Spatial Regression Modeling for Compositional Data With Many Zeros

Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proporti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of agricultural, biological, and environmental statistics Ročník 18; číslo 3; s. 314 - 334
Hlavní autoři: Leininger, Thomas J., Gelfand, Alan E., Allen, Jenica M., Silander, John A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer Science+Business Media, LLC 01.09.2013
Springer US
Springer
Témata:
ISSN:1085-7117, 1537-2693
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km × 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1085-7117
1537-2693
DOI:10.1007/s13253-013-0145-y