Data mining-based algorithm for storage location assignment in a randomised warehouse
Data mining has long been applied in information extraction for a wide range of applications such as customer relationship management in marketing. In the retailing industry, this technique is used to extract the consumers buying behaviour when customers frequently purchase similar products together...
Gespeichert in:
| Veröffentlicht in: | International journal of production research Jg. 55; H. 14; S. 4035 - 4052 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Taylor & Francis
18.07.2017
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0020-7543, 1366-588X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data mining has long been applied in information extraction for a wide range of applications such as customer relationship management in marketing. In the retailing industry, this technique is used to extract the consumers buying behaviour when customers frequently purchase similar products together; in warehousing, it is also beneficial to store these correlated products nearby so as to reduce the order picking operating time and cost. In this paper, we present a data mining-based algorithm for storage location assignment of piece picking items in a randomised picker-to-parts warehouse by extracting and analysing the association relationships between different products in customer orders. The algorithm aims at minimising the total travel distances for both put-away and order picking operations. Extensive computational experiments based on synthetic data that simulates the operations of a computer and networking products spare parts warehouse in Hong Kong have been conducted to test the effectiveness and applicability of the proposed algorithm. Results show that our proposed algorithm is more efficient than the closest open location and purely dedicated storage allocation systems in minimising the total travel distances. The proposed storage allocation algorithm is further evaluated with experiments simulating larger scale warehouse operations. Similar results on the performance comparison among the three storage approaches are observed. It supports the proposed storage allocation algorithm and is applicable to improve the warehousing operation efficiency if items have strong association among each other. |
|---|---|
| AbstractList | Data mining has long been applied in information extraction for a wide range of applications such as customer relationship management in marketing. In the retailing industry, this technique is used to extract the consumers buying behaviour when customers frequently purchase similar products together; in warehousing, it is also beneficial to store these correlated products nearby so as to reduce the order picking operating time and cost. In this paper, we present a data mining-based algorithm for storage location assignment of piece picking items in a randomised picker-to-parts warehouse by extracting and analysing the association relationships between different products in customer orders. The algorithm aims at minimising the total travel distances for both put-away and order picking operations. Extensive computational experiments based on synthetic data that simulates the operations of a computer and networking products spare parts warehouse in Hong Kong have been conducted to test the effectiveness and applicability of the proposed algorithm. Results show that our proposed algorithm is more efficient than the closest open location and purely dedicated storage allocation systems in minimising the total travel distances. The proposed storage allocation algorithm is further evaluated with experiments simulating larger scale warehouse operations. Similar results on the performance comparison among the three storage approaches are observed. It supports the proposed storage allocation algorithm and is applicable to improve the warehousing operation efficiency if items have strong association among each other. |
| Author | Pang, King-Wah Chan, Hau-Ling |
| Author_xml | – sequence: 1 givenname: King-Wah surname: Pang fullname: Pang, King-Wah email: anthony.pang@polyu.edu.hk organization: Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University – sequence: 2 givenname: Hau-Ling surname: Chan fullname: Chan, Hau-Ling organization: The Institute of Textiles and Clothing, The Hong Kong Polytechnic University |
| BookMark | eNqFkE1LAzEQhoNUsFZ_ghDwvDXZzWZTvCj1EwpeLHgLyW6yTdlNapJS-u_N2nrxoHMZBt5nZnjOwcg6qwC4wmiKEUM3COWoKkkxzRGmU5wTQnF5Asa4oDQrGfsYgfGQyYbQGTgPYY1SlYyMwfJBRAF7Y41tMymCaqDoWudNXPVQOw9DdF60CnauFtE4C0UIprW9shGaNEEvbON6M5A74dXKbYO6AKdadEFdHvsELJ8e3-cv2eLt-XV-v8hqgmlMv1WaVFI2VNea5BphTBSVZU5opRWRIp8xppiiDSE1xYppmctmRrGuJEMNLSbg-rB3493nVoXI127rbTrJ8Qyhgs5KRFKqPKRq70LwSvONN73we44RHwzyH4N8MMiPBhN3-4urTfyWEL0w3b_03YE2Nnnsxc75ruFR7DvndZJWm8CLv1d8AUqPjDo |
| CitedBy_id | crossref_primary_10_1080_00207543_2017_1304663 crossref_primary_10_3390_su16051742 crossref_primary_10_1007_s00170_021_08035_w crossref_primary_10_1016_j_cie_2019_01_027 crossref_primary_10_20965_jaciii_2019_p0362 crossref_primary_10_1016_j_cie_2024_110551 crossref_primary_10_3390_sym15010081 crossref_primary_10_1016_j_ejor_2020_08_024 crossref_primary_10_1109_ACCESS_2024_3385791 crossref_primary_10_1007_s00170_018_2967_9 crossref_primary_10_1016_j_omega_2023_102850 crossref_primary_10_3390_w11081537 crossref_primary_10_3390_app11041839 crossref_primary_10_1109_ACCESS_2024_3386887 crossref_primary_10_3390_su16145953 crossref_primary_10_1109_ACCESS_2020_3031585 crossref_primary_10_1080_00207543_2019_1630770 crossref_primary_10_1080_00207543_2020_1766714 crossref_primary_10_1016_j_procs_2025_02_044 crossref_primary_10_1016_j_cie_2019_06_011 crossref_primary_10_1016_j_cie_2023_109236 crossref_primary_10_1080_00207543_2025_2542965 crossref_primary_10_1016_j_eswa_2025_126812 crossref_primary_10_1016_j_cor_2021_105556 crossref_primary_10_1016_j_tre_2021_102359 crossref_primary_10_1080_17483107_2023_2233986 crossref_primary_10_3390_pr9061061 crossref_primary_10_1016_j_tre_2024_103933 crossref_primary_10_1016_j_procs_2024_02_096 crossref_primary_10_1016_j_micpro_2020_103356 crossref_primary_10_1080_00207543_2019_1567953 crossref_primary_10_1155_2020_2404515 crossref_primary_10_1016_j_cie_2023_109700 crossref_primary_10_1016_j_tre_2021_102508 crossref_primary_10_1108_IJLM_05_2021_0277 crossref_primary_10_1016_j_omega_2023_102871 crossref_primary_10_1080_00207543_2018_1443230 crossref_primary_10_1109_TASE_2020_2979897 crossref_primary_10_1109_TASE_2022_3178934 crossref_primary_10_1080_00207543_2017_1421789 crossref_primary_10_1016_j_cie_2019_106186 crossref_primary_10_1080_23302674_2023_2228447 crossref_primary_10_1109_ACCESS_2021_3129585 crossref_primary_10_1080_00207543_2020_1856434 crossref_primary_10_1016_j_ijpe_2019_107550 crossref_primary_10_1016_j_cie_2021_107511 crossref_primary_10_1016_j_tre_2020_102158 crossref_primary_10_1016_j_ifacol_2022_09_579 crossref_primary_10_1080_00207543_2021_1900617 crossref_primary_10_3390_app14093628 crossref_primary_10_1080_00207543_2017_1336680 crossref_primary_10_1016_j_ejor_2025_08_018 crossref_primary_10_1016_j_sasc_2024_200156 crossref_primary_10_1016_j_omega_2021_102565 crossref_primary_10_1016_j_cie_2024_110627 |
| Cites_doi | 10.1016/0167-188X(88)90014-6 10.1080/00207549608904908 10.1080/00207543.2013.784419 10.1080/00207548808947853 10.1080/00207548108956683 10.1080/00207549308956888 10.1080/13675567.2013.861896 10.1016/j.eswa.2011.03.088 10.1080/13675560903075943 10.1016/S0167-739X(97)00019-8 10.1016/S0305-0548(99)00026-X 10.1080/00207543.2011.588621 10.1016/S0925-5273(98)00114-5 10.1080/00207540802555736 10.1080/00207543.2015.1083624 10.1080/00207549608904926 10.1080/00207543.2010.543939 10.1016/j.eswa.2004.12.006 10.1016/S0377-2217(00)00177-6 10.1080/00207543.2014.944282 10.1080/00207549208948155 10.1080/00207548308942392 10.1080/0305215X.2014.969727 10.1080/00207548908942610 10.1016/0377-2217(92)90235-2 10.1080/17517575.2010.537784 10.1016/j.cie.2012.06.021 10.1080/03155986.1987.11732029 10.1145/335191 |
| ContentType | Journal Article |
| Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 2016 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1080/00207543.2016.1244615 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1366-588X |
| EndPage | 4052 |
| ExternalDocumentID | 10_1080_00207543_2016_1244615 1244615 |
| Genre | Article |
| GrantInformation_xml | – fundername: The Hong Kong Polytechnic University grantid: PolyU 5244/11E |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EJD EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c416t-587f47bbd6fcf42f0114e6b52467fe4ba2988e8e6d44c61e8fb2bd961f7b80d63 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400511400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7543 |
| IngestDate | Mon Nov 10 03:02:00 EST 2025 Sat Nov 29 05:36:12 EST 2025 Tue Nov 18 21:53:46 EST 2025 Mon Oct 20 23:39:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-587f47bbd6fcf42f0114e6b52467fe4ba2988e8e6d44c61e8fb2bd961f7b80d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://ira.lib.polyu.edu.hk/bitstream/10397/98341/1/Pang_Data_Mining-Based_Algorithm.pdf |
| PQID | 1900369504 |
| PQPubID | 30924 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_1900369504 crossref_primary_10_1080_00207543_2016_1244615 informaworld_taylorfrancis_310_1080_00207543_2016_1244615 crossref_citationtrail_10_1080_00207543_2016_1244615 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-18 |
| PublicationDateYYYYMMDD | 2017-07-18 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of production research |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | CIT0030 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Han J. (CIT0021) 2001 Gu J. (CIT0019) 2005 Tompkins J. A. (CIT0040) 2003 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 CIT0039 CIT0041 CIT0020 CIT0042 CIT0022 Agrawal R. (CIT0002) 1993 Chiang D. M. H. (CIT0007) 2008 Li J. (CIT0029) 2016 CIT0003 Frazelle E. A. (CIT0015) 1989; 21 CIT0025 Chan H. L. (CIT0005) 2010 Cristofor L. (CIT0010) 2002 CIT0027 CIT0004 CIT0026 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0025 doi: 10.1016/0167-188X(88)90014-6 – year: 2002 ident: CIT0010 publication-title: Computer Science Department Technical Report TR-02-01 – volume-title: Data Mining: Concepts and Techniques year: 2001 ident: CIT0021 – ident: CIT0032 doi: 10.1080/00207549608904908 – ident: CIT0036 doi: 10.1080/00207543.2013.784419 – volume-title: Facilities Planning year: 2003 ident: CIT0040 – ident: CIT0026 doi: 10.1080/00207548808947853 – year: 2016 ident: CIT0029 publication-title: International Journal of Advanced Manufacturing Technology – ident: CIT0011 doi: 10.1080/00207548108956683 – ident: CIT0027 doi: 10.1080/00207549308956888 – ident: CIT0033 doi: 10.1080/13675567.2013.861896 – ident: CIT0034 doi: 10.1016/j.eswa.2011.03.088 – ident: CIT0004 doi: 10.1080/13675560903075943 – ident: CIT0039 doi: 10.1016/S0167-739X(97)00019-8 – year: 2005 ident: CIT0019 publication-title: The Forward Reserve Warehouse Sizing and Dimensioning Problem – ident: CIT0031 doi: 10.1016/S0305-0548(99)00026-X – ident: CIT0018 doi: 10.1080/00207543.2011.588621 – ident: CIT0041 doi: 10.1016/S0925-5273(98)00114-5 – ident: CIT0042 doi: 10.1080/00207540802555736 – ident: CIT0020 doi: 10.1080/00207543.2015.1083624 – year: 2010 ident: CIT0005 publication-title: Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management – ident: CIT0038 doi: 10.1080/00207549608904926 – ident: CIT0016 doi: 10.1080/00207543.2010.543939 – ident: CIT0006 doi: 10.1016/j.eswa.2004.12.006 – ident: CIT0037 doi: 10.1016/S0377-2217(00)00177-6 – ident: CIT0003 doi: 10.1080/00207543.2014.944282 – ident: CIT0028 doi: 10.1080/00207549208948155 – ident: CIT0012 doi: 10.1080/00207548308942392 – start-page: 2418 year: 2008 ident: CIT0007 publication-title: Proceedings of the 9th Asia Pacific Industrial Engineering and Management Systems Conference – volume: 21 start-page: 33 issue: 4 year: 1989 ident: CIT0015 publication-title: Industrial Engineering – ident: CIT0035 doi: 10.1080/0305215X.2014.969727 – ident: CIT0013 doi: 10.1080/00207548908942610 – ident: CIT0017 doi: 10.1016/0377-2217(92)90235-2 – ident: CIT0008 doi: 10.1080/17517575.2010.537784 – start-page: 254 year: 1993 ident: CIT0002 publication-title: ACM SIGMOD Conference – ident: CIT0009 doi: 10.1016/j.cie.2012.06.021 – ident: CIT0030 doi: 10.1080/03155986.1987.11732029 – ident: CIT0022 doi: 10.1145/335191 |
| SSID | ssj0000584 |
| Score | 2.4817247 |
| Snippet | Data mining has long been applied in information extraction for a wide range of applications such as customer relationship management in marketing. In the... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4035 |
| SubjectTerms | Algorithms association rules Computer simulation Customer relationship management Customer satisfaction Data mining Information retrieval Materials handling Order picking put-away Randomization Retailing Spare parts storage location assignment problem Warehouse management systems Warehouses warehousing operations |
| Title | Data mining-based algorithm for storage location assignment in a randomised warehouse |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2016.1244615 https://www.proquest.com/docview/1900369504 |
| Volume | 55 |
| WOSCitedRecordID | wos000400511400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: TFW dateStart: 19610101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sruLEcZwRARVTxdCKbpEd222kPlCTwt_Hl0dphVAHGDOcbZ3t-87O5-8Qujeh5qGWgkSUScKEVMRlCTEJU-qlnvF04FXFJqJ-X4xG8WvNJsxrWiWcoW0lFFHGatjcUuUNIw5ecDugYwEQs3gXAIqXz8xdZg-kvkHv7TsWh6LWYfYImDRveH5rZQudtrRLf8TqEoB6x_8w9BN0VGef-KFaLqdoz8zP0OGGJuE5Gj7JQuJZWTeCAMZpLKfjxTIrJjPsBoqBTumCEAYUhFnFLv3OxiWpAGfuCzv00wu3fJzlp1yayWKVmws07D0PHl9IXXuBpC5FK0goIssipTS3qWW-hXOT4Sr0XWC1hinpx0IYYbhmLOXUCKt8pWNObaSEp3lwiVrzxdxcIQz_HlnkoocOYqapUr61iinqegip5EEbscbnSVoLk0N9jGlC1_qlldcS8FpSe62Numuz90qZY5dBvDmhSVFeidiqfkkS7LDtNLOf1Js8TyjcAvM49Nj1H5q-QQc-pAog1ik6qFUsV-YW7acfRZYv78rl_AUzGO7J |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECammqgH38a3HLxill2WZY9GbWqsPdXYG4EFbJM-TLvq35fZh7YxxoMe9zBAhmG-gZ35BqELGxseGyVIQpkiTChNfJSQkjijQRbYwERB2Wwi6XREr5fO18JAWiXcoV1JFFH4ajjc8Bhdp8RBCbdHOhZBZha_BITiUGe-DN3p4ALWbT59eeNYVEzMAQGZuornp2EW8GmBvfSbty4gqLn5H4vfQhtVAIqvSovZRkt2vIPW52gJd9HjjcoVHhWtIwjAnMFq-DyZDvL-CPuVYsio9H4IAxDCxmIfgQ-ei7wCPPBf2AOgmXgL8pLvamr7k9eZ3UOPzdvudYtU7RdI5qO0nMQicSzR2nCXORY6uDpZruPQ-1ZnmVZhKoQVlhvGMk6tcDrUJuXUJVoEhkf7qDGejO0BwvD7kSXegZgoZYZqHTqnmaZ-hpgqHh0iVitdZhU3ObTIGEr6SWFaak2C1mSltUN0-Sn2UpJz_CaQzu-ozItXEVe2MJHRL7In9fbL6pzPJIWHYJ7GATv6w9DnaLXVfWjL9l3n_hithRA5AHenOEGNfPpqT9FK9pYPZtOzwrY_AE6_8uw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECZGjdGDb-NbDl4xpQVKj0bdaDQbD7vRG4ECu5vsw2yr_n2ZtusjxnjQYw8DZBjmG-jMNwidOm4Ft1qSlDJNmNSGhCghIzynUR65yCZR3Wwibbfl42N232QTFk1aJdyhfU0UUflqONxP1s8y4qCCOwAdSyAxS5wBQAkoM18IoTMHw-60Hj6cMZcNEXNEQGZWxPPTMF_g6Qt56TdnXSFQa-0f1r6OVpvwE5_X9rKB5tx4E618IiXcQt1LXWo8qhpHEAA5i_WwN5kOyv4Ih4ViyKcMXggDDMK24hB_D3pVVgEehC8c4M9Ogv0EyVc9df3Jc-G2Ubd11bm4Jk3zBZKHGK0kXKaepcZY4XPPYg8XJycMj4Nn9Y4ZHWdSOumEZSwX1ElvYmMzQX1qZGRFsoPmx5Ox20UYfj6yNLgPm2TMUmNi7w0zNMzAqRbJHmIznau8YSaHBhlDRd8JTGutKdCaarS2h87exZ5qao7fBLLPG6rK6k3E1w1MVPKL7OFs91VzygtF4RlYZDxi-38Y-gQt3V-21N1N-_YALccQNgBxpzxE8-X02R2hxfylHBTT48qy3wBx_vGe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining-based+algorithm+for+storage+location+assignment+in+a+randomised+warehouse&rft.jtitle=International+journal+of+production+research&rft.au=Pang%2C+King-Wah&rft.au=Chan%2C+Hau-Ling&rft.date=2017-07-18&rft.pub=Taylor+%26+Francis&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=55&rft.issue=14&rft.spage=4035&rft.epage=4052&rft_id=info:doi/10.1080%2F00207543.2016.1244615&rft.externalDocID=1244615 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |