS5AeXfUUWbsr1WQbqZiXjOPdJrqoUUVa4ynJWSH87mVmo3oEGbNAtzbNvwhtotijgbe2H8wk4rMgZKYuSN0dYA_44BQIpsOR6p3csHYzPtXG5kbhXWxpe43pVgfCCFVe81JLwQmk7hHL9pAHNFDqb_aZNanWRBEWit6WidVGS8cbaIbYxrkH0hTik4l5_IlC2nad7-jEYXU4mwWw4n7V7hVllEc8lwMuMU2uUf9d4hTPuCXBqvRdou4WOTOL4XhcdDc6H8w8NcyBVnGD9f9QpfOWP-MvP-hOPup_TEmZ3Isqy3GAYFW2aPUIPpL2DBwKnj1GHpT10R4Vb9NBDBRYsV5keureXI_MJ2io84wbPuMYzBjxjgWfcxjOW4MUCsxjwvNck8Kz6BJ7xPp6fosvRcPZurMliIVoENsVaI65uu4ntge6hbmL6ocGIGYe2w2IrphaYBUkURQ6hfhzFJgs9g1AjTOD-0IgdMCqeoW6apew5wkBZqRcnTmgR2zbtONSZQyNiJNTlyaO8PtLVow8imUmfF3RZBspl8joAafEKry5vAmn10dt6SC7SyBy62VbyDCQPFvw2AKgeGnbSkn39RVU0nquTPjpWYAikwioDnmzK0k3f6aPXdS8sMfzcEGZwtikDS_eJb5rkxcHxx-huM5dfou662LBX6Ha0XS_K4kRC_SdMBPVn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scenario+relaxation+algorithm+for+finite+scenario-based+min-max+regret+and+min-max+relative+regret+robust+optimization&rft.jtitle=Computers+%26+operations+research&rft.au=Assavapokee%2C+Tiravat&rft.au=Realff%2C+Matthew+J&rft.au=Ammons%2C+Jane+C&rft.au=Hong%2C+I-Hsuan&rft.date=2008-06-01&rft.pub=Pergamon+Press+Inc&rft.issn=0305-0548&rft.eissn=0305-0548&rft.volume=35&rft.issue=6&rft.spage=2093&rft_id=info:doi/10.1016%2Fj.cor.2006.10.013&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1378673171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon