Comparing mechanical and enzymatic isolation procedures to isolate adipose‐derived stromal vascular fraction: A systematic review

The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wound repair and regeneration Jg. 32; H. 6; S. 1008 - 1021
Hauptverfasser: Uguten, Mustafa, Sluis, Nanouk, Vriend, Linda, Coert, J. H., Harmsen, Martin C., Lei, Berend, Dongen, Joris A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.11.2024
Schlagworte:
ISSN:1067-1927, 1524-475X, 1524-475X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full‐text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3–18.0 × 105 resp. 0.03–26.7 × 105 cells/ml), and cell viability (70%–99% resp. 46%–97.5%), while mechanical procedures are less time consuming (8–20 min vs. 50–210 min) and cost‐efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.
AbstractList The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full‐text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3–18.0 × 105 resp. 0.03–26.7 × 105 cells/ml), and cell viability (70%–99% resp. 46%–97.5%), while mechanical procedures are less time consuming (8–20 min vs. 50–210 min) and cost‐efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.
The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full‐text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3–18.0 × 10 5 resp. 0.03–26.7 × 10 5  cells/ml), and cell viability (70%–99% resp. 46%–97.5%), while mechanical procedures are less time consuming (8–20 min vs. 50–210 min) and cost‐efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.
The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 10 resp. 0.03-26.7 × 10  cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.
The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 105 resp. 0.03-26.7 × 105 cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 105 resp. 0.03-26.7 × 105 cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.
Author Harmsen, Martin C.
Dongen, Joris A.
Sluis, Nanouk
Coert, J. H.
Vriend, Linda
Uguten, Mustafa
Lei, Berend
AuthorAffiliation 2 Department of Plastic, Reconstructive and Hand Surgery University Medical Center Utrecht, University of Utrecht Utrecht The Netherlands
3 Department of Surgery Erasmus University Medical Center, University Medical Center Rotterdam Rotterdam The Netherlands
4 Department of Pathology & Medical Biology University of Groningen and University Medical Center Groningen Groningen The Netherlands
1 Department of Plastic, Reconstructive and Hand Surgery Medical Center Leeuwarden Leeuwarden The Netherlands
5 Department of Plastic Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands
AuthorAffiliation_xml – name: 2 Department of Plastic, Reconstructive and Hand Surgery University Medical Center Utrecht, University of Utrecht Utrecht The Netherlands
– name: 4 Department of Pathology & Medical Biology University of Groningen and University Medical Center Groningen Groningen The Netherlands
– name: 1 Department of Plastic, Reconstructive and Hand Surgery Medical Center Leeuwarden Leeuwarden The Netherlands
– name: 3 Department of Surgery Erasmus University Medical Center, University Medical Center Rotterdam Rotterdam The Netherlands
– name: 5 Department of Plastic Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands
Author_xml – sequence: 1
  givenname: Mustafa
  orcidid: 0009-0008-2560-769X
  surname: Uguten
  fullname: Uguten, Mustafa
  organization: University Medical Center Utrecht, University of Utrecht
– sequence: 2
  givenname: Nanouk
  orcidid: 0000-0001-5336-1967
  surname: Sluis
  fullname: Sluis, Nanouk
  organization: Erasmus University Medical Center, University Medical Center Rotterdam
– sequence: 3
  givenname: Linda
  orcidid: 0000-0002-9439-5810
  surname: Vriend
  fullname: Vriend, Linda
  organization: University of Groningen and University Medical Center Groningen
– sequence: 4
  givenname: J. H.
  surname: Coert
  fullname: Coert, J. H.
  organization: University Medical Center Utrecht, University of Utrecht
– sequence: 5
  givenname: Martin C.
  surname: Harmsen
  fullname: Harmsen, Martin C.
  organization: University of Groningen and University Medical Center Groningen
– sequence: 6
  givenname: Berend
  surname: Lei
  fullname: Lei, Berend
  organization: University Medical Center Groningen, University of Groningen
– sequence: 7
  givenname: Joris A.
  surname: Dongen
  fullname: Dongen, Joris A.
  email: jorisavandongen@gmail.com
  organization: University of Groningen and University Medical Center Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39444305$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9uFSEUxompsX904QsYlnYxLQxwh3Fjmhv_JU1MGo3uCIVDi2FghJl7c12Z-AI-o08i7b02aqJsOIHv-x043yHaiykCQo8pOaF1na5zPqGsbeU9dEBFyxveiY97tSaLrqF92-2jw1I-EUKE6OUDtM96zjkj4gB9W6Zh1NnHKzyAudbRGx2wjhZD_LIZ9OQN9iWFWqSIx5wM2DlDwVPanQPW1o-pwI-v3y1kvwKLy5TTUDkrXcwcdMYua3NDeIbPcNmUCbbkDCsP64fovtOhwKPdfoTev3zxbvm6OX_76s3y7LwxnC5kY6BtbQ9CMmBGk15w52S3YFJccm6F7hwhjmlCHe-t4IS1zlngrn61Z53k7Ag933LH-XIAayBOWQc1Zj_ovFFJe_XnTfTX6iqtFKWi2kVfCU93hJw-z1AmNfhiIAQdIc1FMdrWGUvSyyp98nuzuy6_Rl8Fx1uByamUDO5OQom6iVXVWNVtrFV7-pfW-Ok2kvpOH_7nWPsAm3-j1YeLi63jJzBDuOo
CitedBy_id crossref_primary_10_1007_s12015_025_10965_x
crossref_primary_10_3390_bioengineering12090948
crossref_primary_10_1007_s12015_025_10886_9
crossref_primary_10_1177_15563316251364264
crossref_primary_10_3389_fvets_2025_1586629
crossref_primary_10_1016_j_euros_2025_03_020
crossref_primary_10_2147_CCID_S547675
crossref_primary_10_1177_15563316251361918
crossref_primary_10_3390_biom15020199
crossref_primary_10_1002_jeo2_70378
crossref_primary_10_5493_wjem_v15_i3_106641
Cites_doi 10.1002/sctm.18-0051
10.1097/PRS.0000000000006155
10.1097/PRS.0000000000002356
10.1093/asj/sjab033
10.1089/ten.tec.2016.0377
10.1038/s41598-023-34915-0
10.1186/s13287-018-0886-1
10.1186/s13287-019-1328-4
10.3390/cells10010036
10.1186/s12967-020-02489-4
10.1016/j.jcyt.2013.02.006
10.1002/jcp.21210
10.1089/ars.2010.3507
10.1186/1472-6947-7-16
10.1007/s13770-019-00238-3
10.1007/s10544-020-00541-0
10.1007/s10616-020-00369-9
10.1097/PRS.0000000000002494
10.22203/eCM.v037a08
10.3390/cells12010030
10.1001/jamasurg.2017.6233
10.3390/ijms20215471
10.1093/asj/sjz223
10.3389/fbioe.2023.911600
10.3727/096368912X657855
10.3892/etm.2017.4069
10.1007/978-1-4939-7799-4_13
10.3389/fcell.2021.723057
10.1115/1.4041191
10.3390/ijms19072061
10.1038/s41598-017-10710-6
10.1155/2017/9289213
10.1016/j.amsu.2017.07.018
10.1007/s10151-021-02524-6
10.1177/09636897231175968
10.1016/S0094-1298(20)32659-6
10.1097/PRS.0000000000002790
10.1093/asj/sjad125
10.1093/asj/sjaa111
10.33549/physiolres.933451
10.1097/PRS.0000000000002920
10.1016/j.addr.2010.04.003
10.1093/asj/sjaa154
10.1093/asj/sjac226
10.1007/978-1-4939-7113-8_12
10.3389/fbioe.2022.895735
10.3390/cells9102158
10.1002/term.2407
10.1016/j.jclinepi.2009.06.006
10.1097/PRS.0000000000003372
10.1002/cpsc.41
10.1002/cpsc.68
10.1016/j.mayocp.2015.02.003
10.1371/journal.pone.0221457
10.1111/wrr.12482
10.1016/j.amsu.2017.11.002
10.1007/978-1-4939-9473-1_8
10.3389/fcell.2019.00088
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of The Wound Healing Society.
2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of The Wound Healing Society.
– notice: 2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/wrr.13228
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Uguten et al
EISSN 1524-475X
EndPage 1021
ExternalDocumentID PMC11584359
39444305
10_1111_wrr_13228
WRR13228
Genre reviewArticle
Systematic Review
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
04C
05W
0R~
10A
123
1OB
1OC
24P
29R
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOJX
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4168-ce22d9e583e3ca0954ff876385b44d5a7f00f3a01f49d54032ffde4f444937843
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339768600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1067-1927
1524-475X
IngestDate Tue Nov 04 02:04:51 EST 2025
Thu Oct 02 06:28:25 EDT 2025
Sun Jul 13 01:33:45 EDT 2025
Sat Nov 29 04:26:32 EST 2025
Tue Nov 18 22:00:33 EST 2025
Wed Jan 22 17:14:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords lipoaspirate
enzymatic isolation
stromal vascular fraction
mechanical isolation
adipose stromal cells
clinical grade stromal vascular fraction
lipografting
Language English
License Attribution
2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4168-ce22d9e583e3ca0954ff876385b44d5a7f00f3a01f49d54032ffde4f444937843
Notes Mustafa Uguten and Nanouk van der Sluis contributed equally to this study.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
ORCID 0000-0001-5336-1967
0000-0002-9439-5810
0009-0008-2560-769X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.13228
PMID 39444305
PQID 3120058098
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11584359
proquest_miscellaneous_3120058098
pubmed_primary_39444305
crossref_primary_10_1111_wrr_13228
crossref_citationtrail_10_1111_wrr_13228
wiley_primary_10_1111_wrr_13228_WRR13228
PublicationCentury 2000
PublicationDate November/December 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November/December 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Wound repair and regeneration
PublicationTitleAlternate Wound Repair Regen
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 25
2023; 32
2017; 7
2021; 23
2013; 22
2020; 164
2019; 10
2017; 43
2019; 14
2020; 17
2011; 15
2017; 1627
2020; 10
2010; 62
2020; 18
2018; 7
2018; 9
2013; 15
2019; 20
2020; 9
2007; 7
2015; 90
2021; 41
2019; 154
2021; 9
2019; 7
2017; 20
2023; 13
2009; 62
2023; 11
2018; 1773
2017; 2017
2020; 40
2019; 1
2017; 66
2017; 21
1999; 26
2019; 37
2017; 23
2019; 144
2017; 139
2018; 153
2023; 43
2018; 19
2020; 72
2017; 10
2019; 48
2017; 13
2022; 12
2020; 24
2008; 214
2016; 138
2022; 10
2018; 12
2019; 1993
2016; 24
Raposio E (e_1_2_11_60_1) 2017; 21
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
Tiryaki T (e_1_2_11_59_1) 2022; 10
Solodeev I (e_1_2_11_56_1) 2023; 11
Cohen SR (e_1_2_11_36_1) 2019; 1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
Estrada‐Gutierrez G (e_1_2_11_26_1) 2020; 164
e_1_2_11_40_1
e_1_2_11_63_1
Lu P (e_1_2_11_20_1) 2020; 24
e_1_2_11_9_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
Sherman LS (e_1_2_11_23_1) 2019; 154
e_1_2_11_39_1
References_xml – volume: 43
  start-page: 2H.1.1
  year: 2017
  end-page: 2H.1.15
  article-title: Human adipose‐derived stromal cell isolation methods and use in osteogenic and adipogenic in vivo applications
  publication-title: Curr Protoc Stem Cell Biol
– volume: 48
  issue: 1
  year: 2019
  article-title: Isolation of adipose tissue‐derived stem cells: enzymatic digestion in combination with mechanical distortion to increase adipose tissue‐derived stem cell yield from human aspirated fat
  publication-title: Curr Protoc Stem Cell Biol
– volume: 14
  issue: 9
  year: 2019
  article-title: Isolation of adipose tissue derived regenerative cells from human subcutaneous tissue with or without the use of an enzymatic reagent
  publication-title: PLoS One
– volume: 7
  start-page: 876
  issue: 12
  year: 2018
  end-page: 886
  article-title: Higher Pericyte content and secretory activity of microfragmented human adipose tissue compared to enzymatically derived stromal vascular fraction
  publication-title: Stem Cells Transl Med
– volume: 9
  start-page: 130
  issue: 1
  year: 2018
  article-title: Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno‐free media
  publication-title: Stem Cell Res Ther
– volume: 139
  start-page: 79
  issue: 1
  year: 2017
  end-page: 90
  article-title: Mechanical micronization of lipoaspirates: squeeze and emulsification techniques
  publication-title: Plast Reconstr Surg
– volume: 41
  start-page: NP1557
  issue: 11
  year: 2021
  end-page: NP1570
  article-title: Comparison of microfat, nanofat, and extracellular matrix/stromal vascular fraction gel for skin rejuvenation: basic research and clinical applications
  publication-title: Aesthet Surg J
– volume: 139
  start-page: 1369e
  issue: 6
  year: 2017
  end-page: 1370e
  article-title: Mechanical Micronization of Lipoaspirates: squeeze and emulsification techniques
  publication-title: Plast Reconstr Surg
– volume: 90
  start-page: 567
  issue: 5
  year: 2015
  end-page: 571
  article-title: Federal regulatory oversight of US clinics marketing adipose‐derived autologous stem cell interventions: insights from 3 new FDA draft guidance documents
  publication-title: Mayo Clin Proc
– volume: 25
  start-page: 1301
  issue: 12
  year: 2021
  end-page: 1309
  article-title: Efficacy and safety of autologous adipose‐derived stromal vascular fraction enriched with platelet‐rich plasma in flap repair of trans‐sphincteric cryptoglandular fistulas
  publication-title: Tech Coloproctol
– volume: 9
  start-page: 9
  year: 2021
  article-title: Characterized the adipogenic capacity of adipose‐derived stem cell, extracellular matrix, and microenvironment with fat components grafting
  publication-title: Front Cell Dev Biol
– volume: 19
  start-page: 2061
  issue: 7
  year: 2018
  article-title: A non‐enzymatic method to obtain a fat tissue derivative highly enriched in adipose stem cells (ASCs) from human Lipoaspirates: preliminary results
  publication-title: Int J Mol Sci
– volume: 1627
  start-page: 193
  year: 2017
  end-page: 203
  article-title: Isolation and culture of adipose‐derived stromal cells from subcutaneous fat
  publication-title: Methods Mol Biol
– volume: 40
  start-page: NP546
  issue: 9
  year: 2020
  end-page: NP560
  article-title: Expanding clinical indications of mechanically isolated stromal vascular fraction: a systematic review
  publication-title: Aesthet Surg J
– volume: 24
  start-page: 994
  issue: 6
  year: 2016
  end-page: 1003
  article-title: The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes
  publication-title: Wound Repair Regen
– volume: 138
  start-page: 237e
  issue: 2
  year: 2016
  end-page: 247e
  article-title: Phenotypic analysis of stromal vascular fraction after mechanical shear reveals stress‐induced progenitor populations
  publication-title: Plast Reconstr Surg
– volume: 40
  start-page: NP194
  issue: 4
  year: 2020
  end-page: NP201
  article-title: Fractionation of adipose tissue procedure with a disposable one‐hole fractionator
  publication-title: Aesthet Surg J
– volume: 1773
  start-page: 155
  year: 2018
  end-page: 165
  article-title: Isolation of human adipose‐derived stem cells from lipoaspirates
  publication-title: Methods Mol Biol
– volume: 12
  start-page: e261
  issue: 1
  year: 2018
  end-page: e274
  article-title: Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review
  publication-title: J Tissue Eng Regen Med
– volume: 138
  start-page: 807
  issue: 4
  year: 2016
  end-page: 819
  article-title: Mechanically isolated stromal vascular fraction provides a valid and useful collagenase‐free alternative technique: a comparative study
  publication-title: Plast Reconstr Surg
– volume: 15
  start-page: 981
  issue: 4
  year: 2011
  end-page: 995
  article-title: Vascular wall as a reservoir for different types of stem and progenitor cells
  publication-title: Antioxid Redox Signal
– volume: 138
  start-page: 983e
  issue: 6
  year: 2016
  end-page: 996e
  article-title: A novel method of human adipose‐derived stem cell isolation with resultant increased cell yield
  publication-title: Plast Reconstr Surg
– volume: 10
  year: 2022
  article-title: Modified nanofat grafting: stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications
  publication-title: Front Bioeng Biotechnol
– volume: 18
  start-page: 351
  issue: 1
  year: 2020
  article-title: Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review
  publication-title: J Transl Med
– volume: 26
  start-page: 587
  issue: 4
  year: 1999
  end-page: 603
  article-title: Emerging approaches to the tissue engineering of fat
  publication-title: Clin Plast Surg
– volume: 37
  start-page: 113
  year: 2019
  end-page: 133
  article-title: Adipose‐tissue‐derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue‐stromal vascular fraction
  publication-title: Eur Cell Mater
– volume: 62
  start-page: 798
  issue: 7–8
  year: 2010
  end-page: 813
  article-title: Cell‐delivery therapeutics for adipose tissue regeneration
  publication-title: Adv Drug Deliv Rev
– volume: 13
  start-page: 1039
  issue: 3
  year: 2017
  end-page: 1043
  article-title: Isolation, culture and identification of human adipose‐derived stem cells
  publication-title: Exp Ther Med
– volume: 1993
  start-page: 91
  year: 2019
  end-page: 103
  article-title: Isolation of stromal vascular fraction by fractionation of adipose tissue
  publication-title: Methods Mol Biol
– volume: 10
  start-page: 61
  issue: 24
  year: 2017
  end-page: 64
  article-title: Clinical use of adipose‐derived stem cells: European legislative issues
  publication-title: Ann Med Surg
– volume: 43
  start-page: Np696
  issue: 9
  year: 2023
  end-page: Np703
  article-title: Push‐through filtration of emulsified adipose tissue over a 500‐μm mesh significantly reduces the amount of stromal vascular fraction and mesenchymal stem cells
  publication-title: Aesthet Surg J
– volume: 12
  start-page: 044501
  issue: 4
  year: 2018
  article-title: Effect of the bowl structure in an automated cell‐isolation device on stromal vascular fraction's isolation yield
  publication-title: J Med Devices
– volume: 7
  start-page: 7
  year: 2019
  article-title: Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results
  publication-title: Front Cell Dev Biol
– volume: 15
  start-page: 641
  issue: 6
  year: 2013
  end-page: 648
  article-title: Stromal cells from the adipose tissue‐derived stromal vascular fraction and culture expanded adipose tissue‐derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)
  publication-title: Cytotherapy
– volume: 1
  issue: 4
  year: 2019
  article-title: Cellular optimization of nanofat: comparison of two nanofat processing devices in terms of cell count and viability
  publication-title: Aesthet Surg J
– volume: 144
  start-page: 1079
  issue: 5
  year: 2019
  end-page: 1088
  article-title: Nanofat cell aggregates: a nearly constitutive stromal cell inoculum for regenerative site‐specific therapies
  publication-title: Plast Reconstr Surg
– volume: 10
  start-page: 223
  issue: 1
  year: 2019
  article-title: Autologous micro‐fragmented adipose tissue for the treatment of diabetic foot minor amputations: a randomized controlled single‐center clinical trial (MiFrAADiF)
  publication-title: Stem Cell Res Ther
– volume: 20
  start-page: 87
  year: 2017
  end-page: 91
  article-title: Adipose‐derived stem cells: comparison between two methods of isolation for clinical applications
  publication-title: Ann Med Surg
– volume: 11
  year: 2023
  article-title: Micro‐fragmented and nanofat adipose tissue derivatives: in vitro qualitative and quantitative analysis
  publication-title: Front Bioeng Biotechnol
– volume: 10
  issue: 12
  year: 2022
  article-title: Hybrid stromal vascular fraction (Hybrid‐SVF): a new paradigm in mechanical regenerative cell processing
  publication-title: Plast Reconstr Surg
– volume: 10
  start-page: 36
  issue: 1
  year: 2020
  article-title: Simple and rapid non‐enzymatic procedure allows the isolation of structurally preserved connective tissue micro‐fragments enriched with SVF
  publication-title: Cells
– volume: 66
  start-page: 663
  issue: 4
  year: 2017
  end-page: 671
  article-title: Nanofat 2.0: experimental evidence for a fat grafting rich in mesenchymal stem cells
  publication-title: Physiol Res
– volume: 43
  start-page: Np49
  issue: 1
  year: 2023
  end-page: Np55
  article-title: Fat juice: a novel approach on the usage and preparation of adipose tissue by‐products
  publication-title: Aesthet Surg J
– volume: 23
  start-page: 3
  issue: 1
  year: 2021
  article-title: A novel method for processing adipose‐derived stromal stem cells using a closed cell washing concentration device with a hollow fiber membrane module
  publication-title: Biomed Microdevices
– volume: 22
  start-page: 2063
  issue: 11
  year: 2013
  end-page: 2077
  article-title: A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte‐like elements by mild mechanical forces from human lipoaspirates
  publication-title: Cell Transplant
– volume: 72
  start-page: 203
  issue: 2
  year: 2020
  end-page: 215
  article-title: The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio
  publication-title: Cytotechnology
– volume: 20
  start-page: 5471
  issue: 21
  year: 2019
  article-title: Impact of the different preparation methods to obtain human adipose‐derived stromal vascular fraction cells (AD‐SVFs) and human adipose‐derived mesenchymal stem cells (AD‐MSCs): enzymatic digestion versus mechanical centrifugation
  publication-title: Int J Mol Sci
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Evaluation of three devices for the isolation of the stromal vascular fraction from adipose tissue and for ASC culture: a comparative study
  publication-title: Stem Cells Int
– volume: 9
  start-page: 2158
  issue: 10
  year: 2020
  article-title: Development and validation of a fully GMP‐compliant process for manufacturing stromal vascular fraction: a cost‐effective alternative to automated methods
  publication-title: Cells
– volume: 11
  issue: 6
  year: 2023
  article-title: A closed‐system technology for mechanical isolation of high quantities of stromal vascular fraction from fat for immediate clinical use
  publication-title: Plast Reconstr Surg
– volume: 62
  start-page: e1
  issue: 10
  year: 2009
  end-page: e34
  article-title: The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: explanation and elaboration
  publication-title: J Clin Epidemiol
– volume: 153
  issue: 4
  year: 2018
  article-title: Understanding costs of care in the operating room
  publication-title: JAMA Surg
– volume: 24
  start-page: 1976
  issue: 13
  year: 2020
  end-page: 1982
  article-title: Separation of adipose‐derived stromal vascular fraction cells by a variety of physical methods: a comparative study
  publication-title: Chin J Tissue Eng Res
– volume: 7
  start-page: 10015
  issue: 1
  year: 2017
  article-title: Maximizing non‐enzymatic methods for harvesting adipose‐derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery
  publication-title: Sci Rep
– volume: 21
  start-page: 4252
  issue: 18
  year: 2017
  end-page: 4260
  article-title: How to isolate a ready‐to‐use adipose‐derived stem cells pellet for clinical application
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 17
  start-page: 203
  issue: 2
  year: 2020
  end-page: 208
  article-title: Optimal condition of isolation from an adipose tissue‐derived stromal vascular fraction for the development of automated systems
  publication-title: Tissue Eng Regen Med
– volume: 164
  year: 2020
  article-title: Isolation of viable adipocytes and stromal vascular fraction from human visceral adipose tissue suitable for RNA analysis and macrophage phenotyping
  publication-title: J Vis Exp
– volume: 214
  start-page: 413
  issue: 2
  year: 2008
  end-page: 421
  article-title: Multipotential human adipose‐derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo
  publication-title: J Cell Physiol
– volume: 12
  start-page: 30
  issue: 1
  year: 2022
  article-title: The composition of adipose‐derived regenerative cells isolated from lipoaspirate using a point of care system does not depend on the subject's individual age, sex, body mass index and ethnicity
  publication-title: Cells
– volume: 13
  start-page: 8005
  issue: 1
  year: 2023
  article-title: An enzyme‐free technique enables the isolation of a large number of adipose‐derived stem cells at the bedside
  publication-title: Sci Rep
– volume: 7
  start-page: 16
  year: 2007
  article-title: Utilization of the PICO framework to improve searching PubMed for clinical questions
  publication-title: BMC Med Inform Decis Mak
– volume: 23
  start-page: 125
  issue: 3
  year: 2017
  end-page: 135
  article-title: Isolation of adipose‐derived stromal vascular fraction cells using a novel point‐of‐care device: cell characterization and review of the literature
  publication-title: Tissue Eng Part C Methods
– volume: 154
  year: 2019
  article-title: An enzyme‐free method for isolation and expansion of human adipose‐derived mesenchymal stem cells
  publication-title: J Vis Exp
– volume: 40
  start-page: 1232
  issue: 11
  year: 2020
  end-page: 1240
  article-title: In‐vitro comparative examination of the effect of stromal vascular fraction isolated by mechanical and enzymatic methods on wound healing
  publication-title: Aesthet Surg J
– volume: 32
  year: 2023
  article-title: Highly pluripotent adipose‐derived stem cell‐enriched nanofat: a novel translational system in stem cell therapy
  publication-title: Cell Transplant
– volume: 154
  year: 2019
  ident: e_1_2_11_23_1
  article-title: An enzyme‐free method for isolation and expansion of human adipose‐derived mesenchymal stem cells
  publication-title: J Vis Exp
– ident: e_1_2_11_48_1
  doi: 10.1002/sctm.18-0051
– ident: e_1_2_11_46_1
  doi: 10.1097/PRS.0000000000006155
– ident: e_1_2_11_64_1
  doi: 10.1097/PRS.0000000000002356
– ident: e_1_2_11_49_1
  doi: 10.1093/asj/sjab033
– ident: e_1_2_11_34_1
  doi: 10.1089/ten.tec.2016.0377
– ident: e_1_2_11_52_1
  doi: 10.1038/s41598-023-34915-0
– ident: e_1_2_11_15_1
  doi: 10.1186/s13287-018-0886-1
– ident: e_1_2_11_66_1
  doi: 10.1186/s13287-019-1328-4
– ident: e_1_2_11_47_1
  doi: 10.3390/cells10010036
– ident: e_1_2_11_25_1
  doi: 10.1186/s12967-020-02489-4
– ident: e_1_2_11_14_1
  doi: 10.1016/j.jcyt.2013.02.006
– ident: e_1_2_11_5_1
  doi: 10.1002/jcp.21210
– ident: e_1_2_11_4_1
  doi: 10.1089/ars.2010.3507
– ident: e_1_2_11_12_1
  doi: 10.1186/1472-6947-7-16
– ident: e_1_2_11_18_1
  doi: 10.1007/s13770-019-00238-3
– ident: e_1_2_11_55_1
  doi: 10.1007/s10544-020-00541-0
– ident: e_1_2_11_19_1
  doi: 10.1007/s10616-020-00369-9
– ident: e_1_2_11_35_1
  doi: 10.1097/PRS.0000000000002494
– ident: e_1_2_11_41_1
  doi: 10.22203/eCM.v037a08
– ident: e_1_2_11_24_1
  doi: 10.3390/cells12010030
– ident: e_1_2_11_63_1
  doi: 10.1001/jamasurg.2017.6233
– ident: e_1_2_11_32_1
  doi: 10.3390/ijms20215471
– ident: e_1_2_11_51_1
  doi: 10.1093/asj/sjz223
– ident: e_1_2_11_57_1
  doi: 10.3389/fbioe.2023.911600
– ident: e_1_2_11_13_1
  doi: 10.3727/096368912X657855
– ident: e_1_2_11_27_1
  doi: 10.3892/etm.2017.4069
– ident: e_1_2_11_29_1
  doi: 10.1007/978-1-4939-7799-4_13
– ident: e_1_2_11_31_1
  doi: 10.3389/fcell.2021.723057
– ident: e_1_2_11_39_1
  doi: 10.1115/1.4041191
– ident: e_1_2_11_37_1
  doi: 10.3390/ijms19072061
– ident: e_1_2_11_16_1
  doi: 10.1038/s41598-017-10710-6
– ident: e_1_2_11_43_1
  doi: 10.1155/2017/9289213
– ident: e_1_2_11_42_1
  doi: 10.1016/j.amsu.2017.07.018
– ident: e_1_2_11_65_1
  doi: 10.1007/s10151-021-02524-6
– ident: e_1_2_11_58_1
  doi: 10.1177/09636897231175968
– ident: e_1_2_11_2_1
  doi: 10.1016/S0094-1298(20)32659-6
– ident: e_1_2_11_21_1
  doi: 10.1097/PRS.0000000000002790
– ident: e_1_2_11_54_1
  doi: 10.1093/asj/sjad125
– ident: e_1_2_11_8_1
  doi: 10.1093/asj/sjaa111
– ident: e_1_2_11_40_1
  doi: 10.33549/physiolres.933451
– volume: 24
  start-page: 1976
  issue: 13
  year: 2020
  ident: e_1_2_11_20_1
  article-title: Separation of adipose‐derived stromal vascular fraction cells by a variety of physical methods: a comparative study
  publication-title: Chin J Tissue Eng Res
– volume: 11
  issue: 6
  year: 2023
  ident: e_1_2_11_56_1
  article-title: A closed‐system technology for mechanical isolation of high quantities of stromal vascular fraction from fat for immediate clinical use
  publication-title: Plast Reconstr Surg
– volume: 21
  start-page: 4252
  issue: 18
  year: 2017
  ident: e_1_2_11_60_1
  article-title: How to isolate a ready‐to‐use adipose‐derived stem cells pellet for clinical application
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 1
  issue: 4
  year: 2019
  ident: e_1_2_11_36_1
  article-title: Cellular optimization of nanofat: comparison of two nanofat processing devices in terms of cell count and viability
  publication-title: Aesthet Surg J
– ident: e_1_2_11_33_1
  doi: 10.1097/PRS.0000000000002920
– ident: e_1_2_11_3_1
  doi: 10.1016/j.addr.2010.04.003
– volume: 10
  issue: 12
  year: 2022
  ident: e_1_2_11_59_1
  article-title: Hybrid stromal vascular fraction (Hybrid‐SVF): a new paradigm in mechanical regenerative cell processing
  publication-title: Plast Reconstr Surg
– ident: e_1_2_11_50_1
  doi: 10.1093/asj/sjaa154
– ident: e_1_2_11_28_1
  doi: 10.1093/asj/sjac226
– ident: e_1_2_11_30_1
  doi: 10.1007/978-1-4939-7113-8_12
– ident: e_1_2_11_53_1
  doi: 10.3389/fbioe.2022.895735
– ident: e_1_2_11_38_1
  doi: 10.3390/cells9102158
– ident: e_1_2_11_7_1
  doi: 10.1002/term.2407
– ident: e_1_2_11_11_1
  doi: 10.1016/j.jclinepi.2009.06.006
– volume: 164
  year: 2020
  ident: e_1_2_11_26_1
  article-title: Isolation of viable adipocytes and stromal vascular fraction from human visceral adipose tissue suitable for RNA analysis and macrophage phenotyping
  publication-title: J Vis Exp
– ident: e_1_2_11_6_1
  doi: 10.1097/PRS.0000000000003372
– ident: e_1_2_11_17_1
  doi: 10.1002/cpsc.41
– ident: e_1_2_11_22_1
  doi: 10.1002/cpsc.68
– ident: e_1_2_11_62_1
  doi: 10.1016/j.mayocp.2015.02.003
– ident: e_1_2_11_45_1
  doi: 10.1371/journal.pone.0221457
– ident: e_1_2_11_9_1
  doi: 10.1111/wrr.12482
– ident: e_1_2_11_61_1
  doi: 10.1016/j.amsu.2017.11.002
– ident: e_1_2_11_10_1
  doi: 10.1007/978-1-4939-9473-1_8
– ident: e_1_2_11_44_1
  doi: 10.3389/fcell.2019.00088
SSID ssj0005598
Score 2.494517
SecondaryResourceType review_article
Snippet The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1008
SubjectTerms adipose stromal cells
Adipose Tissue - cytology
Cell Separation - methods
clinical grade stromal vascular fraction
enzymatic isolation
Humans
lipoaspirate
lipografting
mechanical isolation
Stromal Vascular Fraction
Systematic Review
Title Comparing mechanical and enzymatic isolation procedures to isolate adipose‐derived stromal vascular fraction: A systematic review
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.13228
https://www.ncbi.nlm.nih.gov/pubmed/39444305
https://www.proquest.com/docview/3120058098
https://pubmed.ncbi.nlm.nih.gov/PMC11584359
Volume 32
WOSCitedRecordID wos001339768600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1524-475X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005598
  issn: 1067-1927
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KGXQtXXloJM1UMvqZzEUWw4IWDFoUJoBereosSPshKboGSXqj0h8Qf4jfySju0ksIJKSL1EUTKJbM-M_U3i-QbgS2o5zhVlQZoUPGAhLwIehiKQRaJ5HEZRKo0rNpEeH_PxWJwswW6XC-P5IfoPbtYz3HxtHTwvmgdO_quuv9lQii_Dqk2qwshr9WA0PPt-v8MjET4TDucCBDJpSyxkN_L0Dy8uR48w5uOtkg8hrFuDhmv_1fp1eNVCT7LnbeU1LOnyDdzs-0KE5U8y1TYL2CqN5KUiuvzz2_G5kgnap1MgccudmmOITmZVe12TXE0uq0bfXd8qtOcrrUgzq6spvqfb50pM7RModsgeuSePJj5x5i2cDQ9P94-CtjBDIBG_8UDqKFJCJzzWscwRpDFjLLMdTwrGVJKnhlIT5zQ0TCiEhHFkjNLMMMYQDXEWv4OVsir1ByCurrgwcSQFZVKnghqeC0VVUghdUDGAr51-MtmyltviGRdZF73gSGZuJAfwuRe99FQdTwltd0rO0JHs35G81NW8ydAwbY1FKlDmvVd6_xqbPWy50QbAF8yhF7Ak3Yt3ysm5I-tGxI0dTmxHnD38u2nZj9HInXx8vugGvIwQZfnkyE-wMqvnehNeyKvZpKm3YDliJ3hMx3yrdY6_8DkVfw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datVAEB5qFfTGKv4dtXUVL7yJbJIN2S29KaWlpfVQSsXehWR_9IBNSs45Fb0S-gI-Y5_Emd0k7aEKgnchmSzZnZndbzcz3wC8zYnj3HAR5VklIxHLKpJxrCJdZVamcZLk2vliE_l4LE9O1OESbPS5MIEfYjhwI8_w8zU5OB1IX_Pyb237nvZS8hbcFrgqUUBfIg6vAjwyFRLhcCpAHJN3vEIUxzO8urga3YCYNyMlryNYvwTtrPzfxz-A-x30ZJvBVh7Ckq0fwcVWKERYf2anlrKASWmsrA2z9Y_vns-VTdA-vQKZX-7MHLfobNZ09y0rzeSsmdrLn78M2vO5NWw6a5tTbKePc2WuDQkU62yTXZFHs5A48xg-7mwfb-1GXWGGSCN-k5G2SWKUzWRqU10iSBPOEbOdzCohTFbmjnOXljx2QhmEhGninLHCCSEQDUmRPoHluqntM2C-rrhyaaIVF9rmijtZKsNNVilbcTWCd72CCt2xllPxjK9Fv3vBkSz8SI7gzSB6Fqg6_iT0utdygY5Ef0fK2jbzaYGGSTUWuUKZp0HrQzOUPUzcaCOQC_YwCBBJ9-KTevLFk3Uj4sYOZ9QRbxB__7Ti09GRv3j-76Kv4O7u8YeD4mBvvP8C7iWIuEKi5EtYnrVzuwp39PlsMm3XvG_8BmGhFhU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VglAvBcRPt6VgEAcuQU5iK3bFpWpZgUCrVQWityixx2WlNllld1u1JyReoM_YJ8E_SdpVQULiFiUTy_bM2J-TmW8A3mSO41xTFmW8FBGLRRmJOJaRKjmKNE6STBlfbCIbjcThoRyvwPsuFybwQ_Qf3Jxn-PXaOThOtbnh5WdN886dpcQduMt45t0yYePrAA8uQyKcXQosjslaXiEXx9O_urwb3YKYtyMlbyJYvwUNH_xf5x_Cegs9yW6wlUewgtVj-LUXChFWR-QEXRawUxopKk2wujj3fK5kYu3TK5D47U4v7BGdzOv2PpJCT6b1DK9-Xmprz6eoyWze1Ce2nS7OlZgmJFDskF1yTR5NQuLME_g2_PB172PUFmaIlMVvIlKYJFoiFymmqrAgjRnjmO0ELxnTvMgMpSYtaGyY1BYSpokxGplhjFk0JFj6FFarusINIL6uuDRpoiRlCjNJjSikppqXEksqB_C2U1CuWtZyVzzjOO9OL3Ymcz-TA3jdi04DVcefhF51Ws6tI7m_I0WF9WKWW8N0NRaptDLPgtb7Zlz2sONGG4BYsodewJF0Lz-pJj88WbdF3HbA3A3EG8Tfu5Z_PzjwF5v_LvoS7o_3h_mXT6PPW7CWWMAV8iSfw-q8WeA23FOn88mseeFd4zfP5RWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+mechanical+and+enzymatic+isolation+procedures+to+isolate+adipose%E2%80%90derived+stromal+vascular+fraction%3A+A+systematic+review&rft.jtitle=Wound+repair+and+regeneration&rft.au=Uguten%2C+Mustafa&rft.au=van+der+Sluis%2C+Nanouk&rft.au=Vriend%2C+Linda&rft.au=Coert%2C+J.+H.&rft.date=2024-11-01&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=32&rft.issue=6&rft.spage=1008&rft.epage=1021&rft_id=info:doi/10.1111%2Fwrr.13228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_wrr_13228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon