Spatial Regression Models for Large-Cohort Studies Linking Community Air Pollution and Health

Cohort study designs are often used to assess the association between community-based ambient air pollution concentrations and health outcomes, such as mortality, development and prevalence of disease, and pulmonary function. Typically, a large number of subjects are enrolled in the study in each of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Toxicology and Environmental Health, Part A Ročník 66; číslo 19; s. 1811 - 1824
Hlavní autoři: Cakmak, Sabit, Burnett, Richard, Jerrett, Michael, Goldberg, Mark, Pope, C. Arden, Ma, Renjun, Gultekin, Timur, Thun, Michael, Krewski, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Informa UK Ltd 22.08.2003
Taylor and Francis
Témata:
ISSN:1528-7394, 1087-2620
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cohort study designs are often used to assess the association between community-based ambient air pollution concentrations and health outcomes, such as mortality, development and prevalence of disease, and pulmonary function. Typically, a large number of subjects are enrolled in the study in each of a small number of communities. Fixed-site monitors are used to determine long-term exposure to ambient pollution. The association between community average pollution levels and health is determined after controlling for risk factors of the health outcome measured at the individual level (i.e., smoking). We present a new spatial regression model linking spatial variation in ambient air pollution to health. Health outcomes can be measured as continuous variables (pulmonary function), binary variables (prevalence of disease), or time-to-event data (survival or development of disease). The model incorporates risk factors measured at the individual level, such as smoking, and at the community level, such as air pollution. We demonstrate that the spatial autocorrelation in community health outcomes, an indication of not fully characterizing potentially confounding risk factors to the air pollution--health association, can be accounted for through the inclusion of location in the deterministic component of the model assessing the effects of air pollution on health or through a distance-decay spatial autocorrelation function in the stochastic component of the model, or both. We present a statistical approach that can be implemented for very large cohort studies. Our methods are illustrated with an analysis of the American Cancer Society cohort to determine whether the prevalence of heart disease is associated with concentrations of sulfate particles. From a statistical point of view, it appears that a location surface in the deterministic component of the model was preferred to a distance-decay autocorrelation structure in the model's stochastic component.
AbstractList Cohort study designs are often used to assess the association between community-based ambient air pollution concentrations and health outcomes, such as mortality, development and prevalence of disease, and pulmonary function. Typically, a large number of subjects are enrolled in the study in each of a small number of communities. Fixed-site monitors are used to determine long-term exposure to ambient pollution. The association between community average pollution levels and health is determined after controlling for risk factors of the health outcome measured at the individual level (i.e., smoking). We present a new spatial regression model linking spatial variation in ambient air pollution to health. Health outcomes can be measured as continuous variables (pulmonary function), binary variables (prevalence of disease), or time-to-event data (survival or development of disease). The model incorporates risk factors measured at the individual level, such as smoking, and at the community level, such as air pollution. We demonstrate that the spatial autocorrelation in community health outcomes, an indication of not fully characterizing potentially confounding risk factors to the air pollution--health association, can be accounted for through the inclusion of location in the deterministic component of the model assessing the effects of air pollution on health or through a distance-decay spatial autocorrelation function in the stochastic component of the model, or both. We present a statistical approach that can be implemented for very large cohort studies. Our methods are illustrated with an analysis of the American Cancer Society cohort to determine whether the prevalence of heart disease is associated with concentrations of sulfate particles. From a statistical point of view, it appears that a location surface in the deterministic component of the model was preferred to a distance-decay autocorrelation structure in the model's stochastic component.Cohort study designs are often used to assess the association between community-based ambient air pollution concentrations and health outcomes, such as mortality, development and prevalence of disease, and pulmonary function. Typically, a large number of subjects are enrolled in the study in each of a small number of communities. Fixed-site monitors are used to determine long-term exposure to ambient pollution. The association between community average pollution levels and health is determined after controlling for risk factors of the health outcome measured at the individual level (i.e., smoking). We present a new spatial regression model linking spatial variation in ambient air pollution to health. Health outcomes can be measured as continuous variables (pulmonary function), binary variables (prevalence of disease), or time-to-event data (survival or development of disease). The model incorporates risk factors measured at the individual level, such as smoking, and at the community level, such as air pollution. We demonstrate that the spatial autocorrelation in community health outcomes, an indication of not fully characterizing potentially confounding risk factors to the air pollution--health association, can be accounted for through the inclusion of location in the deterministic component of the model assessing the effects of air pollution on health or through a distance-decay spatial autocorrelation function in the stochastic component of the model, or both. We present a statistical approach that can be implemented for very large cohort studies. Our methods are illustrated with an analysis of the American Cancer Society cohort to determine whether the prevalence of heart disease is associated with concentrations of sulfate particles. From a statistical point of view, it appears that a location surface in the deterministic component of the model was preferred to a distance-decay autocorrelation structure in the model's stochastic component.
Cohort study designs are often used to assess the association between community-based ambient air pollution concentrations and health outcomes, such as mortality, development and prevalence of disease, and pulmonary function. Typically, a large number of subjects are enrolled in the study in each of a small number of communities. Fixed-site monitors are used to determine long-term exposure to ambient pollution. The association between community average pollution levels and health is determined after controlling for risk factors of the health outcome measured at the individual level (i.e., smoking). We present a new spatial regression model linking spatial variation in ambient air pollution to health. Health outcomes can be measured as continuous variables (pulmonary function), binary variables (prevalence of disease), or time-to-event data (survival or development of disease). The model incorporates risk factors measured at the individual level, such as smoking, and at the community level, such as air pollution. We demonstrate that the spatial autocorrelation in community health outcomes, an indication of not fully characterizing potentially confounding risk factors to the air pollution--health association, can be accounted for through the inclusion of location in the deterministic component of the model assessing the effects of air pollution on health or through a distance-decay spatial autocorrelation function in the stochastic component of the model, or both. We present a statistical approach that can be implemented for very large cohort studies. Our methods are illustrated with an analysis of the American Cancer Society cohort to determine whether the prevalence of heart disease is associated with concentrations of sulfate particles. From a statistical point of view, it appears that a location surface in the deterministic component of the model was preferred to a distance-decay autocorrelation structure in the model's stochastic component.
Author Ma, Renjun
Thun, Michael
Goldberg, Mark
Jerrett, Michael
Burnett, Richard
Gultekin, Timur
Krewski, Daniel
Cakmak, Sabit
Pope, C. Arden
Author_xml – sequence: 1
  givenname: Sabit
  surname: Cakmak
  fullname: Cakmak, Sabit
– sequence: 2
  givenname: Richard
  surname: Burnett
  fullname: Burnett, Richard
– sequence: 3
  givenname: Michael
  surname: Jerrett
  fullname: Jerrett, Michael
– sequence: 4
  givenname: Mark
  surname: Goldberg
  fullname: Goldberg, Mark
– sequence: 5
  givenname: C. Arden
  surname: Pope
  fullname: Pope, C. Arden
– sequence: 6
  givenname: Renjun
  surname: Ma
  fullname: Ma, Renjun
– sequence: 7
  givenname: Timur
  surname: Gultekin
  fullname: Gultekin, Timur
– sequence: 8
  givenname: Michael
  surname: Thun
  fullname: Thun, Michael
– sequence: 9
  givenname: Daniel
  surname: Krewski
  fullname: Krewski, Daniel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15164322$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12959845$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vFCEYgImpsR969Wi46G0q3zMcm021Jms0Vo-GMMBsUQZWYKL772XTraYmjScI7_O8H7yn4Cim6AB4jtE5RgN6jTkZeioRRYIx9gictNe-I4Kgo3Zvwa5F2TE4LeUbQggzKZ6AY0wklwPjJ-Dr9VZXrwP85DbZleJThO-TdaHAKWW41nnjulW6SbnC67pY7wpc-_jdxw1cpXleoq87eOEz_JhCWOre19HCK6dDvXkKHk86FPfscJ6BL28uP6-uuvWHt-9WF-vOMCxq1xOOKWKccDOgNoBAo3WTpkL0I0JMOoRHSzWnVpBBcCQHbJ2wxtBRjmSU9Ay8us27zenH4kpVsy_GhaCjS0tRPRWUcD408MUBXMbZWbXNftZ5p-4-pAEvD4AuRocp62h8-ctxLBglpHHsljM5lZLdpIyvej9-zdoHhZHa70fd30_Tzv_R_mR-SDjU8bHtY9Y_Uw5WVb0LKd81d19R9VdtmvyvRh8o-RvbmrKB
CitedBy_id crossref_primary_10_1007_s00477_007_0142_1
crossref_primary_10_1007_s11356_018_1307_9
crossref_primary_10_1016_j_envpol_2018_01_009
crossref_primary_10_1214_10_STS326
crossref_primary_10_1097_EDE_0b013e31819d9501
crossref_primary_10_1016_j_apr_2020_07_005
crossref_primary_10_1007_s00477_007_0133_2
crossref_primary_10_1186_1756_3305_7_216
crossref_primary_10_1186_1476_072X_13_6
crossref_primary_10_1080_15287390590935941
crossref_primary_10_1093_aje_kwi175
crossref_primary_10_1080_15287390306435
crossref_primary_10_1007_s10661_012_2630_0
crossref_primary_10_1016_j_scitotenv_2025_178999
crossref_primary_10_1016_j_tra_2025_104429
crossref_primary_10_1016_j_jacadv_2023_100334
crossref_primary_10_1080_15287390306438
crossref_primary_10_1080_15287390306447
crossref_primary_10_1080_15287390600884644
Cites_doi 10.1002/env.3170060108
10.1007/978-94-017-3048-8_11
10.1002/sim.4780100703
10.2307/3315060
10.1164/ajrccm/151.3_Pt_1.669
10.2113/gsecongeo.58.8.1246
10.2307/2286407
10.1007/978-1-4615-7826-0
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2003
2004 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2003
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/15287390306444
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
Geography
EISSN 1087-2620
EndPage 1824
ExternalDocumentID 12959845
15164322
10_1080_15287390306444
10069678
Genre Journal Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
36B
4.4
53G
5GY
5VS
AAENE
AAGDL
AAGME
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACDHJ
ACGEJ
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ACZPZ
ADCVX
ADGTB
ADOPC
ADXPE
AEISY
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AURDB
AVBZW
AWYRJ
BFWEY
BLEHA
CAG
CCCUG
CE4
COF
CS3
CWRZV
DGEBU
DKSSO
EBS
ECGQY
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX0
O9-
P2P
PCLFJ
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
VH1
YHZ
ZGI
ZGOLN
ZXP
~S~
.GJ
3O-
AAAVZ
AAYXX
ABFMO
ACFTK
ADXHL
CITATION
HF~
LJTGL
ZCG
ZE2
ADYSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c416t-7251304525c8010860bdefa3667b0049e01bd3a53d628650981de6dcc3b9b2b93
IEDL.DBID TFW
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185743200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-7394
IngestDate Thu Oct 02 10:01:17 EDT 2025
Wed Feb 19 01:32:31 EST 2025
Mon Jul 21 09:11:24 EDT 2025
Tue Nov 18 21:59:01 EST 2025
Sat Nov 29 06:46:28 EST 2025
Mon Oct 20 23:43:28 EDT 2025
Mon May 13 12:10:38 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Human
Statistical analysis
Toxicity
Spatial analysis
Cardiovascular disease
Regression analysis
Sulfates
Epidemiology
Suspended particle
Health and environment
Correlation analysis
Heart disease
Cohort study
Air pollution
Public health
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-7251304525c8010860bdefa3667b0049e01bd3a53d628650981de6dcc3b9b2b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12959845
PQID 73632558
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_12959845
proquest_miscellaneous_73632558
crossref_citationtrail_10_1080_15287390306444
pascalfrancis_primary_15164322
crossref_primary_10_1080_15287390306444
informaworld_taylorfrancis_310_1080_15287390306444
PublicationCentury 2000
PublicationDate 2003-08-22
PublicationDateYYYYMMDD 2003-08-22
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-22
  day: 22
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of Toxicology and Environmental Health, Part A
PublicationTitleAlternate J Toxicol Environ Health A
PublicationYear 2003
Publisher Informa UK Ltd
Taylor and Francis
Publisher_xml – name: Informa UK Ltd
– name: Taylor and Francis
References Krewski D. (CIT0011) 2000
Miron J. (CIT0001) 1984
CIT0012
Pope C. A. III (CIT0002) 1995; 151
Kaluzny S. P. (CIT0010) 1998
Cakmak S. (CIT0006) 1998; 8
CIT0003
CIT0013
CIT0005
CIT0004
CIT0007
CIT0008
Hastie T. (CIT0009) 1990
References_xml – ident: CIT0005
  doi: 10.1002/env.3170060108
– start-page: 201
  volume-title: Spatial statistics and models
  year: 1984
  ident: CIT0001
  doi: 10.1007/978-94-017-3048-8_11
– ident: CIT0008
  doi: 10.1002/sim.4780100703
– ident: CIT0013
– volume: 8
  start-page: 129
  year: 1998
  ident: CIT0006
  publication-title: J. Expos. Anal. Environ. Epidemiol.
– volume-title: Generalized additive models
  year: 1990
  ident: CIT0009
– volume-title: Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Paniculate Air Pollution and Mortality. Special report
  year: 2000
  ident: CIT0011
– ident: CIT0003
– ident: CIT0004
  doi: 10.2307/3315060
– volume: 151
  start-page: 669
  year: 1995
  ident: CIT0002
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm/151.3_Pt_1.669
– ident: CIT0012
  doi: 10.2113/gsecongeo.58.8.1246
– ident: CIT0007
  doi: 10.2307/2286407
– volume-title: S+ SpatialStats: User's manual for Windows and Unix
  year: 1998
  ident: CIT0010
  doi: 10.1007/978-1-4615-7826-0
SSID ssj0001496
ssj0001687
Score 1.7472932
Snippet Cohort study designs are often used to assess the association between community-based ambient air pollution concentrations and health outcomes, such as...
SourceID proquest
pubmed
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1811
SubjectTerms Air
Air Pollution - adverse effects
Air. Soil. Water. Waste. Feeding
Algorithms
American Cancer Society
Biological and medical sciences
Cohort Studies
Environment. Living conditions
Environmental pollutants toxicology
Geography
Health
Humans
Linear Models
Medical sciences
Models, Statistical
Public health. Hygiene
Public health. Hygiene-occupational medicine
Regression Analysis
Risk Factors
Sulfates - adverse effects
Sulfates - analysis
Toxicology
Title Spatial Regression Models for Large-Cohort Studies Linking Community Air Pollution and Health
URI https://www.tandfonline.com/doi/abs/10.1080/15287390306444
https://www.ncbi.nlm.nih.gov/pubmed/12959845
https://www.proquest.com/docview/73632558
Volume 66
WOSCitedRecordID wos000185743200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1087-2620
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001687
  issn: 1528-7394
  databaseCode: TFW
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CEQskxGN4hUfxAg2bsUjjV7wcjahYjEYVKqIbFNmxAyONUtRkEP17rmN3QkFlActIthM7x_a5yfU5AK-1rKVtGk6l15Jy2whqJFNU586X3HDhp24wm1Dn5-Vyqecpq7JLaZUhhm6iUMSwVofJbWy3zYh7i1tOqTBWD-SZBylQpPQB3IvZp-tFGIm_HC_kYJQX6lGsyLfijX-0tbM57UiXhpxJ0-GwNdHvYj8hHTam2b3_6dJ9uJvoKDmJ-HkAN3x7CEfzqGe9OSaL8XhWd0yOyHxUut4cwp340Y_Es0wP4XMwOEZAkw_-S8yvbUkwW7vsCPaRnIWsc3q6-oqUn6QERnIWzRtIOqnSb8jJxZrMgwNzwAzBLqX2H8HH2bvF6Xua_BtojTSvpwq5U_gRW4ga90GMnXLrfGOYlGrIsPL51DpmBHPD-dhcI3f20tU1s9oWVrPHcNCuWv8UiKmFUUb4XNspF01hZcmc4FbJ2nnlTAZ0--KqOombB4-Ny2qaNFB3RziDN9flv0VZj70l6a84qPrhQ0pCwW9lq_5Hn0Hxl_Js300mO-gan0lgOItrbgavtnCrcP6Hnzqm9aurrlJMMgwLywyeRBSOdQstdMnFs395oudwe0hbzHEdLV7AQb--8i_hVv29v-jWE7ipluVkmHE_AfldJbA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgkQlxKO8wqP1AZVLrWbjR2JxqipWRSyrFVpELyiyHQcqVdlqkyL23zOOk4YFLQc4RrKd2BnPw_5mPoBXSlppypJT6ZSk3JSCaslSquLCZVxz4UZFSzaRTqfZ2ZmabcGbPhfGwyp9DF2GQhGtrvab2x9G95C4I7Q5WYrBuveeOb8BNwUaWY_nm48_X6thdP3l8CBbqjzfkWJP3pdv_GOwNfO0VrzUoyZ1jQtXBsaLzS5pa5rG9_5rUvfhbueRkuMgQg9gy1W7cDALJa1Xh2Q-ZGjVh-SAzIZi16tduBPO_UhIZ3oIXzzHMco0-ei-BohtRTzf2kVNcJJk4oHn9GTxDb1-0mEYySTwN5AuWaVZkePzJZl5EmYvNgTn1I3_CD6N385PTmlH4UAtenoNTdF98nexibBoCjF8ik3hSs2kTFuQlYtHpmBasKJNkY0Vus9OFtYyo0xiFHsM29Wick-BaCt0qoWLlRlxUSZGZqwQ3KTSFi4tdAS0_3O57eqbe5qNi3zUlUFdX-EIXl-3vwyVPTa2pL8KQt60ZymdGPzWNm9-NBEkf2nPNr1kb028hm8SGNGi2o1gv5e3HFWAv9fRlVtc1XnKJMPIMIvgSRDDoW-ihMq4ePYvX7QPt0_nHyb55N30_XPYaVGMMarV5AVsN8sr9xJu2e_Neb3cazfeT22NKOk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwGP0EAyEkxGXcwmXzAxovs5bGl8SP06ACUVUVKmIvKLJjByZN6dRkiP57PjvuQkHlAR4j2U6cHH_-7ByfA_BKyUqauuZUOiUpN7WgWrKcqtS6gmsu3MgGs4l8Oi1OT9UssirbSKv0a-i6F4oIsdoP7gtbrxlxRzjlFDmu1X3yzPl1uBFUsRDL8_HnqyiMmb8cLmRwyvMVKdbka_XGPxrbmJ02tEs9aVK3-N7q3vBie0YaZqbxvf_p0324G_NRctwD6AFcc80uHMx6QevVIZkP57PaQ3JAZoPU9WoX7vS7fqQ_zPQQvniHY0Q0-ei-9gTbhni3tfOWYB_JxNPO6cniG-b8JDIYyaR3byDxqEq3IsdnSzLzFsweNAS7FNt_BJ_Gb-cn72g0cKAV5nkdzTF58n9iM1HhRIiLp9RYV2smZR4oVi4dGcu0YDYckE0VJs9O2qpiRpnMKPYYdppF454C0ZXQuRYuVWbERZ0ZWTAruMllZV1udQJ0_eHKKqqbe5ON83IURVA333ACr6_KX_S6HltL0l9xUHZhJyWi4LeyZfejSyD7S3m27SZ7G-gankkgtDHoJrC_hluJAcD_1dGNW1y2Zc4kw3VhkcCTHoVD3UwJVXDx7F-eaB9uzd6My8n76YfncDtQGFOMqdkL2OmWl-4l3Ky-d2ftci8Mu5-eQieN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+regression+models+for+large-cohort+studies+linking+community+air+pollution+and+health&rft.jtitle=Journal+of+toxicology+and+environmental+health.+Part+A&rft.au=Cakmak%2C+Sabit&rft.au=Burnett%2C+Richard+T&rft.au=Jerrett%2C+Michael&rft.au=Goldberg%2C+Mark+S&rft.date=2003-08-22&rft.issn=1528-7394&rft.volume=66&rft.issue=16-19&rft.spage=1811&rft_id=info:doi/10.1080%2F15287390306444&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7394&client=summon