Spatial Regression Modeling for Compositional Data With Many Zeros
Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proporti...
Uložené v:
| Vydané v: | Journal of agricultural, biological, and environmental statistics Ročník 18; číslo 3; s. 314 - 334 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer Science+Business Media, LLC
01.09.2013
Springer US Springer |
| Predmet: | |
| ISSN: | 1085-7117, 1537-2693 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km × 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing. |
|---|---|
| AbstractList | Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km × 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing. Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km x 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing. Key Words: Areal data; Conditionally autoregressive model; Continuous ranked probability score; Hierarchical modeling; Markov chain Monte Carlo. Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km x 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km×3 km grid cell, yielding order 10⁴ cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels.We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing. Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km×3 km grid cell, yielding order 10 4 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing. |
| Audience | Academic |
| Author | Allen, Jenica M. Leininger, Thomas J. Gelfand, Alan E. Silander, John A. |
| Author_xml | – sequence: 1 givenname: Thomas J. surname: Leininger fullname: Leininger, Thomas J. – sequence: 2 givenname: Alan E. surname: Gelfand fullname: Gelfand, Alan E. – sequence: 3 givenname: Jenica M. surname: Allen fullname: Allen, Jenica M. – sequence: 4 givenname: John A. surname: Silander fullname: Silander, John A. |
| BookMark | eNp9kU1r3DAQhkVJoMkmPyCHgI_pwam-bNnHZNu0gYRC0lDoRcjakaPFa201Wsj--8o4FNJDEEKD9LwzmnmPycEYRiDkjNFLRqn6jEzwSpSUTVtW5f4DOWKVUCWvW3GQY9pUpWJMfSTHiGuawZryI3L9uDXJm6F4gD4Cog9jcR9WMPixL1yIxTJstgF9yg-Z-mKSKX759Fzcm3Ff_IYY8IQcOjMgnL6eC_J08_Xn8nt59-Pb7fLqrrSS1akUne2cY01nV6YD54RlvKJcODCgqKyVMFLJhgpurBOVBNa2FpwRDbCurhuxIBdz3m0Mf3aASW88WhgGM0LYoWbV1JRUOcWCXM5obwbQfnQhRWPzWsHG2zw55_P9lZCylY3ME1qQT28EmUnwknqzQ9S3jw9vWTWzNjePEZy2PplpQLmIHzSjerJEz5bo_Ck9WaL3Wcn-U26j35i4f1fDZw1mduwh6nXYxewFvis6n0VrTCH-q8JrWfFWSvEXk6OpPQ |
| CitedBy_id | crossref_primary_10_1080_03610926_2021_2014890 crossref_primary_10_1002_env_2306 crossref_primary_10_1080_01621459_2021_2016422 crossref_primary_10_1134_S1995080218030198 crossref_primary_10_1007_s10651_016_0360_0 crossref_primary_10_1007_s10980_013_9916_7 crossref_primary_10_1016_j_landusepol_2017_01_011 crossref_primary_10_1016_j_spasta_2015_07_007 crossref_primary_10_1002_eap_2318 crossref_primary_10_1002_cem_2681 crossref_primary_10_1016_j_compenvurbsys_2015_06_001 crossref_primary_10_1007_s12076_017_0199_5 crossref_primary_10_1080_17421772_2020_1828613 crossref_primary_10_1007_s41237_021_00157_5 crossref_primary_10_1080_03610918_2024_2436011 crossref_primary_10_1016_j_envsoft_2023_105749 crossref_primary_10_1007_s11222_023_10277_5 crossref_primary_10_1080_10618600_2025_2500978 crossref_primary_10_1002_ecm_1241 crossref_primary_10_1002_ecy_1453 crossref_primary_10_1007_s00477_014_0849_8 crossref_primary_10_1111_anzs_12073 crossref_primary_10_1016_j_scitotenv_2021_150308 crossref_primary_10_3390_ijerph18073768 crossref_primary_10_1080_02664763_2019_1607833 |
| Cites_doi | 10.1023/A:1023818214614 10.1214/ss/1177010123 10.1093/biostatistics/4.1.11 10.1016/0047-259X(88)90040-1 10.1023/A:1023866030544 10.3133/ofr20081379 10.1111/j.2517-6161.1974.tb00999.x 10.1080/0266476022000018547 10.1007/s13253-010-0040-8 10.1111/j.1467-985X.2006.00429.x 10.1007/BF02595775 10.1198/016214506000001437 10.1111/j.2517-6161.1982.tb01189.x 10.1080/000368400322002 10.1214/10-AOAS335 10.1111/j.1467-9876.2008.00644.x 10.1007/s11004-005-7383-7 10.1016/j.cageo.2006.11.017 10.1111/j.1541-0420.2006.00617.x 10.1111/j.1467-9868.2010.00766.x 10.1007/978-94-009-4109-0 10.1023/A:1018514226420 10.1111/j.1467-9868.2012.01041.x 10.1093/biomet/69.1.197 |
| ContentType | Journal Article |
| Copyright | 2013 International Biometric Society International Biometric Society 2013 COPYRIGHT 2013 Springer |
| Copyright_xml | – notice: 2013 International Biometric Society – notice: International Biometric Society 2013 – notice: COPYRIGHT 2013 Springer |
| DBID | AAYXX CITATION ISR 7S9 L.6 |
| DOI | 10.1007/s13253-013-0145-y |
| DatabaseName | CrossRef Gale In Context: Science AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology Environmental Sciences Medicine Statistics |
| EISSN | 1537-2693 |
| EndPage | 334 |
| ExternalDocumentID | A344948469 10_1007_s13253_013_0145_y 26452944 |
| GroupedDBID | 06D 0R~ 0VX 0VY 199 1N0 203 2AX 2JN 2KG 2LR 2XV 30V 4.4 406 408 40D 40E 5GY 8UJ 95. 96X A8Z AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWIL AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABAWQ ABBHK ABBRH ABDBE ABDBF ABDZT ABECU ABFAN ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ABXSQ ABYWD ACAOD ACBXY ACDIW ACDTI ACGFS ACHJO ACHSB ACHXU ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACPRK ACSTC ACTMH ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADODI ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AELLO AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUPB AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFQWF AFRAH AFVYC AFWTZ AFZKB AGAYW AGDGC AGJBK AGLNM AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BAPOH BGNMA CSCUP D0L DDRTE DNIVK DPUIP DQDLB DSRWC DU5 EBD EBLON EBS ECEWR EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ7 GXS H13 HF~ HMJXF HQ6 HRMNR HZ~ IAO IEP IGS IKXTQ IPSME ISR ITM IWAJR I~Z J-C J0Z JAA JAAYA JBMMH JBSCW JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JZLTJ KOV LLZTM M4Y ML. NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PT4 R9I ROL RSV S27 S3B SA0 SHX SISQX SJN SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~KM -5D -5G -BR -EM -~C 2VQ 3-Y AAKYL ADINQ AELPN AHAVH AHSBF AI. AS~ BHOJU CAG COF FEDTE GIFXF GQ6 HGD HVGLF IFM JSODD PKN RNS S1Z UQL VH1 Z7U Z7W Z7Y Z7Z Z81 7X2 AAYXX ABRTQ ADXHL AEUYN AFFHD AFKRA AFOHR ATCPS BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M0K M7P PATMY PHGZM PHGZT PQGLB PYCSY 7S9 ESTFP L.6 |
| ID | FETCH-LOGICAL-c416t-3bcbff18bcdabeff3c125023feae704673a4748032acf354e199cefa38e1b6683 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324839400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1085-7117 |
| IngestDate | Sun Nov 09 12:04:46 EST 2025 Sat Nov 29 09:59:45 EST 2025 Wed Nov 26 10:04:49 EST 2025 Tue Nov 18 22:23:36 EST 2025 Sat Nov 29 03:05:51 EST 2025 Fri Feb 21 02:33:21 EST 2025 Fri Jun 20 02:30:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Areal data Conditionally autoregressive model Continuous ranked probability score Markov chain Monte Carlo Hierarchical modeling |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-3bcbff18bcdabeff3c125023feae704673a4748032acf354e199cefa38e1b6683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1501364780 |
| PQPubID | 24069 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1501364780 gale_infotracacademiconefile_A344948469 gale_incontextgauss_ISR_A344948469 crossref_citationtrail_10_1007_s13253_013_0145_y crossref_primary_10_1007_s13253_013_0145_y springer_journals_10_1007_s13253_013_0145_y jstor_primary_26452944 |
| PublicationCentury | 2000 |
| PublicationDate | 20130901 20130900 2013-9-00 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 9 year: 2013 text: 20130901 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Journal of agricultural, biological, and environmental statistics |
| PublicationTitleAbbrev | JABES |
| PublicationYear | 2013 |
| Publisher | Springer Science+Business Media, LLC Springer US Springer |
| Publisher_xml | – name: Springer Science+Business Media, LLC – name: Springer US – name: Springer |
| References | PlummerM.BestN.CowlesK.VinesK.CODA: Convergence Diagnosis and Output Analysis for MCMCR News20066711 UngerD. A.A Method to Estimate the Continuous Ranked Probability ScorePreprints of the Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach, Virginia1985BostonAmerican Meteorological Society206213 AitchisonJ.EgozcueJ. J.Compositional Data Analysis: Where Are We and Where Should We Be Heading?Mathematical Geology200537829850218364010.1007/s11004-005-7383-71177.86017 AitchisonJ.The Statistical Analysis of Compositional Data1986New YorkChapman and Hall10.1007/978-94-009-4109-00688.62004 GelfandA. E.VounatsouP.Proper Multivariate Conditional Autoregressive Models for Spatial Data AnalysisBiostatistics20034112510.1093/biostatistics/4.1.111142.62393 StephensM. A.Use of the von Mises Distribution to Analyse Continuous ProportionsBiometrika19826919720365568510.1093/biomet/69.1.197 GneitingT.RafteryA. E.Strictly Proper Scoring Rules, Prediction, and EstimationJournal of the American Statistical Association2007102359378234554810.1198/01621450600000143705191574 BillheimerD.CardosoT.FreemanE.GuttorpP.KoH.-W.SilkeyM.Natural Variability of Benthic Species Composition in the Delaware BayEnvironmental and Ecological Statistics199749511510.1023/A:1018514226420 R Core TeamR: A Language and Environment for Statistical Computing2012R Foundation for Statistical ComputingVienna National Oceanic Atmospheric Administration (2006), “Coastal Change Analysis Program Land Cover,” available at: http://www.csc.noaa.gov/crs/lca/northeast.html. HughesJ.HaranM.Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed ModelsJournal of the Royal Statistical Society. Series B. Statistical Methodology201375139159300827510.1111/j.1467-9868.2012.01041.x van den BoogaartK. G.Tolosana-DelgadoR.Compositions: A Unified R Package to Analyze Compositional DataComputers and Geosciences20083432033810.1016/j.cageo.2006.11.017 ButlerA.GlasbeyC.Corrigendum: A Latent Gaussian Model for Compositional Data With ZerosJournal of the Royal Statistical Society. Series C. Applied Statistics200958141266223810.1111/j.1467-9876.2008.00644.x MardiaK. V.Multi-dimensional Multivariate Gaussian Markov Random Fields With Application to Image ProcessingJournal of Multivariate Analysis198828426528492635710.1016/0047-259X(88)90040-1 BanerjeeS.CarlinB. P.GelfandA. E.Hierarchical Modeling and Analysis for Spatial Data2004Boca RatonChapman and Hall/CRC Press1053.62105 EgozcueJ. J.Pawlowsky-GlahnV.Mateu-FiguerasG.Barceló-VidalC.Isometric Logratio Transformations for Compositional Data AnalysisMathematical Geology200335279300198616510.1023/A:1023818214614 HaslettJ.WhileyM.BhattacharyaS.Salter-TownshendM.WilsonS. P.AllenJ. R. M.HuntleyB.MitchellF. J. G.Bayesian Palaeoclimate ReconstructionJournal of the Royal Statistical Society. Series A. Statistics in Society2006169395438223691410.1111/j.1467-985X.2006.00429.x FryJ.FryT.McLarenK.Compositional Data Analysis and Zeros in Micro DataApplied Economics20003295395910.1080/000368400322002 KentJ. T.The Fisher-Bingham Distribution on the SphereJournal of the Royal Statistical Society. Series B. Statistical Methodology19824471806553760485.62015 Salter-TownshendM.HaslettJ.Modelling Zero Inflation of Compositional DataProceedings of the 21st International Workshop on Statistical Modelling2006448456 BesagJ.Spatial Interaction and the Statistical Analysis of Lattice SystemsJournal of the Royal Statistical Society. Series B. Statistical Methodology1974361922363732080327.60067 U.S. Geological Survey (1999), “National Elevation Dataset,” available at: http://nationalmap.gov/viewer.html. ReichB. J.HodgesJ. S.ZadnikV.Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping ModelsBiometrics20066211971206230744510.1111/j.1541-0420.2006.00617.x1114.62124 Minnesota Population Center (2004), “National Historical Geographic Information System: Pre-release Version, 0.1,” University of Minnesota, Minneapolis, MN, available at: http://www.nhgis.org/. BesagJ.GreenP.HigdonD.MengersenK.Bayesian Computation and Stochastic SystemsStatistical Science199510366134981810.1214/ss/11770101230955.62552 ChakrabortyA.GelfandA.WilsonA. M.LatimerA. M.SilanderJ. A.Modeling Large Scale Species Abundance With Latent Spatial ProcessesThe Annals of Applied Statistics2010414031429275833410.1214/10-AOAS3351202.62168 GelfandA. E.SchmidtA. M.BanerjeeS.SirmansC. F.Nonstationary Multivariate Process Modelling Through Spatially Varying CoregionalizationTest200413150215400310.1007/BF02595775(with discussion) TjelmelandH.LundK. V.Bayesian Modelling of Spatial Compositional DataJournal of Applied Statistics20033087100195736310.1080/02664760220000185471121.62497 U.S. Census Bureau (2008), “TIGER/Line Shapefiles [machine-readable data files],” available at: http://www.census.gov/geo/maps-data/data/tiger.html. ScealyJ. L.WelshA. H.Regression for Compositional Data by Using Distributions Defined on the HypersphereJournal of the Royal Statistical Society. Series B. Statistical Methodology201173351375281578010.1111/j.1467-9868.2010.00766.x Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., and Wickham, J. (2009), “Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product,” U.S. Geological Survey Open-File Report 2008–1379, 18 p. Martín-FernándezJ. A.Barcelo-VidalC.Pawlowsky-GlahnV.Dealing With Zeros and Missing Values in Compositional Data Sets Using Nonparametric ImputationMathematical Geology20033525327810.1023/A:1023866030544 Parent, J., and Hurd, J. (2010), “Landscape Fragmentation Tool (LFT v2.0).” Center for Land Use Education and Research, available at: http://clear.uconn.edu/tools/lft/lft2/index.htm. TsagrisM. T.PrestonS.WoodA.T.EgozcueJ.Tolosana-DelgadoR.OrtegoM.A Data-Based Power Transformation for Compositional DataProceedings of CoDaWork: 4th International Workshop on Compositional Data Analysis2011 StewartC.FieldC.Managing the Essential Zeros in Quantitative Fatty Acid Signature AnalysisJournal of Agricultural, Biological, and Environmental Statistics2010164569276775910.1007/s13253-010-0040-8 A. Butler (145_CR7) 2009; 58 T. Gneiting (145_CR14) 2007; 102 K. V. Mardia (145_CR18) 1988; 284 D. Billheimer (145_CR6) 1997; 4 A. E. Gelfand (145_CR12) 2003; 4 M. Salter-Townshend (145_CR26) 2006 R Core Team (145_CR24) 2012 J. Fry (145_CR10) 2000; 32 M. Plummer (145_CR23) 2006; 6 S. Banerjee (145_CR3) 2004 M. T. Tsagris (145_CR31) 2011 145_CR11 145_CR33 145_CR34 M. A. Stephens (145_CR28) 1982; 69 J. Aitchison (145_CR2) 2005; 37 A. Chakraborty (145_CR8) 2010; 4 J. T. Kent (145_CR17) 1982; 44 A. E. Gelfand (145_CR13) 2004; 13 J. A. Martín-Fernández (145_CR19) 2003; 35 J. J. Egozcue (145_CR9) 2003; 35 D. A. Unger (145_CR32) 1985 H. Tjelmeland (145_CR30) 2003; 30 J. Aitchison (145_CR1) 1986 J. Besag (145_CR5) 1995; 10 K. G. Boogaart van den (145_CR35) 2008; 34 145_CR20 145_CR21 J. L. Scealy (145_CR27) 2011; 73 145_CR22 B. J. Reich (145_CR25) 2006; 62 J. Hughes (145_CR16) 2013; 75 J. Besag (145_CR4) 1974; 36 J. Haslett (145_CR15) 2006; 169 C. Stewart (145_CR29) 2010; 16 |
| References_xml | – reference: Parent, J., and Hurd, J. (2010), “Landscape Fragmentation Tool (LFT v2.0).” Center for Land Use Education and Research, available at: http://clear.uconn.edu/tools/lft/lft2/index.htm. – reference: BanerjeeS.CarlinB. P.GelfandA. E.Hierarchical Modeling and Analysis for Spatial Data2004Boca RatonChapman and Hall/CRC Press1053.62105 – reference: ScealyJ. L.WelshA. H.Regression for Compositional Data by Using Distributions Defined on the HypersphereJournal of the Royal Statistical Society. Series B. Statistical Methodology201173351375281578010.1111/j.1467-9868.2010.00766.x – reference: van den BoogaartK. G.Tolosana-DelgadoR.Compositions: A Unified R Package to Analyze Compositional DataComputers and Geosciences20083432033810.1016/j.cageo.2006.11.017 – reference: BillheimerD.CardosoT.FreemanE.GuttorpP.KoH.-W.SilkeyM.Natural Variability of Benthic Species Composition in the Delaware BayEnvironmental and Ecological Statistics199749511510.1023/A:1018514226420 – reference: National Oceanic Atmospheric Administration (2006), “Coastal Change Analysis Program Land Cover,” available at: http://www.csc.noaa.gov/crs/lca/northeast.html. – reference: TjelmelandH.LundK. V.Bayesian Modelling of Spatial Compositional DataJournal of Applied Statistics20033087100195736310.1080/02664760220000185471121.62497 – reference: BesagJ.GreenP.HigdonD.MengersenK.Bayesian Computation and Stochastic SystemsStatistical Science199510366134981810.1214/ss/11770101230955.62552 – reference: ReichB. J.HodgesJ. S.ZadnikV.Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping ModelsBiometrics20066211971206230744510.1111/j.1541-0420.2006.00617.x1114.62124 – reference: TsagrisM. T.PrestonS.WoodA.T.EgozcueJ.Tolosana-DelgadoR.OrtegoM.A Data-Based Power Transformation for Compositional DataProceedings of CoDaWork: 4th International Workshop on Compositional Data Analysis2011 – reference: AitchisonJ.EgozcueJ. J.Compositional Data Analysis: Where Are We and Where Should We Be Heading?Mathematical Geology200537829850218364010.1007/s11004-005-7383-71177.86017 – reference: HughesJ.HaranM.Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed ModelsJournal of the Royal Statistical Society. Series B. Statistical Methodology201375139159300827510.1111/j.1467-9868.2012.01041.x – reference: UngerD. A.A Method to Estimate the Continuous Ranked Probability ScorePreprints of the Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach, Virginia1985BostonAmerican Meteorological Society206213 – reference: MardiaK. V.Multi-dimensional Multivariate Gaussian Markov Random Fields With Application to Image ProcessingJournal of Multivariate Analysis198828426528492635710.1016/0047-259X(88)90040-1 – reference: GelfandA. E.SchmidtA. M.BanerjeeS.SirmansC. F.Nonstationary Multivariate Process Modelling Through Spatially Varying CoregionalizationTest200413150215400310.1007/BF02595775(with discussion) – reference: PlummerM.BestN.CowlesK.VinesK.CODA: Convergence Diagnosis and Output Analysis for MCMCR News20066711 – reference: Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., and Wickham, J. (2009), “Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product,” U.S. Geological Survey Open-File Report 2008–1379, 18 p. – reference: Salter-TownshendM.HaslettJ.Modelling Zero Inflation of Compositional DataProceedings of the 21st International Workshop on Statistical Modelling2006448456 – reference: FryJ.FryT.McLarenK.Compositional Data Analysis and Zeros in Micro DataApplied Economics20003295395910.1080/000368400322002 – reference: HaslettJ.WhileyM.BhattacharyaS.Salter-TownshendM.WilsonS. P.AllenJ. R. M.HuntleyB.MitchellF. J. G.Bayesian Palaeoclimate ReconstructionJournal of the Royal Statistical Society. Series A. Statistics in Society2006169395438223691410.1111/j.1467-985X.2006.00429.x – reference: AitchisonJ.The Statistical Analysis of Compositional Data1986New YorkChapman and Hall10.1007/978-94-009-4109-00688.62004 – reference: EgozcueJ. J.Pawlowsky-GlahnV.Mateu-FiguerasG.Barceló-VidalC.Isometric Logratio Transformations for Compositional Data AnalysisMathematical Geology200335279300198616510.1023/A:1023818214614 – reference: Minnesota Population Center (2004), “National Historical Geographic Information System: Pre-release Version, 0.1,” University of Minnesota, Minneapolis, MN, available at: http://www.nhgis.org/. – reference: R Core TeamR: A Language and Environment for Statistical Computing2012R Foundation for Statistical ComputingVienna – reference: ChakrabortyA.GelfandA.WilsonA. M.LatimerA. M.SilanderJ. A.Modeling Large Scale Species Abundance With Latent Spatial ProcessesThe Annals of Applied Statistics2010414031429275833410.1214/10-AOAS3351202.62168 – reference: StewartC.FieldC.Managing the Essential Zeros in Quantitative Fatty Acid Signature AnalysisJournal of Agricultural, Biological, and Environmental Statistics2010164569276775910.1007/s13253-010-0040-8 – reference: StephensM. A.Use of the von Mises Distribution to Analyse Continuous ProportionsBiometrika19826919720365568510.1093/biomet/69.1.197 – reference: BesagJ.Spatial Interaction and the Statistical Analysis of Lattice SystemsJournal of the Royal Statistical Society. Series B. Statistical Methodology1974361922363732080327.60067 – reference: U.S. Census Bureau (2008), “TIGER/Line Shapefiles [machine-readable data files],” available at: http://www.census.gov/geo/maps-data/data/tiger.html. – reference: U.S. Geological Survey (1999), “National Elevation Dataset,” available at: http://nationalmap.gov/viewer.html. – reference: GelfandA. E.VounatsouP.Proper Multivariate Conditional Autoregressive Models for Spatial Data AnalysisBiostatistics20034112510.1093/biostatistics/4.1.111142.62393 – reference: GneitingT.RafteryA. E.Strictly Proper Scoring Rules, Prediction, and EstimationJournal of the American Statistical Association2007102359378234554810.1198/01621450600000143705191574 – reference: ButlerA.GlasbeyC.Corrigendum: A Latent Gaussian Model for Compositional Data With ZerosJournal of the Royal Statistical Society. Series C. Applied Statistics200958141266223810.1111/j.1467-9876.2008.00644.x – reference: KentJ. T.The Fisher-Bingham Distribution on the SphereJournal of the Royal Statistical Society. Series B. Statistical Methodology19824471806553760485.62015 – reference: Martín-FernándezJ. A.Barcelo-VidalC.Pawlowsky-GlahnV.Dealing With Zeros and Missing Values in Compositional Data Sets Using Nonparametric ImputationMathematical Geology20033525327810.1023/A:1023866030544 – volume: 35 start-page: 279 year: 2003 ident: 145_CR9 publication-title: Mathematical Geology doi: 10.1023/A:1023818214614 – volume: 10 start-page: 3 year: 1995 ident: 145_CR5 publication-title: Statistical Science doi: 10.1214/ss/1177010123 – volume: 4 start-page: 11 year: 2003 ident: 145_CR12 publication-title: Biostatistics doi: 10.1093/biostatistics/4.1.11 – start-page: 206 volume-title: Preprints of the Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach, Virginia year: 1985 ident: 145_CR32 – volume: 284 start-page: 265 year: 1988 ident: 145_CR18 publication-title: Journal of Multivariate Analysis doi: 10.1016/0047-259X(88)90040-1 – volume: 35 start-page: 253 year: 2003 ident: 145_CR19 publication-title: Mathematical Geology doi: 10.1023/A:1023866030544 – ident: 145_CR11 doi: 10.3133/ofr20081379 – volume-title: Hierarchical Modeling and Analysis for Spatial Data year: 2004 ident: 145_CR3 – ident: 145_CR21 – volume: 36 start-page: 192 year: 1974 ident: 145_CR4 publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1974.tb00999.x – volume: 30 start-page: 87 year: 2003 ident: 145_CR30 publication-title: Journal of Applied Statistics doi: 10.1080/0266476022000018547 – volume: 16 start-page: 45 year: 2010 ident: 145_CR29 publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1007/s13253-010-0040-8 – volume: 169 start-page: 395 year: 2006 ident: 145_CR15 publication-title: Journal of the Royal Statistical Society. Series A. Statistics in Society doi: 10.1111/j.1467-985X.2006.00429.x – ident: 145_CR34 – volume: 13 start-page: 1 year: 2004 ident: 145_CR13 publication-title: Test doi: 10.1007/BF02595775 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: 145_CR24 – volume: 102 start-page: 359 year: 2007 ident: 145_CR14 publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000001437 – volume: 44 start-page: 71 year: 1982 ident: 145_CR17 publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1982.tb01189.x – volume: 32 start-page: 953 year: 2000 ident: 145_CR10 publication-title: Applied Economics doi: 10.1080/000368400322002 – ident: 145_CR22 – volume: 4 start-page: 1403 year: 2010 ident: 145_CR8 publication-title: The Annals of Applied Statistics doi: 10.1214/10-AOAS335 – ident: 145_CR20 – volume: 6 start-page: 7 year: 2006 ident: 145_CR23 publication-title: R News – volume-title: Proceedings of CoDaWork: 4th International Workshop on Compositional Data Analysis year: 2011 ident: 145_CR31 – volume: 58 start-page: 141 year: 2009 ident: 145_CR7 publication-title: Journal of the Royal Statistical Society. Series C. Applied Statistics doi: 10.1111/j.1467-9876.2008.00644.x – volume: 37 start-page: 829 year: 2005 ident: 145_CR2 publication-title: Mathematical Geology doi: 10.1007/s11004-005-7383-7 – volume: 34 start-page: 320 year: 2008 ident: 145_CR35 publication-title: Computers and Geosciences doi: 10.1016/j.cageo.2006.11.017 – volume: 62 start-page: 1197 year: 2006 ident: 145_CR25 publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00617.x – volume: 73 start-page: 351 year: 2011 ident: 145_CR27 publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.1467-9868.2010.00766.x – start-page: 448 volume-title: Proceedings of the 21st International Workshop on Statistical Modelling year: 2006 ident: 145_CR26 – volume-title: The Statistical Analysis of Compositional Data year: 1986 ident: 145_CR1 doi: 10.1007/978-94-009-4109-0 – volume: 4 start-page: 95 year: 1997 ident: 145_CR6 publication-title: Environmental and Ecological Statistics doi: 10.1023/A:1018514226420 – ident: 145_CR33 – volume: 75 start-page: 139 year: 2013 ident: 145_CR16 publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.1467-9868.2012.01041.x – volume: 69 start-page: 197 year: 1982 ident: 145_CR28 publication-title: Biometrika doi: 10.1093/biomet/69.1.197 |
| SSID | ssj0013602 |
| Score | 2.1418555 |
| Snippet | Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional... |
| SourceID | proquest gale crossref springer jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 314 |
| SubjectTerms | Agriculture Biostatistics habitat fragmentation Health Sciences household income land cover land use Mathematics and Statistics Medicine Monitoring/Environmental Analysis regression analysis Statistics Statistics for Life Sciences |
| Title | Spatial Regression Modeling for Compositional Data With Many Zeros |
| URI | https://www.jstor.org/stable/26452944 https://link.springer.com/article/10.1007/s13253-013-0145-y https://www.proquest.com/docview/1501364780 |
| Volume | 18 |
| WOSCitedRecordID | wos000324839400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1537-2693 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013602 issn: 1085-7117 databaseCode: RSV dateStart: 20010301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_01GN98KPn4vpFFEHwKDRJP9LHVe_Qhztkz4_Dl5CmyXogXdnuCvvfO9Omt6yooA99m-ZjMjOZMDO_AXiubMaV5yJ2JsliCq3FquYu9pZeHz6vhPBds4ni9FSdn5fvQx13O2S7DyHJzlJvi92kyCj3hz4ccnMVruFtp0gbZ2eftqGDPCQaqiwuOC-GUObvhti5jIJJ7tMSdxzOX2Kk3dVzfPu_Fn0HbgVPk0170bgLV1wTwc3pfBnQNlwEN_pOlJsIxkfbgjf8KWh8G8H-SQi-RzAix7THdT6AV9TLGGWXzdy8T6VtGPVVo-p2ho4wI0MTEsKQ6o1ZGfb5YvWVnaD1YV8c8uMefDw--vD6bRz6McQW3bZVLCtbec9VZWtTOe-lRe8I73zvjCvwnV1IkxapSqQw1sssdbwsrfNGKserPFdyDHvNonH3gdVlzU1W1z5Df6wWeSVTW5mE0MaMMDKZQDIcjLYBrJx6ZnzTW5hl4qxGzmrirN5M4OXlL997pI6_ET-j09aEgNFQis3crNtWvzub6alMCTInzcsJvAhEfoGTWxMqFnALBJq1QznupOZyYkHx4jJNJ_B0ECONekvBGNO4xbrV6Ihzwu5XuNfDQXZ0MCDtn1f-4J-oH8JIdMJHSXGPYG-1XLvHcN3-QHFZPukU5ycKChDo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BgDEe-AhUlM-AkJBAkeLYSZzHAps2sVaoGzDxYjmO3SGhFDUtUv977hJnVREgwUPeLv48n8-63_0O4IU0KZOOJZHVcRpRaC2SFbORM_T6cFmZJK4tNpFPJvLsrPjg87ibHu3ehyRbS71JduNJStgf-rDJ9WW4IvDCIhzf9OTTJnSQeaChTKOcsbwPZf6uia3LyJvkDpa45XD-EiNtr56DW_816Ntw03ua4ahTjTtwydYB3BjNFp5twwZwratEuQ5gsL9JeMOf_IlvAtgd--B7AHvkmHa8znfhDdUyRt0Np3bWQWnrkOqqUXZ7iI5wSIbGA8JQ6p1e6vDz1-V5OEbrE36xuB734OPB_unbw8jXY4gMum3LiJemdI7J0lS6tM5xg94R3vnOapvjOzvnWuRCxjzRxvFUWFYUxjrNpWVllkk-gJ16Xtv7EFZFxXRaVS5Ff6xKspILU-qY2MZ0onk8hLjfGGU8WTnVzPimNjTLtLIKV1bRyqr1EF5d_PK9Y-r4m_Bz2m1FDBg1QWxmetU06uhkqkZcEGWOyIohvPRCbo6dG-0zFnAKRJq1JTloteai44TixYUQQ3jWq5HCc0vBGF3b-apR6Igz4u6XONfXve4ob0CaP4_8wT9JP4Xrh6fjY3V8NHn_EPaSVhEJIPcIdpaLlX0MV80PVJ3Fk_YQ_QTZSRPM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BgGk8DAhUlA0ICAkJFC2O8-E8dmwVE6yaNj4mXizHsbtJKJ2aFKn_PXeJs6oIkBAPeTvbsX0-_6y7-x3AK6ETJiyLAqPCJCDXWiBKZgKr6fVh0yKKbFtsIptMxPl5fuLqnNZ9tHvvkuxyGoilqWr2rkq7t0p841FCcUD0YffLm3ArpppB9Fw_-7JyI6Qu6FAkQcZY1rs1f9fF2sXkzHMXorgGPn_xl7bX0Pjef0_gPmw7BOqPOpV5ADdM5cHd0XTuWDiMB3e6CpVLDwaHq0Q4bOQsQe3B5rFzynuwRYC143t-CPtU4xh12j810y7EtvKp3hplvfsIkH0yQC5QDKUOVKP8r5fNhX-MVsn_ZnBtHsHn8eGnd-8DV6ch0AjnmoAXurCWiUKXqjDWco2oCbGANcpk-P7OuIqzWIQ8UtryJDYsz7WxigvDijQVfAAb1awyj8Ev85KppCxtgjitjNKCx7pQIbGQqUjxcAhhv0lSOxJzqqXxXa7ol2llJa6spJWVyyG8uW5y1TF4_E34Je28JGaMikJvpmpR1_Lo7FSOeExUOnGaD-G1E7IzHFwrl8mAUyAyrTXJQatB1wNH5EfO43gIL3qVknieyUmjKjNb1BIBOiNOf4FzfdvrkXSGpf7znz_5J-nnsHlyMJYfjyYfdmAravWQ4uZ2YaOZL8xTuK1_oObMn7Xn6SeqvByw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Regression+Modeling+for+Compositional+Data+With+Many+Zeros&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Leininger%2C+Thomas+J&rft.au=Gelfand%2C+Alan+E&rft.au=Allen%2C+Jenica+M&rft.au=Silander%2C+John+A.%2C+Jr+Jr&rft.date=2013-09-01&rft.issn=1085-7117&rft.volume=18&rft.issue=3+p.314-334&rft.spage=314&rft.epage=334&rft_id=info:doi/10.1007%2Fs13253-013-0145-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon |