Learning agile and dynamic motor skills for legged robots

Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science robotics Ročník 4; číslo 26
Hlavní autoři: Hwangbo, Jemin, Lee, Joonho, Dosovitskiy, Alexey, Bellicoso, Dario, Tsounis, Vassilios, Koltun, Vladlen, Hutter, Marco
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 16.01.2019
ISSN:2470-9476, 2470-9476
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we introduce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than before, and recovering from falling even in complex configurations.
AbstractList Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we introduce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than before, and recovering from falling even in complex configurations.
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we introduce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than before, and recovering from falling even in complex configurations.Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we introduce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than before, and recovering from falling even in complex configurations.
Author Tsounis, Vassilios
Hwangbo, Jemin
Dosovitskiy, Alexey
Bellicoso, Dario
Lee, Joonho
Hutter, Marco
Koltun, Vladlen
Author_xml – sequence: 1
  givenname: Jemin
  orcidid: 0000-0002-3444-8079
  surname: Hwangbo
  fullname: Hwangbo, Jemin
  email: jhwangbo@ethz.ch
  organization: Robotic Systems Lab, ETH Zurich, Zurich, Switzerland. jhwangbo@ethz.ch
– sequence: 2
  givenname: Joonho
  orcidid: 0000-0002-5072-7385
  surname: Lee
  fullname: Lee, Joonho
  organization: Robotic Systems Lab, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Alexey
  orcidid: 0000-0003-1851-0976
  surname: Dosovitskiy
  fullname: Dosovitskiy, Alexey
  organization: Intelligent Systems Lab, Intel, Munich, Germany
– sequence: 4
  givenname: Dario
  orcidid: 0000-0003-3856-0735
  surname: Bellicoso
  fullname: Bellicoso, Dario
  organization: Robotic Systems Lab, ETH Zurich, Zurich, Switzerland
– sequence: 5
  givenname: Vassilios
  orcidid: 0000-0003-3428-8455
  surname: Tsounis
  fullname: Tsounis, Vassilios
  organization: Robotic Systems Lab, ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: Vladlen
  orcidid: 0000-0003-0858-0970
  surname: Koltun
  fullname: Koltun, Vladlen
  organization: Intelligent Systems Lab, Intel, Santa Clara, CA, USA
– sequence: 7
  givenname: Marco
  orcidid: 0000-0002-4285-4990
  surname: Hutter
  fullname: Hutter, Marco
  organization: Robotic Systems Lab, ETH Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33137755$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAYRS1UREvpL0BCHllS_LYzooqXFIkF5uiL40QGxy5xMvTfU0GRmO4Zju7VvUSLmKJD6JqSLaVM3WXrx9Skydu8BZil0ewMrZjQpCiFVot_vESbnD8IIVQrrgS7QEvOKddayhUqKwdj9LHH0PvgMMQWt4cIg7d4SFMacf70IWTcHTG4vnct_hnOV-i8g5Dd5pRr9P748LZ7LqrXp5fdfVVYQdVUMN1RqUA75YC0EgzpSKdMR60zsrGqZNoKZjRwrqltbckFaNNIzShYqx1bo9vf3v2YvmaXp3rw2boQILo055qJo2uYIuqo3pzUuRlcW-9HP8B4qP_usm-Sx1wg
CitedBy_id crossref_primary_10_1109_LRA_2020_3007451
crossref_primary_10_1109_LRA_2022_3218167
crossref_primary_10_3389_fncir_2021_743888
crossref_primary_10_3389_frobt_2022_854212
crossref_primary_10_1007_s42235_023_00452_9
crossref_primary_10_1155_2020_8854411
crossref_primary_10_1007_s43154_022_00082_9
crossref_primary_10_1109_TNNLS_2021_3117878
crossref_primary_10_1371_journal_pone_0246102
crossref_primary_10_1109_TMECH_2023_3241302
crossref_primary_10_1109_ACCESS_2021_3068769
crossref_primary_10_1109_ACCESS_2020_3042874
crossref_primary_10_3389_fnbot_2021_655330
crossref_primary_10_1109_TRO_2023_3262108
crossref_primary_10_3389_frobt_2022_852270
crossref_primary_10_1016_j_aei_2022_101661
crossref_primary_10_1109_LRA_2024_3374190
crossref_primary_10_1126_scirobotics_abg5561
crossref_primary_10_1109_LRA_2023_3320827
crossref_primary_10_1109_TRO_2020_3046415
crossref_primary_10_1126_scirobotics_ads5033
crossref_primary_10_3390_mi13101688
crossref_primary_10_3390_s23073762
crossref_primary_10_1038_s41598_023_48338_4
crossref_primary_10_3390_biomimetics9110691
crossref_primary_10_1007_s10489_019_01510_8
crossref_primary_10_1007_s42235_023_00442_x
crossref_primary_10_1002_admt_202400992
crossref_primary_10_3390_molecules28052232
crossref_primary_10_1017_S0140525X22000814
crossref_primary_10_1038_s41467_022_34324_3
crossref_primary_10_1109_ACCESS_2023_3304992
crossref_primary_10_1109_TNNLS_2024_3446371
crossref_primary_10_3389_fnbot_2025_1649870
crossref_primary_10_7746_jkros_2025_20_3_495
crossref_primary_10_1109_TRO_2024_3504132
crossref_primary_10_1109_ACCESS_2022_3172492
crossref_primary_10_3389_frobt_2021_629523
crossref_primary_10_1016_j_mser_2025_101054
crossref_primary_10_1109_TRO_2020_3047515
crossref_primary_10_3389_frobt_2023_1282299
crossref_primary_10_1093_nsr_nwac214
crossref_primary_10_3390_app11041587
crossref_primary_10_1186_s10033_020_00493_9
crossref_primary_10_1126_scirobotics_adv3604
crossref_primary_10_1126_scirobotics_abb9764
crossref_primary_10_1038_s44182_023_00006_5
crossref_primary_10_1016_j_neunet_2022_10_016
crossref_primary_10_3389_frobt_2024_1337722
crossref_primary_10_3390_act14040199
crossref_primary_10_1109_LRA_2023_3304561
crossref_primary_10_1126_scirobotics_adu3922
crossref_primary_10_1109_JAS_2025_125552
crossref_primary_10_1177_02783649231224053
crossref_primary_10_1109_TNNLS_2019_2955699
crossref_primary_10_1049_ccs2_12002
crossref_primary_10_1109_LRA_2023_3270034
crossref_primary_10_1109_TRO_2023_3284362
crossref_primary_10_1109_LRA_2023_3281290
crossref_primary_10_1109_TIE_2024_3429576
crossref_primary_10_1109_TITS_2020_3023788
crossref_primary_10_1016_j_arcontrol_2024_100948
crossref_primary_10_1007_s11432_022_3696_5
crossref_primary_10_1109_LRA_2024_3459797
crossref_primary_10_1109_LRA_2024_3457379
crossref_primary_10_1109_TRO_2024_3430711
crossref_primary_10_3390_app14125213
crossref_primary_10_1007_s40430_025_05389_0
crossref_primary_10_1109_ACCESS_2023_3311141
crossref_primary_10_1016_j_ymssp_2021_108284
crossref_primary_10_3390_drones8100554
crossref_primary_10_1108_IR_01_2025_0015
crossref_primary_10_1109_LRA_2021_3100269
crossref_primary_10_1038_s41467_020_19424_2
crossref_primary_10_3389_fnbot_2023_1089270
crossref_primary_10_1109_ACCESS_2023_3301175
crossref_primary_10_1155_2022_3551508
crossref_primary_10_1016_j_mechmachtheory_2021_104358
crossref_primary_10_1109_LRA_2022_3188108
crossref_primary_10_1007_s42235_023_00432_z
crossref_primary_10_1016_j_procs_2024_11_001
crossref_primary_10_1109_TNNLS_2021_3124366
crossref_primary_10_3390_machines12120902
crossref_primary_10_1109_LRA_2025_3541432
crossref_primary_10_1007_s42235_024_00517_3
crossref_primary_10_1109_TMECH_2024_3353915
crossref_primary_10_3390_s24186070
crossref_primary_10_1186_s10033_020_00485_9
crossref_primary_10_1038_s41598_019_51308_4
crossref_primary_10_1038_s42256_021_00320_3
crossref_primary_10_1007_s10489_024_05782_7
crossref_primary_10_1007_s10514_021_09974_9
crossref_primary_10_1088_1748_3190_ac92b3
crossref_primary_10_1088_1361_665X_adf37f
crossref_primary_10_3390_buildings12112027
crossref_primary_10_1177_02783649241273645
crossref_primary_10_1016_j_birob_2023_100091
crossref_primary_10_1016_j_jestch_2024_101783
crossref_primary_10_1109_ACCESS_2020_3016312
crossref_primary_10_1126_scirobotics_abk2822
crossref_primary_10_1088_2634_4386_ac1b76
crossref_primary_10_1038_s41598_024_83749_x
crossref_primary_10_1088_1748_3190_ac9ef5
crossref_primary_10_1126_scirobotics_adh5401
crossref_primary_10_1016_j_oceaneng_2023_113620
crossref_primary_10_1177_02783649241260428
crossref_primary_10_1016_j_ast_2023_108689
crossref_primary_10_1017_S0263574721001600
crossref_primary_10_1109_LRA_2020_2979656
crossref_primary_10_3389_frobt_2022_969380
crossref_primary_10_1177_1464419320933382
crossref_primary_10_1038_s41598_024_58380_5
crossref_primary_10_1109_LRA_2025_3577526
crossref_primary_10_1109_LRA_2025_3595037
crossref_primary_10_1007_s12559_022_10080_w
crossref_primary_10_1016_j_neucom_2023_126986
crossref_primary_10_1007_s11012_022_01475_y
crossref_primary_10_1016_j_robot_2020_103703
crossref_primary_10_1109_LRA_2025_3573169
crossref_primary_10_3390_biomimetics8020168
crossref_primary_10_1007_s41315_019_00101_7
crossref_primary_10_1109_LRA_2022_3142730
crossref_primary_10_1088_1748_3190_ac6847
crossref_primary_10_1109_MRA_2022_3207664
crossref_primary_10_1007_s13042_022_01639_y
crossref_primary_10_1155_2020_3507679
crossref_primary_10_1109_TASE_2023_3310945
crossref_primary_10_3390_electronics12071564
crossref_primary_10_1109_LRA_2021_3061308
crossref_primary_10_1126_scirobotics_ads6790
crossref_primary_10_3390_biomimetics8010112
crossref_primary_10_3390_s24227306
crossref_primary_10_1109_TIE_2020_2973893
crossref_primary_10_3389_fnbot_2020_00014
crossref_primary_10_1109_LRA_2019_2925731
crossref_primary_10_1093_icb_icae121
crossref_primary_10_1109_OJIES_2025_3567112
crossref_primary_10_1126_scirobotics_adg0279
crossref_primary_10_1109_LRA_2025_3577876
crossref_primary_10_7717_peerj_cs_1720
crossref_primary_10_1049_cit2_12304
crossref_primary_10_1109_LRA_2022_3211785
crossref_primary_10_1016_j_ifacol_2020_12_1205
crossref_primary_10_1088_1748_3190_ab782a
crossref_primary_10_1109_LRA_2021_3136645
crossref_primary_10_7736_JKSPE_024_037
crossref_primary_10_1038_s41598_022_08755_3
crossref_primary_10_1016_j_oceaneng_2024_120139
crossref_primary_10_1002_adma_202002800
crossref_primary_10_1016_j_rcim_2022_102360
crossref_primary_10_1109_LRA_2025_3575648
crossref_primary_10_1016_j_neucom_2023_126885
crossref_primary_10_1007_s12555_025_0127_1
crossref_primary_10_1177_02783649251349225
crossref_primary_10_1038_s41598_023_34007_z
crossref_primary_10_1088_1748_3190_ac6e1b
crossref_primary_10_1007_s42235_023_00347_9
crossref_primary_10_1109_TRO_2024_3352969
crossref_primary_10_1007_s12541_023_00885_6
crossref_primary_10_1016_j_eswa_2025_127651
crossref_primary_10_1080_01691864_2019_1679251
crossref_primary_10_1007_s42235_023_00468_1
crossref_primary_10_1109_TRO_2023_3286046
crossref_primary_10_3389_fbioe_2022_804826
crossref_primary_10_1109_TNNLS_2022_3207346
crossref_primary_10_1038_s41467_024_50131_4
crossref_primary_10_1016_j_oceaneng_2025_121978
crossref_primary_10_3390_electronics11132031
crossref_primary_10_1109_LCSYS_2019_2960442
crossref_primary_10_1177_02783649231188387
crossref_primary_10_3389_fnbot_2019_00059
crossref_primary_10_3390_biomimetics9040193
crossref_primary_10_3389_fnbot_2020_591128
crossref_primary_10_3389_fnbot_2022_1054239
crossref_primary_10_3390_drones7040225
crossref_primary_10_1109_ACCESS_2023_3278208
crossref_primary_10_1109_LRA_2021_3076955
crossref_primary_10_1126_scirobotics_abb2174
crossref_primary_10_3390_s23115194
crossref_primary_10_1109_LRA_2025_3592085
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_1109_TRO_2021_3084374
crossref_primary_10_1002_aisy_202100195
crossref_primary_10_1016_j_robot_2019_103362
crossref_primary_10_1038_d41586_019_00999_w
crossref_primary_10_1109_TNNLS_2021_3099621
crossref_primary_10_1038_s42256_023_00743_0
crossref_primary_10_1109_ACCESS_2023_3321842
crossref_primary_10_3390_math13152466
crossref_primary_10_3390_robotics12040109
crossref_primary_10_1186_s10033_021_00578_z
crossref_primary_10_1002_oca_3181
crossref_primary_10_1007_s40430_024_05028_0
crossref_primary_10_3389_fnbot_2021_627157
crossref_primary_10_3390_biomimetics9030132
crossref_primary_10_1016_j_nahs_2024_101468
crossref_primary_10_1186_s12984_023_01147_2
crossref_primary_10_3389_frobt_2022_1059026
crossref_primary_10_1016_j_neunet_2021_06_001
crossref_primary_10_1109_TSMC_2021_3096935
crossref_primary_10_1177_02783649211063225
crossref_primary_10_1016_j_neunet_2020_05_029
crossref_primary_10_1109_ACCESS_2020_3020590
crossref_primary_10_1109_TCDS_2023_3345539
crossref_primary_10_1007_s12555_023_0826_4
crossref_primary_10_1007_s42235_024_00509_3
crossref_primary_10_1109_LRA_2022_3177289
crossref_primary_10_1108_IR_02_2022_0046
crossref_primary_10_3390_s20030939
crossref_primary_10_1109_LRA_2022_3169309
crossref_primary_10_1126_scirobotics_adg7165
crossref_primary_10_1002_rnc_6825
crossref_primary_10_3390_act12030110
crossref_primary_10_1007_s42241_020_0028_y
crossref_primary_10_1109_LRA_2023_3301274
crossref_primary_10_1016_j_birob_2025_100231
crossref_primary_10_1177_09544062241235079
crossref_primary_10_4018_JOEUC_369158
crossref_primary_10_1007_s10489_024_06115_4
crossref_primary_10_3390_s24154981
crossref_primary_10_1038_s42256_025_01065_z
crossref_primary_10_3390_act12040157
crossref_primary_10_1109_LRA_2020_2974707
crossref_primary_10_1126_scirobotics_abm6010
crossref_primary_10_1038_s41586_023_06419_4
crossref_primary_10_1016_j_asr_2024_06_064
crossref_primary_10_1109_LRA_2025_3551637
crossref_primary_10_1109_TRO_2022_3226149
crossref_primary_10_1016_j_robot_2020_103515
crossref_primary_10_1109_ACCESS_2022_3151771
crossref_primary_10_1109_TRO_2023_3297015
crossref_primary_10_1109_TCYB_2021_3049555
crossref_primary_10_7717_peerj_cs_718
crossref_primary_10_1016_j_oceaneng_2021_108862
crossref_primary_10_1109_TIE_2025_3558030
crossref_primary_10_3390_biomimetics8040364
crossref_primary_10_1016_j_mechmachtheory_2022_104936
crossref_primary_10_1016_j_engappai_2025_111888
crossref_primary_10_1109_LRA_2025_3561573
crossref_primary_10_1109_TRO_2019_2958211
crossref_primary_10_1016_j_birob_2025_100255
crossref_primary_10_3390_electronics14071264
crossref_primary_10_1109_LRA_2023_3290509
crossref_primary_10_1007_s12555_024_0666_x
crossref_primary_10_1109_LRA_2021_3066833
crossref_primary_10_1109_TRO_2023_3299527
crossref_primary_10_1109_ACCESS_2022_3176608
crossref_primary_10_1109_TVCG_2021_3139031
crossref_primary_10_1146_annurev_control_061523_102310
crossref_primary_10_1007_s43154_021_00059_0
crossref_primary_10_1111_cgf_15175
crossref_primary_10_3390_mi13071055
crossref_primary_10_1109_TNNLS_2020_3016523
crossref_primary_10_1109_LRA_2024_3519908
crossref_primary_10_1109_TRO_2025_3547267
crossref_primary_10_1016_j_ast_2022_107907
crossref_primary_10_3389_frobt_2022_970890
crossref_primary_10_1109_LRA_2020_2972879
crossref_primary_10_1109_TMECH_2023_3277102
crossref_primary_10_1109_LRA_2023_3246839
crossref_primary_10_1016_j_robot_2024_104775
crossref_primary_10_1109_TRO_2021_3078317
crossref_primary_10_1109_TNNLS_2023_3281604
crossref_primary_10_1007_s42235_024_00541_3
crossref_primary_10_1109_ACCESS_2023_3310405
crossref_primary_10_1126_scirobotics_abo0235
crossref_primary_10_3390_robotics14060076
crossref_primary_10_1002_gamm_202100009
crossref_primary_10_3390_aerospace11050395
crossref_primary_10_3390_machines10050292
crossref_primary_10_1007_s12555_022_1218_x
crossref_primary_10_1038_s42256_023_00701_w
crossref_primary_10_1063_5_0007754
crossref_primary_10_1109_TNNLS_2021_3119127
crossref_primary_10_1109_TASE_2025_3561771
crossref_primary_10_1109_LRA_2023_3323893
crossref_primary_10_1109_TAI_2023_3249683
crossref_primary_10_1038_s42256_024_00861_3
crossref_primary_10_1109_TCYB_2019_2949596
crossref_primary_10_1016_j_rineng_2025_104661
crossref_primary_10_1038_s42256_020_00263_1
crossref_primary_10_1007_s41693_022_00069_0
crossref_primary_10_1038_s41598_024_77779_8
crossref_primary_10_1109_LRA_2025_3569117
crossref_primary_10_1007_s10489_025_06584_1
crossref_primary_10_1016_j_knosys_2023_111101
crossref_primary_10_1109_TRO_2023_3236952
crossref_primary_10_3390_aerospace9110632
crossref_primary_10_1016_j_knosys_2023_111341
crossref_primary_10_1109_LRA_2020_3011379
crossref_primary_10_1016_j_robot_2024_104799
crossref_primary_10_1109_LRA_2023_3286171
crossref_primary_10_3390_app9071508
crossref_primary_10_1109_ACCESS_2022_3148921
crossref_primary_10_3390_biomimetics9060310
crossref_primary_10_1109_LRA_2025_3572427
crossref_primary_10_3390_s21175907
crossref_primary_10_1109_TMECH_2020_2999401
crossref_primary_10_1155_2021_7331894
crossref_primary_10_1109_TNNLS_2021_3112718
crossref_primary_10_1007_s11071_024_09445_7
crossref_primary_10_1515_teme_2019_0072
crossref_primary_10_1051_matecconf_202440604007
crossref_primary_10_1109_ACCESS_2023_3265895
crossref_primary_10_1088_1748_3190_ad839e
crossref_primary_10_1016_j_robot_2024_104787
crossref_primary_10_1109_LRA_2022_3194315
crossref_primary_10_1109_TVT_2022_3205452
crossref_primary_10_1126_scirobotics_ade2256
crossref_primary_10_1007_s40747_025_02056_8
crossref_primary_10_1109_TRO_2022_3154715
crossref_primary_10_1109_TRO_2022_3158194
crossref_primary_10_1109_TRO_2024_3400935
crossref_primary_10_1089_soro_2022_0177
crossref_primary_10_1002_aisy_202401059
crossref_primary_10_1016_j_neunet_2023_08_030
crossref_primary_10_1109_TNNLS_2022_3219814
crossref_primary_10_1016_j_jag_2024_103708
crossref_primary_10_1108_RIA_10_2023_0146
crossref_primary_10_1109_ACCESS_2020_2992794
crossref_primary_10_1017_S0263574722000625
crossref_primary_10_1109_ACCESS_2025_3579786
crossref_primary_10_3390_biomimetics10070469
crossref_primary_10_1038_s44182_025_00048_x
crossref_primary_10_1109_LRA_2022_3226027
crossref_primary_10_1109_TII_2023_3240758
crossref_primary_10_1038_s44172_023_00089_w
crossref_primary_10_1016_j_mechmachtheory_2024_105859
crossref_primary_10_1109_LRA_2022_3184779
crossref_primary_10_1038_s41467_019_13239_6
crossref_primary_10_3390_robotics13080113
crossref_primary_10_1016_j_robot_2023_104468
crossref_primary_10_3390_s23020762
crossref_primary_10_1016_j_compeleceng_2021_107027
crossref_primary_10_1007_s11227_024_05963_8
crossref_primary_10_1038_s41598_023_38259_7
crossref_primary_10_1109_LRA_2025_3527757
crossref_primary_10_1109_TAC_2022_3200948
crossref_primary_10_1016_j_mechmachtheory_2023_105448
crossref_primary_10_1126_scirobotics_adi9579
crossref_primary_10_1146_annurev_control_030323_022510
crossref_primary_10_1109_ACCESS_2023_3317183
crossref_primary_10_1002_aisy_202300172
crossref_primary_10_1109_TPAMI_2024_3443916
crossref_primary_10_1049_csy2_12062
crossref_primary_10_1109_TRO_2022_3181014
crossref_primary_10_1007_s11071_021_06376_5
crossref_primary_10_3390_robotics14050057
crossref_primary_10_1049_csy2_12064
crossref_primary_10_1109_LRA_2024_3398428
crossref_primary_10_1016_j_eswa_2024_124887
crossref_primary_10_1016_j_robot_2022_104150
crossref_primary_10_1007_s11633_023_1429_5
crossref_primary_10_3389_frobt_2022_951293
crossref_primary_10_3389_fenrg_2021_725353
crossref_primary_10_1109_TRO_2024_3434208
crossref_primary_10_1109_TAI_2023_3237665
crossref_primary_10_1002_rob_70035
crossref_primary_10_1016_j_aei_2023_102256
crossref_primary_10_1016_j_jcp_2021_110317
crossref_primary_10_1073_pnas_2213698120
crossref_primary_10_3390_app11041816
crossref_primary_10_1109_ACCESS_2021_3076530
crossref_primary_10_1038_s41598_024_84060_5
crossref_primary_10_3389_fncir_2023_1111285
crossref_primary_10_1016_j_robot_2023_104550
crossref_primary_10_1016_j_robot_2023_104443
crossref_primary_10_1109_MRA_2024_3487322
crossref_primary_10_1109_TCDS_2021_3092715
crossref_primary_10_1002_rob_70028
crossref_primary_10_1088_1748_3190_ac45e6
crossref_primary_10_1016_j_birob_2021_100029
crossref_primary_10_1109_ACCESS_2024_3485506
crossref_primary_10_1109_MRA_2024_3487325
crossref_primary_10_1109_LRA_2024_3418310
crossref_primary_10_1007_s42235_024_00618_z
crossref_primary_10_1017_S0263574723001261
crossref_primary_10_1109_TIE_2024_3360604
crossref_primary_10_1016_j_cag_2024_104141
crossref_primary_10_1109_LRA_2020_2974653
crossref_primary_10_1177_02783649241285161
crossref_primary_10_1088_1757_899X_1261_1_012018
crossref_primary_10_1109_TRO_2022_3141602
crossref_primary_10_1016_j_neucom_2025_129363
crossref_primary_10_1126_scirobotics_adi8022
crossref_primary_10_1109_LRA_2024_3483039
crossref_primary_10_1038_s42005_025_02146_6
crossref_primary_10_1109_TAI_2023_3316637
crossref_primary_10_1109_TRO_2021_3106832
crossref_primary_10_1109_ACCESS_2023_3313637
crossref_primary_10_1016_j_neucom_2023_01_016
crossref_primary_10_1177_02783649241312698
crossref_primary_10_1109_LRA_2021_3133934
crossref_primary_10_1038_s41598_025_94163_2
crossref_primary_10_1109_LRA_2021_3068639
crossref_primary_10_3389_frobt_2021_702845
crossref_primary_10_1038_s41598_025_13055_7
crossref_primary_10_1109_LRA_2020_3013848
crossref_primary_10_1155_2022_4194747
crossref_primary_10_1016_j_conengprac_2025_106536
crossref_primary_10_1016_j_techfore_2023_122588
crossref_primary_10_1109_TAES_2022_3207705
crossref_primary_10_1109_LRA_2021_3064284
crossref_primary_10_1007_s42235_019_0050_3
crossref_primary_10_1109_TASE_2023_3345876
crossref_primary_10_3390_s20174911
crossref_primary_10_3389_fncir_2020_00046
crossref_primary_10_1109_TMM_2022_3151463
crossref_primary_10_1088_1748_3190_ace017
crossref_primary_10_1126_scirobotics_aaw3520
crossref_primary_10_1186_s10033_023_00963_w
crossref_primary_10_1109_MCS_2020_3019143
crossref_primary_10_1126_scirobotics_abk0395
crossref_primary_10_1109_MRA_2022_3204237
crossref_primary_10_3390_en15062198
crossref_primary_10_1109_LRA_2020_2974685
crossref_primary_10_1177_02783649251364393
crossref_primary_10_1016_j_engappai_2024_109418
crossref_primary_10_1177_10775463241264047
crossref_primary_10_1089_soro_2022_0220
crossref_primary_10_1038_s42256_022_00444_0
crossref_primary_10_3390_math11102234
crossref_primary_10_1016_j_neunet_2021_09_017
crossref_primary_10_1109_ACCESS_2023_3333388
crossref_primary_10_1109_MRA_2020_2980547
crossref_primary_10_1016_j_engappai_2023_106197
crossref_primary_10_1109_ACCESS_2023_3286871
crossref_primary_10_1109_LRA_2022_3143227
crossref_primary_10_1109_MRA_2023_3262461
crossref_primary_10_1016_j_eswa_2024_124310
crossref_primary_10_1016_j_jai_2022_100003
crossref_primary_10_3389_frobt_2023_1223946
crossref_primary_10_1109_TIE_2023_3299051
crossref_primary_10_1109_LRA_2024_3497754
crossref_primary_10_3389_frobt_2022_974537
crossref_primary_10_3389_frobt_2021_697612
crossref_primary_10_1002_adrr_202500036
crossref_primary_10_1109_LRA_2021_3065278
crossref_primary_10_1109_LRA_2022_3145516
crossref_primary_10_34133_cbsystems_0365
crossref_primary_10_1038_s44182_025_00043_2
crossref_primary_10_1017_S0263574722001436
crossref_primary_10_3390_machines10070496
crossref_primary_10_1073_pnas_2017015118
crossref_primary_10_3390_s21020331
crossref_primary_10_1109_TTE_2024_3377809
crossref_primary_10_1177_02783649231169492
crossref_primary_10_1177_0278364920987859
crossref_primary_10_1109_LRA_2024_3375086
crossref_primary_10_3390_electronics13010116
crossref_primary_10_1007_s10846_021_01412_3
crossref_primary_10_1126_scirobotics_abc5986
crossref_primary_10_1007_s10015_022_00776_5
crossref_primary_10_1126_scirobotics_adi7566
crossref_primary_10_1038_s42256_022_00576_3
crossref_primary_10_1002_rob_22292
crossref_primary_10_1109_LRA_2022_3143567
crossref_primary_10_1016_j_heliyon_2024_e37237
crossref_primary_10_3390_robotics13010017
crossref_primary_10_1007_s00521_022_07033_7
crossref_primary_10_3390_app13010154
crossref_primary_10_1088_1755_1315_502_1_012018
crossref_primary_10_1109_LRA_2021_3092647
crossref_primary_10_1007_s11370_021_00360_z
crossref_primary_10_1109_TNNLS_2021_3055499
crossref_primary_10_1038_s42256_025_01048_0
crossref_primary_10_3390_aerospace10100834
crossref_primary_10_1109_LRA_2023_3342559
crossref_primary_10_1017_S026357472500044X
crossref_primary_10_1038_s42256_025_00988_x
crossref_primary_10_1109_TRO_2025_3603551
crossref_primary_10_3390_math11041021
crossref_primary_10_1109_TNNLS_2021_3107742
crossref_primary_10_3390_s21041278
crossref_primary_10_3390_machines10100834
crossref_primary_10_3390_biomimetics9120749
crossref_primary_10_1007_s10489_025_06360_1
crossref_primary_10_3390_robotics11010003
crossref_primary_10_1109_TITS_2021_3066366
crossref_primary_10_1063_5_0097241
crossref_primary_10_3389_frobt_2021_696452
crossref_primary_10_1126_scirobotics_adi9641
crossref_primary_10_1016_j_ins_2022_08_041
crossref_primary_10_1109_LRA_2023_3313923
crossref_primary_10_1109_LRA_2022_3229907
crossref_primary_10_1109_JAS_2023_123375
crossref_primary_10_1007_s12206_023_0838_2
crossref_primary_10_1038_s41586_024_07382_4
crossref_primary_10_1038_s41598_024_79292_4
crossref_primary_10_1109_TRO_2024_3386391
crossref_primary_10_1109_TSMC_2022_3229213
crossref_primary_10_1109_LRA_2023_3307008
crossref_primary_10_1126_scirobotics_adr6125
crossref_primary_10_3390_aerospace9060294
crossref_primary_10_1002_adfm_202304642
crossref_primary_10_1109_TRO_2025_3588452
crossref_primary_10_1016_j_engappai_2025_112079
crossref_primary_10_1038_s41467_024_48670_x
crossref_primary_10_1007_s11071_024_10630_x
crossref_primary_10_1109_LRA_2022_3151396
crossref_primary_10_1109_LRA_2024_3446287
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DBID NPM
7X8
DOI 10.1126/scirobotics.aau5872
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2470-9476
ExternalDocumentID 33137755
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
ABJNI
ACGFS
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BKF
EBS
NPM
O9-
SJN
7X8
ID FETCH-LOGICAL-c416t-27f156a7e6ea0d5a80f0f68f1ce85bc6927c4287a3371cdc934a78b5721acc7e2
IEDL.DBID 7X8
ISICitedReferencesCount 948
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455967100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-9476
IngestDate Thu Oct 02 06:38:35 EDT 2025
Wed Feb 19 02:29:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-27f156a7e6ea0d5a80f0f68f1ce85bc6927c4287a3371cdc934a78b5721acc7e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3856-0735
0000-0002-4285-4990
0000-0002-3444-8079
0000-0003-3428-8455
0000-0003-1851-0976
0000-0002-5072-7385
0000-0003-0858-0970
OpenAccessLink http://infoscience.epfl.ch/record/265881
PMID 33137755
PQID 2457282606
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2457282606
pubmed_primary_33137755
PublicationCentury 2000
PublicationDate 2019-01-16
PublicationDateYYYYMMDD 2019-01-16
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science robotics
PublicationTitleAlternate Sci Robot
PublicationYear 2019
SSID ssj0001763642
Score 2.6326478
Snippet Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Learning agile and dynamic motor skills for legged robots
URI https://www.ncbi.nlm.nih.gov/pubmed/33137755
https://www.proquest.com/docview/2457282606
Volume 4
WOSCitedRecordID wos000455967100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsDA-1FeMhKrIYkT25kQQlQsVB1A6hZd_IgQVVKalt_POUlVFiQkliiLlfh8vnx3vnwfITe5cInMA8VUCimL_R1w65jB3Bm0iSAJoRGbkMOhGo_TUVdwq7u2ymVMbAK1qbSvkd9FcSIxPUC8fT_9ZF41yp-udhIa66THEcr4li45VqsaC24e0ejnRLEMWBpL0REPdf_NzKq88mzItwCLRDUswb_AzOZzM9j974vukZ0OaNKH1jP2yZotD8j2D_rBQ5J25KoFhQKDA4XSUNMq1FNcwWpG64_3yaSmCGzpxBaFNbSZS31E3gZPr4_PrJNSYBoR15xF0mGiBtIKC4FJQAUucEK50KuW5lqkkdQ-eQLOZaiNTnkMUuU4kxC0ljY6JhtlVdpTQsMoT0EKKXKuYnA4xEWG60DjAxD-QZ9cL-2Soav68wcobbWos5Vl-uSkNW42bTk1Ms499WGSnP1h9DnZQtji27xYKC5Iz-FGtZdkU3_N3-vZVeMDeB2OXr4Bb_e8pA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+agile+and+dynamic+motor+skills+for+legged+robots&rft.jtitle=Science+robotics&rft.au=Hwangbo%2C+Jemin&rft.au=Lee%2C+Joonho&rft.au=Dosovitskiy%2C+Alexey&rft.au=Bellicoso%2C+Dario&rft.date=2019-01-16&rft.eissn=2470-9476&rft.volume=4&rft.issue=26&rft_id=info:doi/10.1126%2Fscirobotics.aau5872&rft_id=info%3Apmid%2F33137755&rft_id=info%3Apmid%2F33137755&rft.externalDocID=33137755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-9476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-9476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-9476&client=summon