Efficient Parallel Algorithm for Estimating Higher-order Polyspectra
Nonlinearities in the gravitational evolution, galaxy bias, and redshift-space distortion drive the observed galaxy density fields away from the initial near-Gaussian states. Exploiting such a non-Gaussian galaxy density field requires measuring higher-order correlation functions, or, its Fourier co...
Gespeichert in:
| Veröffentlicht in: | The Astronomical journal Jg. 158; H. 3; S. 116 - 126 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Madison
The American Astronomical Society
01.09.2019
IOP Publishing |
| Schlagworte: | |
| ISSN: | 0004-6256, 1538-3881, 1538-3881 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Nonlinearities in the gravitational evolution, galaxy bias, and redshift-space distortion drive the observed galaxy density fields away from the initial near-Gaussian states. Exploiting such a non-Gaussian galaxy density field requires measuring higher-order correlation functions, or, its Fourier counterpart, polyspectra. Here, we present an efficient parallel algorithm for estimating higher-order polyspectra. Based upon the Scoccimarro estimator, the estimator avoids direct sampling of polygons using the fast Fourier transform, and the parallelization overcomes the large memory requirement of the original estimator. In particular, we design the memory layout to minimize the inter-CPU communications, which excels in the code performance. |
|---|---|
| Bibliographie: | Galaxies and Cosmology AAS17449 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0004-6256 1538-3881 1538-3881 |
| DOI: | 10.3847/1538-3881/ab3223 |