Near-term quantum algorithms for linear systems of equations with regression loss functions

Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:New journal of physics Ročník 23; číslo 11; s. 113021 - 113047
Hlavní autori: Huang, Hsin-Yuan, Bharti, Kishor, Rebentrost, Patrick
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.11.2021
Predmet:
ISSN:1367-2630, 1367-2630
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations, with a focus on the two-norm and Tikhonov regression settings. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called ansatz tree. The CQS approach and the ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as 2 300 × 2 300 by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. Our methods may provide benefits for solving linear systems within the reach of near-term quantum devices.
AbstractList Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations, with a focus on the two-norm and Tikhonov regression settings. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called ansatz tree. The CQS approach and the ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as 2 300 × 2 300 by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. Our methods may provide benefits for solving linear systems within the reach of near-term quantum devices.
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations, with a focus on the two-norm and Tikhonov regression settings. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called ansatz tree. The CQS approach and the ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as 2 ^300 × 2 ^300 by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. Our methods may provide benefits for solving linear systems within the reach of near-term quantum devices.
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations, with a focus on the two-norm and Tikhonov regression settings. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called ansatz tree. The CQS approach and the ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as 2300 × 2300 by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. Our methods may provide benefits for solving linear systems within the reach of near-term quantum devices.
Author Rebentrost, Patrick
Huang, Hsin-Yuan
Bharti, Kishor
Author_xml – sequence: 1
  givenname: Hsin-Yuan
  surname: Huang
  fullname: Huang, Hsin-Yuan
  organization: California Institute of Technology Department of Computing and Mathematical Sciences, United States of America
– sequence: 2
  givenname: Kishor
  surname: Bharti
  fullname: Bharti, Kishor
  organization: National University of Singapore Centre for Quantum Technologies, Singapore
– sequence: 3
  givenname: Patrick
  surname: Rebentrost
  fullname: Rebentrost, Patrick
  organization: National University of Singapore Centre for Quantum Technologies, Singapore
BookMark eNp9UcFqGzEUFMWFOmnvPQpyzdZP2l1p9xhMkgZMemlPPQhZ--TKrFe2pCXk7yN72yQEmpPEvJlh3rwzMhv8gIR8ZfCNQdMsWClkwUUJC21KXtsPZP4MzV79P5GzGLcAjDWcz8nve9ShSBh29DDqIY07qvuNDy792UVqfaC9GzKFxseYMEPeUszM5PwQ6UOm0YCbgDFmgPY-ZtE4mNP4M_lodR_xy9_3nPy6uf65_F6sftzeLa9WhamYSIWooDNVWXei7jrbAnYCGLa17FBLq7k2qGtoWC3zYtBaxlsJ0DKsynUGsTwnd5Nv5_VW7YPb6fCovHbqBPiwUTokZ3pUYLVhRkgOEipu7FqaNVZCSt2uoa6a7HUxee2DP4wYk9r6MQw5vuJ1K5uyESAyS0wsE_LGAa0yLp06SUG7XjFQx6OoY-vq2LqajpKF8Eb4L-47kstJ4vz-Jcx_6U9lMJ-B
CODEN NJOPFM
CitedBy_id crossref_primary_10_1016_j_physa_2024_129951
crossref_primary_10_1103_PhysRevA_105_012423
crossref_primary_10_1088_1402_4896_ad664c
crossref_primary_10_1103_gydb_9jt2
crossref_primary_10_1103_PhysRevA_111_052619
crossref_primary_10_1103_PhysRevResearch_4_013173
crossref_primary_10_1049_enc2_12107
crossref_primary_10_1007_s40509_024_00323_w
crossref_primary_10_1007_s11128_023_04020_2
crossref_primary_10_1103_PhysRevResearch_7_023254
crossref_primary_10_1002_qute_202300419
crossref_primary_10_1038_s41598_025_08887_2
crossref_primary_10_1002_andp_202200082
crossref_primary_10_1016_j_oceaneng_2023_116494
crossref_primary_10_1038_s41598_022_14906_3
crossref_primary_10_1103_PhysRevA_111_012418
crossref_primary_10_1007_s43673_022_00058_z
crossref_primary_10_1038_s41377_025_01769_2
crossref_primary_10_1103_PhysRevResearch_7_013007
crossref_primary_10_1088_2058_9565_ac83e7
crossref_primary_10_1109_TQE_2023_3255206
crossref_primary_10_1103_PhysRevResearch_6_013027
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1109_ACCESS_2024_3432330
crossref_primary_10_1016_j_rser_2022_112493
crossref_primary_10_3389_fmech_2022_914241
crossref_primary_10_1108_HFF_05_2023_0265
crossref_primary_10_1038_s41534_024_00875_0
crossref_primary_10_1002_andp_202300212
crossref_primary_10_1088_1572_9494_ad8bae
crossref_primary_10_1103_PhysRevLett_130_240601
crossref_primary_10_1103_PhysRevResearch_5_023174
crossref_primary_10_1007_s11128_024_04420_y
crossref_primary_10_2478_qic_2025_0012
crossref_primary_10_1002_qute_202300042
Cites_doi 10.1103/physrevlett.118.010501
10.1137/s1052623496303470
10.1103/physrevx.7.021050
10.1126/science.273.5278.1073
10.22331/q-2019-05-13-140
10.1021/j100342a008
10.1002/qua.560120850
10.1038/s41567-018-0318-2
10.1088/1367-2630/18/2/023023
10.1038/s41586-019-1666-5
10.1126/science.aao4309
10.1080/00401706.1970.10488634
10.1103/physrevlett.122.060504
10.1007/s00220-016-2706-8
10.22331/q-2019-07-12-163
10.1103/physrevx.8.011021
10.22331/q-2018-08-06-79
10.1063/1.1727484
10.1007/s11128-020-02748-9
10.1063/1.443164
10.1214/15-aop1025
10.3390/a12020034
10.1038/s41534-019-0167-6
10.1038/s41467-018-07090-4
10.1103/physrevlett.103.150502
10.1137/16m1087072
10.1126/science.abe8770
10.1038/nature23458
10.1103/physreva.97.022304
10.1103/physrevlett.114.090502
10.1103/physreva.92.042303
10.1038/nature23879
10.1038/s41534-019-0187-2
10.1088/2058-9565/aab822
10.1038/ncomms5213
10.1103/physrevx.6.031007
ContentType Journal Article
Copyright 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/ac325f
DatabaseName IOP_英国物理学会OA刊
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: IOP_英国物理学会OA刊
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_0fac1c67207042cfb7cbe4677a9b0548
10_1088_1367_2630_ac325f
njpac325f
GrantInformation_xml – fundername: National Research Foundation Singapore
  funderid: https://doi.org/10.13039/501100001381
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c416t-640dc435d65ddf90ed601e957dea7fa2acea508157c3209f12970091e43b157e3
IEDL.DBID O3W
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719092400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-2630
IngestDate Fri Oct 03 12:51:32 EDT 2025
Mon Jun 30 04:19:22 EDT 2025
Sat Nov 29 02:51:27 EST 2025
Tue Nov 18 21:35:50 EST 2025
Wed Aug 21 03:34:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-640dc435d65ddf90ed601e957dea7fa2acea508157c3209f12970091e43b157e3
Notes NJP-112941.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1367-2630/ac325f
PQID 2597838606
PQPubID 4491272
PageCount 27
ParticipantIDs proquest_journals_2597838606
crossref_citationtrail_10_1088_1367_2630_ac325f
doaj_primary_oai_doaj_org_article_0fac1c67207042cfb7cbe4677a9b0548
iop_journals_10_1088_1367_2630_ac325f
crossref_primary_10_1088_1367_2630_ac325f
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bartlett (njpac325fbib58) 1989; 93
Preskill (njpac325fbib7) 2018; 2
Bharti (njpac325fbib16) 2021
Bravo-Prieto (njpac325fbib30) 2019
Colless (njpac325fbib52) 2018; 8
Hadfield (njpac325fbib45) 2019; 12
Bouland (njpac325fbib15) 2019; 15
Lagarias (njpac325fbib31) 1998; 9
Harrow (njpac325fbib1) 2009; 103
Farhi (njpac325fbib34) 2000
McArdle (njpac325fbib41) 2018
Cerezo (njpac325fbib17) 2020
Low (njpac325fbib26) 2017; 118
Preskill (njpac325fbib8) 2012
Purvis (njpac325fbib57) 1982; 76
Subaşı (njpac325fbib29) 2019; 122
Ng (njpac325fbib39) 2004
Berry (njpac325fbib36) 2015
LaRose (njpac325fbib59) 2019; 5
van Apeldoorn (njpac325fbib4) 2017
Farhi (njpac325fbib22) 2016
Bandeira (njpac325fbib46) 2016; 44
An (njpac325fbib28) 2019
Hoerl (njpac325fbib40) 1970; 12
Aaronson (njpac325fbib9) 2016
Aaronson (njpac325fbib14) 2011
Harrow (njpac325fbib10) 2017; 549
Xu (njpac325fbib37) 2019
Monkhorst (njpac325fbib56) 1977; 12
Li (njpac325fbib5) 2019
Neill (njpac325fbib11) 2018; 360
Kandala (njpac325fbib20) 2017; 549
Boyd (njpac325fbib49) 2004
Berry (njpac325fbib24) 2015; 114
O’Malley (njpac325fbib51) 2016; 6
Chia (njpac325fbib50) 2019
Brandão (njpac325fbib61) 2016; 346
Farhi (njpac325fbib21) 2014
Zhong (njpac325fbib13) 2020; 370
Morales (njpac325fbib63) 2020; 19
McClean (njpac325fbib38) 2018; 9
Childs (njpac325fbib23) 2015
Li (njpac325fbib32) 2017; 7
McArdle (njpac325fbib33) 2019; 5
Arute (njpac325fbib12) 2019; 574
Low (njpac325fbib27) 2019; 3
Khatri (njpac325fbib60) 2019; 3
Wang (njpac325fbib54) 2018; 97
van Apeldoorn (njpac325fbib2) 2018
Lloyd (njpac325fbib35) 1996; 273
Chakrabarti (njpac325fbib3) 2018
Čížek (njpac325fbib55) 1966; 45
Childs (njpac325fbib47) 2017; 46
Nocedal (njpac325fbib48) 2006
Smith (njpac325fbib44) 2016
Brandão (njpac325fbib6) 2019
Garcia-Saez (njpac325fbib43) 2018
Wecker (njpac325fbib42) 2015; 92
Gilyén (njpac325fbib25) 2019
Peruzzo (njpac325fbib18) 2014; 5
McClean (njpac325fbib19) 2016; 18
Lloyd (njpac325fbib62) 2018
Moll (njpac325fbib53) 2018; 3
References_xml – start-page: p 78
  year: 2004
  ident: njpac325fbib39
– year: 2014
  ident: njpac325fbib21
– year: 2016
  ident: njpac325fbib44
  article-title: A practical quantum instruction set architecture
– volume: 118
  year: 2017
  ident: njpac325fbib26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.118.010501
– volume: 9
  start-page: 112
  year: 1998
  ident: njpac325fbib31
  publication-title: SIAM J. Optim.
  doi: 10.1137/s1052623496303470
– volume: 7
  year: 2017
  ident: njpac325fbib32
  publication-title: Phys. Rev. X
  doi: 10.1103/physrevx.7.021050
– year: 2020
  ident: njpac325fbib17
– year: 2019
  ident: njpac325fbib28
– volume: 273
  start-page: 1073
  year: 1996
  ident: njpac325fbib35
  publication-title: Science
  doi: 10.1126/science.273.5278.1073
– volume: 3
  start-page: 140
  year: 2019
  ident: njpac325fbib60
  publication-title: Quantum
  doi: 10.22331/q-2019-05-13-140
– year: 2018
  ident: njpac325fbib43
– volume: 93
  start-page: 1697
  year: 1989
  ident: njpac325fbib58
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100342a008
– year: 2015
  ident: njpac325fbib36
– volume: 12
  start-page: 421
  year: 1977
  ident: njpac325fbib56
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560120850
– year: 2018
  ident: njpac325fbib62
– volume: 15
  start-page: 159
  year: 2019
  ident: njpac325fbib15
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0318-2
– volume: 18
  year: 2016
  ident: njpac325fbib19
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– volume: 574
  start-page: 505
  year: 2019
  ident: njpac325fbib12
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 360
  start-page: 195
  year: 2018
  ident: njpac325fbib11
  publication-title: Science
  doi: 10.1126/science.aao4309
– year: 2006
  ident: njpac325fbib48
– volume: 12
  start-page: 55
  year: 1970
  ident: njpac325fbib40
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 122
  year: 2019
  ident: njpac325fbib29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.122.060504
– volume: 346
  start-page: 397
  year: 2016
  ident: njpac325fbib61
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2706-8
– year: 2019
  ident: njpac325fbib6
– volume: 3
  start-page: 163
  year: 2019
  ident: njpac325fbib27
  publication-title: Quantum
  doi: 10.22331/q-2019-07-12-163
– volume: 8
  year: 2018
  ident: njpac325fbib52
  publication-title: Phys. Rev. X
  doi: 10.1103/physrevx.8.011021
– year: 2021
  ident: njpac325fbib16
– year: 2019
  ident: njpac325fbib25
– year: 2015
  ident: njpac325fbib23
– volume: 2
  start-page: 79
  year: 2018
  ident: njpac325fbib7
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 45
  start-page: 4256
  year: 1966
  ident: njpac325fbib55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1727484
– volume: 19
  start-page: 291
  year: 2020
  ident: njpac325fbib63
  publication-title: Quant. Inf. Process.
  doi: 10.1007/s11128-020-02748-9
– volume: 76
  start-page: 1910
  year: 1982
  ident: njpac325fbib57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443164
– year: 2019
  ident: njpac325fbib50
– volume: 44
  start-page: 2479
  year: 2016
  ident: njpac325fbib46
  publication-title: Ann. Probab.
  doi: 10.1214/15-aop1025
– volume: 12
  start-page: 34
  year: 2019
  ident: njpac325fbib45
  publication-title: Algorithms
  doi: 10.3390/a12020034
– year: 2018
  ident: njpac325fbib3
– year: 2019
  ident: njpac325fbib37
– volume: 5
  start-page: 8
  year: 2019
  ident: njpac325fbib59
  publication-title: npj Quantum Information
  doi: 10.1038/s41534-019-0167-6
– volume: 9
  start-page: 4812
  year: 2018
  ident: njpac325fbib38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07090-4
– year: 2018
  ident: njpac325fbib2
– year: 2000
  ident: njpac325fbib34
– volume: 103
  year: 2009
  ident: njpac325fbib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.103.150502
– volume: 46
  start-page: 1920
  year: 2017
  ident: njpac325fbib47
  publication-title: SIAM J. Comput.
  doi: 10.1137/16m1087072
– year: 2011
  ident: njpac325fbib14
– year: 2019
  ident: njpac325fbib30
– volume: 370
  start-page: 1460
  year: 2020
  ident: njpac325fbib13
  publication-title: Science
  doi: 10.1126/science.abe8770
– year: 2016
  ident: njpac325fbib22
– year: 2019
  ident: njpac325fbib5
– year: 2017
  ident: njpac325fbib4
– volume: 549
  start-page: 203
  year: 2017
  ident: njpac325fbib10
  publication-title: Nature
  doi: 10.1038/nature23458
– year: 2018
  ident: njpac325fbib41
– volume: 97
  year: 2018
  ident: njpac325fbib54
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.97.022304
– volume: 114
  year: 2015
  ident: njpac325fbib24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.114.090502
– volume: 92
  year: 2015
  ident: njpac325fbib42
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.92.042303
– volume: 549
  start-page: 242
  year: 2017
  ident: njpac325fbib20
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 5
  start-page: 1
  year: 2019
  ident: njpac325fbib33
  publication-title: npj Quantum Information
  doi: 10.1038/s41534-019-0187-2
– year: 2016
  ident: njpac325fbib9
– year: 2004
  ident: njpac325fbib49
– volume: 3
  year: 2018
  ident: njpac325fbib53
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aab822
– year: 2012
  ident: njpac325fbib8
– volume: 5
  start-page: 4213
  year: 2014
  ident: njpac325fbib18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 6
  year: 2016
  ident: njpac325fbib51
  publication-title: Phys. Rev. X
  doi: 10.1103/physrevx.6.031007
SSID ssj0011822
Score 2.617691
Snippet Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113021
SubjectTerms Algorithms
Heuristic methods
Linear systems
Machine learning
Mathematical analysis
near-term quantum algorithms
Optimization
Physics
quantum computing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQBRIL4ikKBXmAgcFqEidxPAKiYkAVA6BKDJGfpVJJ2qbl93N20gJCKgur4yiX89n3nX3-DqELE3KhqBGE6SAmsaWSiIRropiJraAyDX3luZcH1u9ngwF__Fbqy-WE1fTAteK6gRUqVCmLwDbjSFnJlDQwu5ngEuCGv-YbML4MpprzA0DNUXMoCdOo63jJSJTSoAuCRYn94YQ8Vz-4llE5-bUgey_T20U7DTzE17VYe2jDFPtoy6dpquoAvfbBMIlbTfF0ATpZvGMxHpYQ4L-9VxjwJ3aoUcxwTdBc4dJiM63ZvCvs9lzxzAzr1NcCj0E27Bybf3yInnt3T7f3pCmPQBSgqDlJ40ArQDs6TbS2PDAagivDE6aNYFZEQhkB8CtMGPxzwC14dgaIKjQxldBo6BFqFWVhjhFONMtSqQDq2SQWnEqVJSaSAKZiSS0N2qi71FeuGu5wV8JinPsz7CzLnYZzp-G81nAbXa3emNS8GWv63rghWPVzjNe-Aewgb-wg_8sO2ugSBjBvZmC15mOd5RB_dYYYkGU0g2Du5D9kOUXbkUt98VcWO6g1ny3MGdpUH_NRNTv3lvoJCL3rzw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RbStxAfpALBTkQzn0YOXhJE5OCBAVSHS1h1K16iHyc1tpu9lNdvn9jB3vVlWlPXGNncTxjGe-eMbfAJyapBKKGUG5jjOaWSapyCtNFTeZFUwWia88d_Wbj0bl9XU1Dseju5BWubaJ3lD3bM8ubxuNcKQb5XbMIwTtvGQlou8v8wV1NaRcrDUU1NiBXUe8FQ9gd_zrYnyziSoglk5DqBIXV-TYymhasDjC4aa5feKaPIM_Opz7Zv7MTHvfc_76_476DbwKGJR87ZXmAF6Y2SHs-1xQ1R3B7Qi1nzqTTRYrnPjVAxHTCT5neffQEQS5xEFT0ZKeBbojjSVm0VOGd8Rt7JLWTPr82hmZ4qcS5z198zH8Of9x-f0nDTUYqEKotqRFFmuFkEoXuda2io3GPzhT5Vwbwa1IhTICMV6Sc5zCuLIIHzjCtsRkTOJFw97CYNbMzDsgueZlIRXiSZtnomJSlblJJSK2TDLL4iFE6-mvVSAod3UyprUPlJdl7QRWO4HVvcCGcLa5Y96Tc2zp-81JdNPP0Wr7C007qcMqrWMrVKIKnqIhzFJlJVfSoCvhopKIbcshfEZ9qMMy77a87GStDo-dH6X_fnvzB3iZuswZf-LxBAbLdmU-wp76u7zv2k9Bqf8BawkG9A
  priority: 102
  providerName: ProQuest
Title Near-term quantum algorithms for linear systems of equations with regression loss functions
URI https://iopscience.iop.org/article/10.1088/1367-2630/ac325f
https://www.proquest.com/docview/2597838606
https://doaj.org/article/0fac1c67207042cfb7cbe4677a9b0548
Volume 23
WOSCitedRecordID wos000719092400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: IOP_英国物理学会OA刊
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: O3W
  dateStart: 19981217
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RaKVegL7U5bHyoT304G4Sx7GjngAtAqlsV1UfVD1EflKkZReS3R757YydsBVqhSpxiaJ4HMczjuezPf4M8MalpTLMKSpsktPcM00VLy01wuVeMV2k8eS5bx_FaCRPT8vxCnxY7oWZXXZd_3u8bYmCWxV2AXFyEEjGaFawZIClZNw_gjUmOQ_xfJ_Y9-USAgLnrFuX_FeuO34o0vWjd8Ei_-qTo6M53HjQJ27CeocvyV4r-gxW3PQ5PIlxnqZ5AT9H2LJp6I7J1QKVurgganI2q8_nvy4aggCWBNipatIyPDdk5om7aunAGxImbUntztrY2SmZYM1I8Iwx-SV8PRx-OTii3fkK1CAMm9MiT6xBuGQLbq0vE2dxdOZKLqxTwqtMGacQv6VcYCWS0iM0EAjJUpczjQ8dewWr09nUvQbCrZCFNogVPc9VybSR3GUa0ViumWdJDwa32q5MRz4ezsCYVHERXMoqqKwKKqtalfXg3TLHZUu8cY_sfjDgUi5QZscHaJuqs02VeGVSU4gMO7k8M14Lox26CaFKjbhV9uAtmrPqfuHmnsJ2bhvIH2EcRArJJI4Gt_7zNdvwNAvhMXFb4w6szuuF24XH5vf8vKn7sLY_HI0_9-MUAV5Prof92LwxZXx8Mv5xA-5W-Yw
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXRBceKMtLOADe-BgNbGTODkgxGu11XarHha0iEPws7tSt2mTFsSf4jcyzqMrhNTbHrjaTuLYn2c-e8YzAK9smEnNraTCBBGNHFdUxpmhWtjISa6SsM4892UkxuP07Cyb7MDv7i6Md6vsZGItqE2h_Rn5AGm6SHmKfPvtYkl91ihvXe1SaDSwOLa_fuKWrXoz_Ijze8DY4afTD0e0zSpANZKPFU2iwGgkCSaJjXFZYA3uSWwWC2OlcJJJbSWyljAWmrMgc6gQBRKR0EZcYaHl-N4bsBsh2IMe7E6GJ5OvG7sFsnXWGkNx-Q58PDTKEh4McEBY7P5SfnWOAFRpF8XiH0VQa7fDe__buNyHuy2PJu8a4D-AHTt_CLdqf1ZdPYJvY-wS9WqHLNcInvUlkbMp9nt1flkRJOrE02tZkiaSdUUKR-yyCXteEX84TUo7bXyE52SGg0k8A6irH8Pna_mzJ9CbF3O7ByQ2Ik2URk7s4khmXOk0tkwh64wUdzzow6Cb4Fy3QdZ9ro9ZXhv70zT3kMg9JPIGEn14vXli0QQY2dL2vcfMpp0PDV4XFOU0byVNHjipQ50IhsI8YtopoZVFdShkppCfp304QMTlraiqtnxsvwPcVeMrtD3dXv0Sbh-dnozy0XB8_AzuMO8JVN_g3Ifeqlzb53BT_1hdVOWLdgkR-H7d6PwDQthXeg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61haJeyquoCwV8gAMHs0mcxM6RPlYgqqUHHpU4WH62lba722SX38_YcbdCoAqpt8gZx_GM4_kcj78BeOPyRhnmFOU2K2npmaaqaiw13JVeMV3nMfPc92M-HovT0-Yk5TmNZ2Fm8zT1v8fLnii4V2EKiBPDQDJGi5plQ2ylqPxwbv063As8JSGFwRf2Y7WNgOC5SHuT_6r5hy-KlP3oYbDZv-bl6GxGD-_8mo9gO-FM8qEXfwxrbvoENmO8p-mews8xjnAapmVytUTlLi-JmpzN2ovF-WVHEMiSAD9VS3qm547MPHFXPS14R8LPW9K6sz6Gdkom2DsSPGS8vQPfRkdfDz7SlGeBGoRjC1qXmTUIm2xdWeubzFlcpbmm4tYp7lWhjFOI4_KKY0eyxiNE4AjNclcyjYWOPYON6WzqdoFUlotaG8SMvipVw7QRlSs0orJSM8-yAQyvNS5NIiEPuTAmMm6GCyGD2mRQm-zVNoB3qxrznoDjFtn9YMSVXKDOjgVoH5nsIzOvTG5qXuBkVxbGa260Q3fBVaMRv4oBvEWTyvQpd7c0tnc9SG6EcTHJBRO4Knz-n495DQ9ODkfy-NP48wvYKkLETDzpuAcbi3bpXsJ982tx0bWv4sj-DWaB-Xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-term+quantum+algorithms+for+linear+systems+of+equations+with+regression+loss+functions&rft.jtitle=New+journal+of+physics&rft.au=Huang%2C+Hsin-Yuan&rft.au=Bharti%2C+Kishor&rft.au=Rebentrost%2C+Patrick&rft.date=2021-11-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=23&rft.issue=11&rft_id=info:doi/10.1088%2F1367-2630%2Fac325f&rft.externalDocID=njpac325f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon