Spatial Regression Modeling for Compositional Data With Many Zeros

Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proporti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of agricultural, biological, and environmental statistics Ročník 18; číslo 3; s. 314 - 334
Hlavní autori: Leininger, Thomas J., Gelfand, Alan E., Allen, Jenica M., Silander, John A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer Science+Business Media, LLC 01.09.2013
Springer US
Springer
Predmet:
ISSN:1085-7117, 1537-2693
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km × 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing.
AbstractList Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km × 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing.
Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km x 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing. Key Words: Areal data; Conditionally autoregressive model; Continuous ranked probability score; Hierarchical modeling; Markov chain Monte Carlo.
Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km x 3 km grid cell, yielding order 104 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels.
Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km×3 km grid cell, yielding order 10⁴ cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels.We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing.
Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional data, in particular, land use/land cover (LULC) data in the northeastern United States. Here, the observations are vectors providing the proportions of LULC types observed in each 3 km×3 km grid cell, yielding order 10 4 cells. On the same grid cells, we have an additional compositional dataset supplying forest fragmentation proportions. Potentially useful and available covariates include elevation range, road length, population, median household income, and housing levels. We propose a spatial regression model that is also able to capture flexible dependence among the components of the observation vectors at each location as well as spatial dependence across the locations of the simplex-restricted measurements. A key issue is the high incidence of observed zero proportions for the LULC dataset, requiring incorporation of local point masses at 0. We build a hierarchical model prescribing a power scaling first stage and using latent variables at the second stage with spatial structure for these variables supplied through a multivariate CAR specification. Analyses for the LULC and forest fragmentation data illustrate the interpretation of the regression coefficients and the benefit of incorporating spatial smoothing.
Audience Academic
Author Allen, Jenica M.
Leininger, Thomas J.
Gelfand, Alan E.
Silander, John A.
Author_xml – sequence: 1
  givenname: Thomas J.
  surname: Leininger
  fullname: Leininger, Thomas J.
– sequence: 2
  givenname: Alan E.
  surname: Gelfand
  fullname: Gelfand, Alan E.
– sequence: 3
  givenname: Jenica M.
  surname: Allen
  fullname: Allen, Jenica M.
– sequence: 4
  givenname: John A.
  surname: Silander
  fullname: Silander, John A.
BookMark eNp9kU1r3DAQhkVJoMkmPyCHgI_pwam-bNnHZNu0gYRC0lDoRcjakaPFa201Wsj--8o4FNJDEEKD9LwzmnmPycEYRiDkjNFLRqn6jEzwSpSUTVtW5f4DOWKVUCWvW3GQY9pUpWJMfSTHiGuawZryI3L9uDXJm6F4gD4Cog9jcR9WMPixL1yIxTJstgF9yg-Z-mKSKX759Fzcm3Ff_IYY8IQcOjMgnL6eC_J08_Xn8nt59-Pb7fLqrrSS1akUne2cY01nV6YD54RlvKJcODCgqKyVMFLJhgpurBOVBNa2FpwRDbCurhuxIBdz3m0Mf3aASW88WhgGM0LYoWbV1JRUOcWCXM5obwbQfnQhRWPzWsHG2zw55_P9lZCylY3ME1qQT28EmUnwknqzQ9S3jw9vWTWzNjePEZy2PplpQLmIHzSjerJEz5bo_Ck9WaL3Wcn-U26j35i4f1fDZw1mduwh6nXYxewFvis6n0VrTCH-q8JrWfFWSvEXk6OpPQ
CitedBy_id crossref_primary_10_1080_03610926_2021_2014890
crossref_primary_10_1002_env_2306
crossref_primary_10_1080_01621459_2021_2016422
crossref_primary_10_1134_S1995080218030198
crossref_primary_10_1007_s10651_016_0360_0
crossref_primary_10_1007_s10980_013_9916_7
crossref_primary_10_1016_j_landusepol_2017_01_011
crossref_primary_10_1016_j_spasta_2015_07_007
crossref_primary_10_1002_eap_2318
crossref_primary_10_1002_cem_2681
crossref_primary_10_1016_j_compenvurbsys_2015_06_001
crossref_primary_10_1007_s12076_017_0199_5
crossref_primary_10_1080_17421772_2020_1828613
crossref_primary_10_1007_s41237_021_00157_5
crossref_primary_10_1080_03610918_2024_2436011
crossref_primary_10_1016_j_envsoft_2023_105749
crossref_primary_10_1007_s11222_023_10277_5
crossref_primary_10_1080_10618600_2025_2500978
crossref_primary_10_1002_ecm_1241
crossref_primary_10_1002_ecy_1453
crossref_primary_10_1007_s00477_014_0849_8
crossref_primary_10_1111_anzs_12073
crossref_primary_10_1016_j_scitotenv_2021_150308
crossref_primary_10_3390_ijerph18073768
crossref_primary_10_1080_02664763_2019_1607833
Cites_doi 10.1023/A:1023818214614
10.1214/ss/1177010123
10.1093/biostatistics/4.1.11
10.1016/0047-259X(88)90040-1
10.1023/A:1023866030544
10.3133/ofr20081379
10.1111/j.2517-6161.1974.tb00999.x
10.1080/0266476022000018547
10.1007/s13253-010-0040-8
10.1111/j.1467-985X.2006.00429.x
10.1007/BF02595775
10.1198/016214506000001437
10.1111/j.2517-6161.1982.tb01189.x
10.1080/000368400322002
10.1214/10-AOAS335
10.1111/j.1467-9876.2008.00644.x
10.1007/s11004-005-7383-7
10.1016/j.cageo.2006.11.017
10.1111/j.1541-0420.2006.00617.x
10.1111/j.1467-9868.2010.00766.x
10.1007/978-94-009-4109-0
10.1023/A:1018514226420
10.1111/j.1467-9868.2012.01041.x
10.1093/biomet/69.1.197
ContentType Journal Article
Copyright 2013 International Biometric Society
International Biometric Society 2013
COPYRIGHT 2013 Springer
Copyright_xml – notice: 2013 International Biometric Society
– notice: International Biometric Society 2013
– notice: COPYRIGHT 2013 Springer
DBID AAYXX
CITATION
ISR
7S9
L.6
DOI 10.1007/s13253-013-0145-y
DatabaseName CrossRef
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
Medicine
Statistics
EISSN 1537-2693
EndPage 334
ExternalDocumentID A344948469
10_1007_s13253_013_0145_y
26452944
GroupedDBID 06D
0R~
0VX
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2XV
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ABXSQ
ABYWD
ACAOD
ACBXY
ACDIW
ACDTI
ACGFS
ACHJO
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACSTC
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADODI
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GXS
H13
HF~
HMJXF
HQ6
HRMNR
HZ~
IAO
IEP
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PT4
R9I
ROL
RSV
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~KM
-5D
-5G
-BR
-EM
-~C
2VQ
3-Y
AAKYL
ADINQ
AELPN
AHAVH
AHSBF
AI.
AS~
BHOJU
CAG
COF
FEDTE
GIFXF
GQ6
HGD
HVGLF
IFM
JSODD
PKN
RNS
S1Z
UQL
VH1
Z7U
Z7W
Z7Y
Z7Z
Z81
7X2
AAYXX
ABRTQ
ADXHL
AEUYN
AFFHD
AFKRA
AFOHR
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M0K
M7P
PATMY
PHGZM
PHGZT
PQGLB
PYCSY
7S9
ESTFP
L.6
ID FETCH-LOGICAL-c416t-3bcbff18bcdabeff3c125023feae704673a4748032acf354e199cefa38e1b6683
IEDL.DBID RSV
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324839400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1085-7117
IngestDate Sun Nov 09 12:04:46 EST 2025
Sat Nov 29 09:59:45 EST 2025
Wed Nov 26 10:04:49 EST 2025
Tue Nov 18 22:23:36 EST 2025
Sat Nov 29 03:05:51 EST 2025
Fri Feb 21 02:33:21 EST 2025
Fri Jun 20 02:30:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Areal data
Conditionally autoregressive model
Continuous ranked probability score
Markov chain Monte Carlo
Hierarchical modeling
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-3bcbff18bcdabeff3c125023feae704673a4748032acf354e199cefa38e1b6683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1501364780
PQPubID 24069
PageCount 21
ParticipantIDs proquest_miscellaneous_1501364780
gale_infotracacademiconefile_A344948469
gale_incontextgauss_ISR_A344948469
crossref_citationtrail_10_1007_s13253_013_0145_y
crossref_primary_10_1007_s13253_013_0145_y
springer_journals_10_1007_s13253_013_0145_y
jstor_primary_26452944
PublicationCentury 2000
PublicationDate 20130901
20130900
2013-9-00
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 9
  year: 2013
  text: 20130901
  day: 1
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of agricultural, biological, and environmental statistics
PublicationTitleAbbrev JABES
PublicationYear 2013
Publisher Springer Science+Business Media, LLC
Springer US
Springer
Publisher_xml – name: Springer Science+Business Media, LLC
– name: Springer US
– name: Springer
References PlummerM.BestN.CowlesK.VinesK.CODA: Convergence Diagnosis and Output Analysis for MCMCR News20066711
UngerD. A.A Method to Estimate the Continuous Ranked Probability ScorePreprints of the Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach, Virginia1985BostonAmerican Meteorological Society206213
AitchisonJ.EgozcueJ. J.Compositional Data Analysis: Where Are We and Where Should We Be Heading?Mathematical Geology200537829850218364010.1007/s11004-005-7383-71177.86017
AitchisonJ.The Statistical Analysis of Compositional Data1986New YorkChapman and Hall10.1007/978-94-009-4109-00688.62004
GelfandA. E.VounatsouP.Proper Multivariate Conditional Autoregressive Models for Spatial Data AnalysisBiostatistics20034112510.1093/biostatistics/4.1.111142.62393
StephensM. A.Use of the von Mises Distribution to Analyse Continuous ProportionsBiometrika19826919720365568510.1093/biomet/69.1.197
GneitingT.RafteryA. E.Strictly Proper Scoring Rules, Prediction, and EstimationJournal of the American Statistical Association2007102359378234554810.1198/01621450600000143705191574
BillheimerD.CardosoT.FreemanE.GuttorpP.KoH.-W.SilkeyM.Natural Variability of Benthic Species Composition in the Delaware BayEnvironmental and Ecological Statistics199749511510.1023/A:1018514226420
R Core TeamR: A Language and Environment for Statistical Computing2012R Foundation for Statistical ComputingVienna
National Oceanic Atmospheric Administration (2006), “Coastal Change Analysis Program Land Cover,” available at: http://www.csc.noaa.gov/crs/lca/northeast.html.
HughesJ.HaranM.Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed ModelsJournal of the Royal Statistical Society. Series B. Statistical Methodology201375139159300827510.1111/j.1467-9868.2012.01041.x
van den BoogaartK. G.Tolosana-DelgadoR.Compositions: A Unified R Package to Analyze Compositional DataComputers and Geosciences20083432033810.1016/j.cageo.2006.11.017
ButlerA.GlasbeyC.Corrigendum: A Latent Gaussian Model for Compositional Data With ZerosJournal of the Royal Statistical Society. Series C. Applied Statistics200958141266223810.1111/j.1467-9876.2008.00644.x
MardiaK. V.Multi-dimensional Multivariate Gaussian Markov Random Fields With Application to Image ProcessingJournal of Multivariate Analysis198828426528492635710.1016/0047-259X(88)90040-1
BanerjeeS.CarlinB. P.GelfandA. E.Hierarchical Modeling and Analysis for Spatial Data2004Boca RatonChapman and Hall/CRC Press1053.62105
EgozcueJ. J.Pawlowsky-GlahnV.Mateu-FiguerasG.Barceló-VidalC.Isometric Logratio Transformations for Compositional Data AnalysisMathematical Geology200335279300198616510.1023/A:1023818214614
HaslettJ.WhileyM.BhattacharyaS.Salter-TownshendM.WilsonS. P.AllenJ. R. M.HuntleyB.MitchellF. J. G.Bayesian Palaeoclimate ReconstructionJournal of the Royal Statistical Society. Series A. Statistics in Society2006169395438223691410.1111/j.1467-985X.2006.00429.x
FryJ.FryT.McLarenK.Compositional Data Analysis and Zeros in Micro DataApplied Economics20003295395910.1080/000368400322002
KentJ. T.The Fisher-Bingham Distribution on the SphereJournal of the Royal Statistical Society. Series B. Statistical Methodology19824471806553760485.62015
Salter-TownshendM.HaslettJ.Modelling Zero Inflation of Compositional DataProceedings of the 21st International Workshop on Statistical Modelling2006448456
BesagJ.Spatial Interaction and the Statistical Analysis of Lattice SystemsJournal of the Royal Statistical Society. Series B. Statistical Methodology1974361922363732080327.60067
U.S. Geological Survey (1999), “National Elevation Dataset,” available at: http://nationalmap.gov/viewer.html.
ReichB. J.HodgesJ. S.ZadnikV.Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping ModelsBiometrics20066211971206230744510.1111/j.1541-0420.2006.00617.x1114.62124
Minnesota Population Center (2004), “National Historical Geographic Information System: Pre-release Version, 0.1,” University of Minnesota, Minneapolis, MN, available at: http://www.nhgis.org/.
BesagJ.GreenP.HigdonD.MengersenK.Bayesian Computation and Stochastic SystemsStatistical Science199510366134981810.1214/ss/11770101230955.62552
ChakrabortyA.GelfandA.WilsonA. M.LatimerA. M.SilanderJ. A.Modeling Large Scale Species Abundance With Latent Spatial ProcessesThe Annals of Applied Statistics2010414031429275833410.1214/10-AOAS3351202.62168
GelfandA. E.SchmidtA. M.BanerjeeS.SirmansC. F.Nonstationary Multivariate Process Modelling Through Spatially Varying CoregionalizationTest200413150215400310.1007/BF02595775(with discussion)
TjelmelandH.LundK. V.Bayesian Modelling of Spatial Compositional DataJournal of Applied Statistics20033087100195736310.1080/02664760220000185471121.62497
U.S. Census Bureau (2008), “TIGER/Line Shapefiles [machine-readable data files],” available at: http://www.census.gov/geo/maps-data/data/tiger.html.
ScealyJ. L.WelshA. H.Regression for Compositional Data by Using Distributions Defined on the HypersphereJournal of the Royal Statistical Society. Series B. Statistical Methodology201173351375281578010.1111/j.1467-9868.2010.00766.x
Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., and Wickham, J. (2009), “Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product,” U.S. Geological Survey Open-File Report 2008–1379, 18 p.
Martín-FernándezJ. A.Barcelo-VidalC.Pawlowsky-GlahnV.Dealing With Zeros and Missing Values in Compositional Data Sets Using Nonparametric ImputationMathematical Geology20033525327810.1023/A:1023866030544
Parent, J., and Hurd, J. (2010), “Landscape Fragmentation Tool (LFT v2.0).” Center for Land Use Education and Research, available at: http://clear.uconn.edu/tools/lft/lft2/index.htm.
TsagrisM. T.PrestonS.WoodA.T.EgozcueJ.Tolosana-DelgadoR.OrtegoM.A Data-Based Power Transformation for Compositional DataProceedings of CoDaWork: 4th International Workshop on Compositional Data Analysis2011
StewartC.FieldC.Managing the Essential Zeros in Quantitative Fatty Acid Signature AnalysisJournal of Agricultural, Biological, and Environmental Statistics2010164569276775910.1007/s13253-010-0040-8
A. Butler (145_CR7) 2009; 58
T. Gneiting (145_CR14) 2007; 102
K. V. Mardia (145_CR18) 1988; 284
D. Billheimer (145_CR6) 1997; 4
A. E. Gelfand (145_CR12) 2003; 4
M. Salter-Townshend (145_CR26) 2006
R Core Team (145_CR24) 2012
J. Fry (145_CR10) 2000; 32
M. Plummer (145_CR23) 2006; 6
S. Banerjee (145_CR3) 2004
M. T. Tsagris (145_CR31) 2011
145_CR11
145_CR33
145_CR34
M. A. Stephens (145_CR28) 1982; 69
J. Aitchison (145_CR2) 2005; 37
A. Chakraborty (145_CR8) 2010; 4
J. T. Kent (145_CR17) 1982; 44
A. E. Gelfand (145_CR13) 2004; 13
J. A. Martín-Fernández (145_CR19) 2003; 35
J. J. Egozcue (145_CR9) 2003; 35
D. A. Unger (145_CR32) 1985
H. Tjelmeland (145_CR30) 2003; 30
J. Aitchison (145_CR1) 1986
J. Besag (145_CR5) 1995; 10
K. G. Boogaart van den (145_CR35) 2008; 34
145_CR20
145_CR21
J. L. Scealy (145_CR27) 2011; 73
145_CR22
B. J. Reich (145_CR25) 2006; 62
J. Hughes (145_CR16) 2013; 75
J. Besag (145_CR4) 1974; 36
J. Haslett (145_CR15) 2006; 169
C. Stewart (145_CR29) 2010; 16
References_xml – reference: Parent, J., and Hurd, J. (2010), “Landscape Fragmentation Tool (LFT v2.0).” Center for Land Use Education and Research, available at: http://clear.uconn.edu/tools/lft/lft2/index.htm.
– reference: BanerjeeS.CarlinB. P.GelfandA. E.Hierarchical Modeling and Analysis for Spatial Data2004Boca RatonChapman and Hall/CRC Press1053.62105
– reference: ScealyJ. L.WelshA. H.Regression for Compositional Data by Using Distributions Defined on the HypersphereJournal of the Royal Statistical Society. Series B. Statistical Methodology201173351375281578010.1111/j.1467-9868.2010.00766.x
– reference: van den BoogaartK. G.Tolosana-DelgadoR.Compositions: A Unified R Package to Analyze Compositional DataComputers and Geosciences20083432033810.1016/j.cageo.2006.11.017
– reference: BillheimerD.CardosoT.FreemanE.GuttorpP.KoH.-W.SilkeyM.Natural Variability of Benthic Species Composition in the Delaware BayEnvironmental and Ecological Statistics199749511510.1023/A:1018514226420
– reference: National Oceanic Atmospheric Administration (2006), “Coastal Change Analysis Program Land Cover,” available at: http://www.csc.noaa.gov/crs/lca/northeast.html.
– reference: TjelmelandH.LundK. V.Bayesian Modelling of Spatial Compositional DataJournal of Applied Statistics20033087100195736310.1080/02664760220000185471121.62497
– reference: BesagJ.GreenP.HigdonD.MengersenK.Bayesian Computation and Stochastic SystemsStatistical Science199510366134981810.1214/ss/11770101230955.62552
– reference: ReichB. J.HodgesJ. S.ZadnikV.Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping ModelsBiometrics20066211971206230744510.1111/j.1541-0420.2006.00617.x1114.62124
– reference: TsagrisM. T.PrestonS.WoodA.T.EgozcueJ.Tolosana-DelgadoR.OrtegoM.A Data-Based Power Transformation for Compositional DataProceedings of CoDaWork: 4th International Workshop on Compositional Data Analysis2011
– reference: AitchisonJ.EgozcueJ. J.Compositional Data Analysis: Where Are We and Where Should We Be Heading?Mathematical Geology200537829850218364010.1007/s11004-005-7383-71177.86017
– reference: HughesJ.HaranM.Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed ModelsJournal of the Royal Statistical Society. Series B. Statistical Methodology201375139159300827510.1111/j.1467-9868.2012.01041.x
– reference: UngerD. A.A Method to Estimate the Continuous Ranked Probability ScorePreprints of the Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach, Virginia1985BostonAmerican Meteorological Society206213
– reference: MardiaK. V.Multi-dimensional Multivariate Gaussian Markov Random Fields With Application to Image ProcessingJournal of Multivariate Analysis198828426528492635710.1016/0047-259X(88)90040-1
– reference: GelfandA. E.SchmidtA. M.BanerjeeS.SirmansC. F.Nonstationary Multivariate Process Modelling Through Spatially Varying CoregionalizationTest200413150215400310.1007/BF02595775(with discussion)
– reference: PlummerM.BestN.CowlesK.VinesK.CODA: Convergence Diagnosis and Output Analysis for MCMCR News20066711
– reference: Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., and Wickham, J. (2009), “Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product,” U.S. Geological Survey Open-File Report 2008–1379, 18 p.
– reference: Salter-TownshendM.HaslettJ.Modelling Zero Inflation of Compositional DataProceedings of the 21st International Workshop on Statistical Modelling2006448456
– reference: FryJ.FryT.McLarenK.Compositional Data Analysis and Zeros in Micro DataApplied Economics20003295395910.1080/000368400322002
– reference: HaslettJ.WhileyM.BhattacharyaS.Salter-TownshendM.WilsonS. P.AllenJ. R. M.HuntleyB.MitchellF. J. G.Bayesian Palaeoclimate ReconstructionJournal of the Royal Statistical Society. Series A. Statistics in Society2006169395438223691410.1111/j.1467-985X.2006.00429.x
– reference: AitchisonJ.The Statistical Analysis of Compositional Data1986New YorkChapman and Hall10.1007/978-94-009-4109-00688.62004
– reference: EgozcueJ. J.Pawlowsky-GlahnV.Mateu-FiguerasG.Barceló-VidalC.Isometric Logratio Transformations for Compositional Data AnalysisMathematical Geology200335279300198616510.1023/A:1023818214614
– reference: Minnesota Population Center (2004), “National Historical Geographic Information System: Pre-release Version, 0.1,” University of Minnesota, Minneapolis, MN, available at: http://www.nhgis.org/.
– reference: R Core TeamR: A Language and Environment for Statistical Computing2012R Foundation for Statistical ComputingVienna
– reference: ChakrabortyA.GelfandA.WilsonA. M.LatimerA. M.SilanderJ. A.Modeling Large Scale Species Abundance With Latent Spatial ProcessesThe Annals of Applied Statistics2010414031429275833410.1214/10-AOAS3351202.62168
– reference: StewartC.FieldC.Managing the Essential Zeros in Quantitative Fatty Acid Signature AnalysisJournal of Agricultural, Biological, and Environmental Statistics2010164569276775910.1007/s13253-010-0040-8
– reference: StephensM. A.Use of the von Mises Distribution to Analyse Continuous ProportionsBiometrika19826919720365568510.1093/biomet/69.1.197
– reference: BesagJ.Spatial Interaction and the Statistical Analysis of Lattice SystemsJournal of the Royal Statistical Society. Series B. Statistical Methodology1974361922363732080327.60067
– reference: U.S. Census Bureau (2008), “TIGER/Line Shapefiles [machine-readable data files],” available at: http://www.census.gov/geo/maps-data/data/tiger.html.
– reference: U.S. Geological Survey (1999), “National Elevation Dataset,” available at: http://nationalmap.gov/viewer.html.
– reference: GelfandA. E.VounatsouP.Proper Multivariate Conditional Autoregressive Models for Spatial Data AnalysisBiostatistics20034112510.1093/biostatistics/4.1.111142.62393
– reference: GneitingT.RafteryA. E.Strictly Proper Scoring Rules, Prediction, and EstimationJournal of the American Statistical Association2007102359378234554810.1198/01621450600000143705191574
– reference: ButlerA.GlasbeyC.Corrigendum: A Latent Gaussian Model for Compositional Data With ZerosJournal of the Royal Statistical Society. Series C. Applied Statistics200958141266223810.1111/j.1467-9876.2008.00644.x
– reference: KentJ. T.The Fisher-Bingham Distribution on the SphereJournal of the Royal Statistical Society. Series B. Statistical Methodology19824471806553760485.62015
– reference: Martín-FernándezJ. A.Barcelo-VidalC.Pawlowsky-GlahnV.Dealing With Zeros and Missing Values in Compositional Data Sets Using Nonparametric ImputationMathematical Geology20033525327810.1023/A:1023866030544
– volume: 35
  start-page: 279
  year: 2003
  ident: 145_CR9
  publication-title: Mathematical Geology
  doi: 10.1023/A:1023818214614
– volume: 10
  start-page: 3
  year: 1995
  ident: 145_CR5
  publication-title: Statistical Science
  doi: 10.1214/ss/1177010123
– volume: 4
  start-page: 11
  year: 2003
  ident: 145_CR12
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.1.11
– start-page: 206
  volume-title: Preprints of the Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach, Virginia
  year: 1985
  ident: 145_CR32
– volume: 284
  start-page: 265
  year: 1988
  ident: 145_CR18
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/0047-259X(88)90040-1
– volume: 35
  start-page: 253
  year: 2003
  ident: 145_CR19
  publication-title: Mathematical Geology
  doi: 10.1023/A:1023866030544
– ident: 145_CR11
  doi: 10.3133/ofr20081379
– volume-title: Hierarchical Modeling and Analysis for Spatial Data
  year: 2004
  ident: 145_CR3
– ident: 145_CR21
– volume: 36
  start-page: 192
  year: 1974
  ident: 145_CR4
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– volume: 30
  start-page: 87
  year: 2003
  ident: 145_CR30
  publication-title: Journal of Applied Statistics
  doi: 10.1080/0266476022000018547
– volume: 16
  start-page: 45
  year: 2010
  ident: 145_CR29
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1007/s13253-010-0040-8
– volume: 169
  start-page: 395
  year: 2006
  ident: 145_CR15
  publication-title: Journal of the Royal Statistical Society. Series A. Statistics in Society
  doi: 10.1111/j.1467-985X.2006.00429.x
– ident: 145_CR34
– volume: 13
  start-page: 1
  year: 2004
  ident: 145_CR13
  publication-title: Test
  doi: 10.1007/BF02595775
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: 145_CR24
– volume: 102
  start-page: 359
  year: 2007
  ident: 145_CR14
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000001437
– volume: 44
  start-page: 71
  year: 1982
  ident: 145_CR17
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1982.tb01189.x
– volume: 32
  start-page: 953
  year: 2000
  ident: 145_CR10
  publication-title: Applied Economics
  doi: 10.1080/000368400322002
– ident: 145_CR22
– volume: 4
  start-page: 1403
  year: 2010
  ident: 145_CR8
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/10-AOAS335
– ident: 145_CR20
– volume: 6
  start-page: 7
  year: 2006
  ident: 145_CR23
  publication-title: R News
– volume-title: Proceedings of CoDaWork: 4th International Workshop on Compositional Data Analysis
  year: 2011
  ident: 145_CR31
– volume: 58
  start-page: 141
  year: 2009
  ident: 145_CR7
  publication-title: Journal of the Royal Statistical Society. Series C. Applied Statistics
  doi: 10.1111/j.1467-9876.2008.00644.x
– volume: 37
  start-page: 829
  year: 2005
  ident: 145_CR2
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-7383-7
– volume: 34
  start-page: 320
  year: 2008
  ident: 145_CR35
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2006.11.017
– volume: 62
  start-page: 1197
  year: 2006
  ident: 145_CR25
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00617.x
– volume: 73
  start-page: 351
  year: 2011
  ident: 145_CR27
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.1467-9868.2010.00766.x
– start-page: 448
  volume-title: Proceedings of the 21st International Workshop on Statistical Modelling
  year: 2006
  ident: 145_CR26
– volume-title: The Statistical Analysis of Compositional Data
  year: 1986
  ident: 145_CR1
  doi: 10.1007/978-94-009-4109-0
– volume: 4
  start-page: 95
  year: 1997
  ident: 145_CR6
  publication-title: Environmental and Ecological Statistics
  doi: 10.1023/A:1018514226420
– ident: 145_CR33
– volume: 75
  start-page: 139
  year: 2013
  ident: 145_CR16
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.1467-9868.2012.01041.x
– volume: 69
  start-page: 197
  year: 1982
  ident: 145_CR28
  publication-title: Biometrika
  doi: 10.1093/biomet/69.1.197
SSID ssj0013602
Score 2.1418555
Snippet Compositional data analysis considers vectors of nonnegative-valued variables subject to a unit-sum constraint. Our interest lies in spatial compositional...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 314
SubjectTerms Agriculture
Biostatistics
habitat fragmentation
Health Sciences
household income
land cover
land use
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
regression analysis
Statistics
Statistics for Life Sciences
Title Spatial Regression Modeling for Compositional Data With Many Zeros
URI https://www.jstor.org/stable/26452944
https://link.springer.com/article/10.1007/s13253-013-0145-y
https://www.proquest.com/docview/1501364780
Volume 18
WOSCitedRecordID wos000324839400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1537-2693
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013602
  issn: 1085-7117
  databaseCode: RSV
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_01GN98KPn4vpFFEHwKDRJP9LHVe_Qhztkz4_Dl5CmyXogXdnuCvvfO9Omt6yooA99m-ZjMjOZMDO_AXiubMaV5yJ2JsliCq3FquYu9pZeHz6vhPBds4ni9FSdn5fvQx13O2S7DyHJzlJvi92kyCj3hz4ccnMVruFtp0gbZ2eftqGDPCQaqiwuOC-GUObvhti5jIJJ7tMSdxzOX2Kk3dVzfPu_Fn0HbgVPk0170bgLV1wTwc3pfBnQNlwEN_pOlJsIxkfbgjf8KWh8G8H-SQi-RzAix7THdT6AV9TLGGWXzdy8T6VtGPVVo-p2ho4wI0MTEsKQ6o1ZGfb5YvWVnaD1YV8c8uMefDw--vD6bRz6McQW3bZVLCtbec9VZWtTOe-lRe8I73zvjCvwnV1IkxapSqQw1sssdbwsrfNGKserPFdyDHvNonH3gdVlzU1W1z5Df6wWeSVTW5mE0MaMMDKZQDIcjLYBrJx6ZnzTW5hl4qxGzmrirN5M4OXlL997pI6_ET-j09aEgNFQis3crNtWvzub6alMCTInzcsJvAhEfoGTWxMqFnALBJq1QznupOZyYkHx4jJNJ_B0ECONekvBGNO4xbrV6Ihzwu5XuNfDQXZ0MCDtn1f-4J-oH8JIdMJHSXGPYG-1XLvHcN3-QHFZPukU5ycKChDo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BgDEe-AhUlM-AkJBAkeLYSZzHAps2sVaoGzDxYjmO3SGhFDUtUv977hJnVREgwUPeLv48n8-63_0O4IU0KZOOJZHVcRpRaC2SFbORM_T6cFmZJK4tNpFPJvLsrPjg87ibHu3ehyRbS71JduNJStgf-rDJ9WW4IvDCIhzf9OTTJnSQeaChTKOcsbwPZf6uia3LyJvkDpa45XD-EiNtr56DW_816Ntw03ua4ahTjTtwydYB3BjNFp5twwZwratEuQ5gsL9JeMOf_IlvAtgd--B7AHvkmHa8znfhDdUyRt0Np3bWQWnrkOqqUXZ7iI5wSIbGA8JQ6p1e6vDz1-V5OEbrE36xuB734OPB_unbw8jXY4gMum3LiJemdI7J0lS6tM5xg94R3vnOapvjOzvnWuRCxjzRxvFUWFYUxjrNpWVllkk-gJ16Xtv7EFZFxXRaVS5Ff6xKspILU-qY2MZ0onk8hLjfGGU8WTnVzPimNjTLtLIKV1bRyqr1EF5d_PK9Y-r4m_Bz2m1FDBg1QWxmetU06uhkqkZcEGWOyIohvPRCbo6dG-0zFnAKRJq1JTloteai44TixYUQQ3jWq5HCc0vBGF3b-apR6Igz4u6XONfXve4ob0CaP4_8wT9JP4Xrh6fjY3V8NHn_EPaSVhEJIPcIdpaLlX0MV80PVJ3Fk_YQ_QTZSRPM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BgGk8DAhUlA0ICAkJFC2O8-E8dmwVE6yaNj4mXizHsbtJKJ2aFKn_PXeJs6oIkBAPeTvbsX0-_6y7-x3AK6ETJiyLAqPCJCDXWiBKZgKr6fVh0yKKbFtsIptMxPl5fuLqnNZ9tHvvkuxyGoilqWr2rkq7t0p841FCcUD0YffLm3ArpppB9Fw_-7JyI6Qu6FAkQcZY1rs1f9fF2sXkzHMXorgGPn_xl7bX0Pjef0_gPmw7BOqPOpV5ADdM5cHd0XTuWDiMB3e6CpVLDwaHq0Q4bOQsQe3B5rFzynuwRYC143t-CPtU4xh12j810y7EtvKp3hplvfsIkH0yQC5QDKUOVKP8r5fNhX-MVsn_ZnBtHsHn8eGnd-8DV6ch0AjnmoAXurCWiUKXqjDWco2oCbGANcpk-P7OuIqzWIQ8UtryJDYsz7WxigvDijQVfAAb1awyj8Ev85KppCxtgjitjNKCx7pQIbGQqUjxcAhhv0lSOxJzqqXxXa7ol2llJa6spJWVyyG8uW5y1TF4_E34Je28JGaMikJvpmpR1_Lo7FSOeExUOnGaD-G1E7IzHFwrl8mAUyAyrTXJQatB1wNH5EfO43gIL3qVknieyUmjKjNb1BIBOiNOf4FzfdvrkXSGpf7znz_5J-nnsHlyMJYfjyYfdmAravWQ4uZ2YaOZL8xTuK1_oObMn7Xn6SeqvByw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Regression+Modeling+for+Compositional+Data+With+Many+Zeros&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Leininger%2C+Thomas+J&rft.au=Gelfand%2C+Alan+E&rft.au=Allen%2C+Jenica+M&rft.au=Silander%2C+John+A.%2C+Jr+Jr&rft.date=2013-09-01&rft.issn=1085-7117&rft.volume=18&rft.issue=3+p.314-334&rft.spage=314&rft.epage=334&rft_id=info:doi/10.1007%2Fs13253-013-0145-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon