Low-Density Parity-Check Lattices: Construction and Decoding Analysis

Low-density parity-check codes (LDPC) can have an impressive performance under iterative decoding algorithms. In this paper we introduce a method to construct high coding gain lattices with low decoding complexity based on LDPC codes. To construct such lattices we apply Construction D', due to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 52; no. 10; pp. 4481 - 4495
Main Authors: Sadeghi, M.-R., Banihashemi, A.H., Panario, D.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.10.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low-density parity-check codes (LDPC) can have an impressive performance under iterative decoding algorithms. In this paper we introduce a method to construct high coding gain lattices with low decoding complexity based on LDPC codes. To construct such lattices we apply Construction D', due to Bos, Conway, and Sloane, to a set of parity checks defining a family of nested LDPC codes. For the decoding algorithm, we generalize the application of max-sum algorithm to the Tanner graph of lattices. Bounds on the decoding complexity are derived and our analysis shows that using LDPC codes results in low decoding complexity for the proposed lattices. The progressive edge growth (PEG) algorithm is then extended to construct a class of nested regular LDPC codes which are in turn used to generate low density parity check lattices. Using this approach, a class of two-level lattices is constructed. The performance of this class improves when the dimension increases and is within 3 dB of the Shannon limit for error probabilities of about 10 -6 . This is while the decoding complexity is still quite manageable even for dimensions of a few thousands
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.881720