Comparing mechanical and enzymatic isolation procedures to isolate adipose‐derived stromal vascular fraction: A systematic review
The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield me...
Gespeichert in:
| Veröffentlicht in: | Wound repair and regeneration Jg. 32; H. 6; S. 1008 - 1021 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2024
|
| Schlagworte: | |
| ISSN: | 1067-1927, 1524-475X, 1524-475X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full‐text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3–18.0 × 105 resp. 0.03–26.7 × 105 cells/ml), and cell viability (70%–99% resp. 46%–97.5%), while mechanical procedures are less time consuming (8–20 min vs. 50–210 min) and cost‐efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies. |
|---|---|
| AbstractList | The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full‐text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3–18.0 × 105 resp. 0.03–26.7 × 105 cells/ml), and cell viability (70%–99% resp. 46%–97.5%), while mechanical procedures are less time consuming (8–20 min vs. 50–210 min) and cost‐efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies. The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full‐text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3–18.0 × 10 5 resp. 0.03–26.7 × 10 5 cells/ml), and cell viability (70%–99% resp. 46%–97.5%), while mechanical procedures are less time consuming (8–20 min vs. 50–210 min) and cost‐efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies. The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 10 resp. 0.03-26.7 × 10 cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies. The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 105 resp. 0.03-26.7 × 105 cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 105 resp. 0.03-26.7 × 105 cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies. |
| Author | Harmsen, Martin C. Dongen, Joris A. Sluis, Nanouk Coert, J. H. Vriend, Linda Uguten, Mustafa Lei, Berend |
| AuthorAffiliation | 2 Department of Plastic, Reconstructive and Hand Surgery University Medical Center Utrecht, University of Utrecht Utrecht The Netherlands 3 Department of Surgery Erasmus University Medical Center, University Medical Center Rotterdam Rotterdam The Netherlands 4 Department of Pathology & Medical Biology University of Groningen and University Medical Center Groningen Groningen The Netherlands 1 Department of Plastic, Reconstructive and Hand Surgery Medical Center Leeuwarden Leeuwarden The Netherlands 5 Department of Plastic Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands |
| AuthorAffiliation_xml | – name: 2 Department of Plastic, Reconstructive and Hand Surgery University Medical Center Utrecht, University of Utrecht Utrecht The Netherlands – name: 4 Department of Pathology & Medical Biology University of Groningen and University Medical Center Groningen Groningen The Netherlands – name: 1 Department of Plastic, Reconstructive and Hand Surgery Medical Center Leeuwarden Leeuwarden The Netherlands – name: 3 Department of Surgery Erasmus University Medical Center, University Medical Center Rotterdam Rotterdam The Netherlands – name: 5 Department of Plastic Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands |
| Author_xml | – sequence: 1 givenname: Mustafa orcidid: 0009-0008-2560-769X surname: Uguten fullname: Uguten, Mustafa organization: University Medical Center Utrecht, University of Utrecht – sequence: 2 givenname: Nanouk orcidid: 0000-0001-5336-1967 surname: Sluis fullname: Sluis, Nanouk organization: Erasmus University Medical Center, University Medical Center Rotterdam – sequence: 3 givenname: Linda orcidid: 0000-0002-9439-5810 surname: Vriend fullname: Vriend, Linda organization: University of Groningen and University Medical Center Groningen – sequence: 4 givenname: J. H. surname: Coert fullname: Coert, J. H. organization: University Medical Center Utrecht, University of Utrecht – sequence: 5 givenname: Martin C. surname: Harmsen fullname: Harmsen, Martin C. organization: University of Groningen and University Medical Center Groningen – sequence: 6 givenname: Berend surname: Lei fullname: Lei, Berend organization: University Medical Center Groningen, University of Groningen – sequence: 7 givenname: Joris A. surname: Dongen fullname: Dongen, Joris A. email: jorisavandongen@gmail.com organization: University of Groningen and University Medical Center Groningen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39444305$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9uFSEUxompsX904QsYlnYxLQxwh3Fjmhv_JU1MGo3uCIVDi2FghJl7c12Z-AI-o08i7b02aqJsOIHv-x043yHaiykCQo8pOaF1na5zPqGsbeU9dEBFyxveiY97tSaLrqF92-2jw1I-EUKE6OUDtM96zjkj4gB9W6Zh1NnHKzyAudbRGx2wjhZD_LIZ9OQN9iWFWqSIx5wM2DlDwVPanQPW1o-pwI-v3y1kvwKLy5TTUDkrXcwcdMYua3NDeIbPcNmUCbbkDCsP64fovtOhwKPdfoTev3zxbvm6OX_76s3y7LwxnC5kY6BtbQ9CMmBGk15w52S3YFJccm6F7hwhjmlCHe-t4IS1zlngrn61Z53k7Ag933LH-XIAayBOWQc1Zj_ovFFJe_XnTfTX6iqtFKWi2kVfCU93hJw-z1AmNfhiIAQdIc1FMdrWGUvSyyp98nuzuy6_Rl8Fx1uByamUDO5OQom6iVXVWNVtrFV7-pfW-Ok2kvpOH_7nWPsAm3-j1YeLi63jJzBDuOo |
| CitedBy_id | crossref_primary_10_1007_s12015_025_10965_x crossref_primary_10_3390_bioengineering12090948 crossref_primary_10_1007_s12015_025_10886_9 crossref_primary_10_1177_15563316251364264 crossref_primary_10_3389_fvets_2025_1586629 crossref_primary_10_1016_j_euros_2025_03_020 crossref_primary_10_2147_CCID_S547675 crossref_primary_10_1177_15563316251361918 crossref_primary_10_3390_biom15020199 crossref_primary_10_1002_jeo2_70378 crossref_primary_10_5493_wjem_v15_i3_106641 |
| Cites_doi | 10.1002/sctm.18-0051 10.1097/PRS.0000000000006155 10.1097/PRS.0000000000002356 10.1093/asj/sjab033 10.1089/ten.tec.2016.0377 10.1038/s41598-023-34915-0 10.1186/s13287-018-0886-1 10.1186/s13287-019-1328-4 10.3390/cells10010036 10.1186/s12967-020-02489-4 10.1016/j.jcyt.2013.02.006 10.1002/jcp.21210 10.1089/ars.2010.3507 10.1186/1472-6947-7-16 10.1007/s13770-019-00238-3 10.1007/s10544-020-00541-0 10.1007/s10616-020-00369-9 10.1097/PRS.0000000000002494 10.22203/eCM.v037a08 10.3390/cells12010030 10.1001/jamasurg.2017.6233 10.3390/ijms20215471 10.1093/asj/sjz223 10.3389/fbioe.2023.911600 10.3727/096368912X657855 10.3892/etm.2017.4069 10.1007/978-1-4939-7799-4_13 10.3389/fcell.2021.723057 10.1115/1.4041191 10.3390/ijms19072061 10.1038/s41598-017-10710-6 10.1155/2017/9289213 10.1016/j.amsu.2017.07.018 10.1007/s10151-021-02524-6 10.1177/09636897231175968 10.1016/S0094-1298(20)32659-6 10.1097/PRS.0000000000002790 10.1093/asj/sjad125 10.1093/asj/sjaa111 10.33549/physiolres.933451 10.1097/PRS.0000000000002920 10.1016/j.addr.2010.04.003 10.1093/asj/sjaa154 10.1093/asj/sjac226 10.1007/978-1-4939-7113-8_12 10.3389/fbioe.2022.895735 10.3390/cells9102158 10.1002/term.2407 10.1016/j.jclinepi.2009.06.006 10.1097/PRS.0000000000003372 10.1002/cpsc.41 10.1002/cpsc.68 10.1016/j.mayocp.2015.02.003 10.1371/journal.pone.0221457 10.1111/wrr.12482 10.1016/j.amsu.2017.11.002 10.1007/978-1-4939-9473-1_8 10.3389/fcell.2019.00088 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC on behalf of The Wound Healing Society. 2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of The Wound Healing Society. – notice: 2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1111/wrr.13228 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Uguten et al |
| EISSN | 1524-475X |
| EndPage | 1021 |
| ExternalDocumentID | PMC11584359 39444305 10_1111_wrr_13228 WRR13228 |
| Genre | reviewArticle Systematic Review Journal Article Comparative Study |
| GroupedDBID | --- .3N .GA .Y3 04C 05W 0R~ 10A 123 1OB 1OC 24P 29R 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOJX ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS ECF ECT ECV EIHBH EJD EMB EMK EMOBN ENC EPT ESX EX3 F00 F01 F04 FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQ9 WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c4168-ce22d9e583e3ca0954ff876385b44d5a7f00f3a01f49d54032ffde4f444937843 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339768600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1067-1927 1524-475X |
| IngestDate | Tue Nov 04 02:04:51 EST 2025 Thu Oct 02 06:28:25 EDT 2025 Sun Jul 13 01:33:45 EDT 2025 Sat Nov 29 04:26:32 EST 2025 Tue Nov 18 22:00:33 EST 2025 Wed Jan 22 17:14:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | lipoaspirate enzymatic isolation stromal vascular fraction mechanical isolation adipose stromal cells clinical grade stromal vascular fraction lipografting |
| Language | English |
| License | Attribution 2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4168-ce22d9e583e3ca0954ff876385b44d5a7f00f3a01f49d54032ffde4f444937843 |
| Notes | Mustafa Uguten and Nanouk van der Sluis contributed equally to this study. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Review-4 content type line 23 |
| ORCID | 0000-0001-5336-1967 0000-0002-9439-5810 0009-0008-2560-769X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.13228 |
| PMID | 39444305 |
| PQID | 3120058098 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11584359 proquest_miscellaneous_3120058098 pubmed_primary_39444305 crossref_primary_10_1111_wrr_13228 crossref_citationtrail_10_1111_wrr_13228 wiley_primary_10_1111_wrr_13228_WRR13228 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2024 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November/December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States |
| PublicationTitle | Wound repair and regeneration |
| PublicationTitleAlternate | Wound Repair Regen |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2021; 25 2023; 32 2017; 7 2021; 23 2013; 22 2020; 164 2019; 10 2017; 43 2019; 14 2020; 17 2011; 15 2017; 1627 2020; 10 2010; 62 2020; 18 2018; 7 2018; 9 2013; 15 2019; 20 2020; 9 2007; 7 2015; 90 2021; 41 2019; 154 2021; 9 2019; 7 2017; 20 2023; 13 2009; 62 2023; 11 2018; 1773 2017; 2017 2020; 40 2019; 1 2017; 66 2017; 21 1999; 26 2019; 37 2017; 23 2019; 144 2017; 139 2018; 153 2023; 43 2018; 19 2020; 72 2017; 10 2019; 48 2017; 13 2022; 12 2020; 24 2008; 214 2016; 138 2022; 10 2018; 12 2019; 1993 2016; 24 Raposio E (e_1_2_11_60_1) 2017; 21 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Tiryaki T (e_1_2_11_59_1) 2022; 10 Solodeev I (e_1_2_11_56_1) 2023; 11 Cohen SR (e_1_2_11_36_1) 2019; 1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 Estrada‐Gutierrez G (e_1_2_11_26_1) 2020; 164 e_1_2_11_40_1 e_1_2_11_63_1 Lu P (e_1_2_11_20_1) 2020; 24 e_1_2_11_9_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 Sherman LS (e_1_2_11_23_1) 2019; 154 e_1_2_11_39_1 |
| References_xml | – volume: 43 start-page: 2H.1.1 year: 2017 end-page: 2H.1.15 article-title: Human adipose‐derived stromal cell isolation methods and use in osteogenic and adipogenic in vivo applications publication-title: Curr Protoc Stem Cell Biol – volume: 48 issue: 1 year: 2019 article-title: Isolation of adipose tissue‐derived stem cells: enzymatic digestion in combination with mechanical distortion to increase adipose tissue‐derived stem cell yield from human aspirated fat publication-title: Curr Protoc Stem Cell Biol – volume: 14 issue: 9 year: 2019 article-title: Isolation of adipose tissue derived regenerative cells from human subcutaneous tissue with or without the use of an enzymatic reagent publication-title: PLoS One – volume: 7 start-page: 876 issue: 12 year: 2018 end-page: 886 article-title: Higher Pericyte content and secretory activity of microfragmented human adipose tissue compared to enzymatically derived stromal vascular fraction publication-title: Stem Cells Transl Med – volume: 9 start-page: 130 issue: 1 year: 2018 article-title: Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno‐free media publication-title: Stem Cell Res Ther – volume: 139 start-page: 79 issue: 1 year: 2017 end-page: 90 article-title: Mechanical micronization of lipoaspirates: squeeze and emulsification techniques publication-title: Plast Reconstr Surg – volume: 41 start-page: NP1557 issue: 11 year: 2021 end-page: NP1570 article-title: Comparison of microfat, nanofat, and extracellular matrix/stromal vascular fraction gel for skin rejuvenation: basic research and clinical applications publication-title: Aesthet Surg J – volume: 139 start-page: 1369e issue: 6 year: 2017 end-page: 1370e article-title: Mechanical Micronization of Lipoaspirates: squeeze and emulsification techniques publication-title: Plast Reconstr Surg – volume: 90 start-page: 567 issue: 5 year: 2015 end-page: 571 article-title: Federal regulatory oversight of US clinics marketing adipose‐derived autologous stem cell interventions: insights from 3 new FDA draft guidance documents publication-title: Mayo Clin Proc – volume: 25 start-page: 1301 issue: 12 year: 2021 end-page: 1309 article-title: Efficacy and safety of autologous adipose‐derived stromal vascular fraction enriched with platelet‐rich plasma in flap repair of trans‐sphincteric cryptoglandular fistulas publication-title: Tech Coloproctol – volume: 9 start-page: 9 year: 2021 article-title: Characterized the adipogenic capacity of adipose‐derived stem cell, extracellular matrix, and microenvironment with fat components grafting publication-title: Front Cell Dev Biol – volume: 19 start-page: 2061 issue: 7 year: 2018 article-title: A non‐enzymatic method to obtain a fat tissue derivative highly enriched in adipose stem cells (ASCs) from human Lipoaspirates: preliminary results publication-title: Int J Mol Sci – volume: 1627 start-page: 193 year: 2017 end-page: 203 article-title: Isolation and culture of adipose‐derived stromal cells from subcutaneous fat publication-title: Methods Mol Biol – volume: 40 start-page: NP546 issue: 9 year: 2020 end-page: NP560 article-title: Expanding clinical indications of mechanically isolated stromal vascular fraction: a systematic review publication-title: Aesthet Surg J – volume: 24 start-page: 994 issue: 6 year: 2016 end-page: 1003 article-title: The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes publication-title: Wound Repair Regen – volume: 138 start-page: 237e issue: 2 year: 2016 end-page: 247e article-title: Phenotypic analysis of stromal vascular fraction after mechanical shear reveals stress‐induced progenitor populations publication-title: Plast Reconstr Surg – volume: 40 start-page: NP194 issue: 4 year: 2020 end-page: NP201 article-title: Fractionation of adipose tissue procedure with a disposable one‐hole fractionator publication-title: Aesthet Surg J – volume: 1773 start-page: 155 year: 2018 end-page: 165 article-title: Isolation of human adipose‐derived stem cells from lipoaspirates publication-title: Methods Mol Biol – volume: 12 start-page: e261 issue: 1 year: 2018 end-page: e274 article-title: Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review publication-title: J Tissue Eng Regen Med – volume: 138 start-page: 807 issue: 4 year: 2016 end-page: 819 article-title: Mechanically isolated stromal vascular fraction provides a valid and useful collagenase‐free alternative technique: a comparative study publication-title: Plast Reconstr Surg – volume: 15 start-page: 981 issue: 4 year: 2011 end-page: 995 article-title: Vascular wall as a reservoir for different types of stem and progenitor cells publication-title: Antioxid Redox Signal – volume: 138 start-page: 983e issue: 6 year: 2016 end-page: 996e article-title: A novel method of human adipose‐derived stem cell isolation with resultant increased cell yield publication-title: Plast Reconstr Surg – volume: 10 year: 2022 article-title: Modified nanofat grafting: stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications publication-title: Front Bioeng Biotechnol – volume: 18 start-page: 351 issue: 1 year: 2020 article-title: Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review publication-title: J Transl Med – volume: 26 start-page: 587 issue: 4 year: 1999 end-page: 603 article-title: Emerging approaches to the tissue engineering of fat publication-title: Clin Plast Surg – volume: 37 start-page: 113 year: 2019 end-page: 133 article-title: Adipose‐tissue‐derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue‐stromal vascular fraction publication-title: Eur Cell Mater – volume: 62 start-page: 798 issue: 7–8 year: 2010 end-page: 813 article-title: Cell‐delivery therapeutics for adipose tissue regeneration publication-title: Adv Drug Deliv Rev – volume: 13 start-page: 1039 issue: 3 year: 2017 end-page: 1043 article-title: Isolation, culture and identification of human adipose‐derived stem cells publication-title: Exp Ther Med – volume: 1993 start-page: 91 year: 2019 end-page: 103 article-title: Isolation of stromal vascular fraction by fractionation of adipose tissue publication-title: Methods Mol Biol – volume: 10 start-page: 61 issue: 24 year: 2017 end-page: 64 article-title: Clinical use of adipose‐derived stem cells: European legislative issues publication-title: Ann Med Surg – volume: 43 start-page: Np696 issue: 9 year: 2023 end-page: Np703 article-title: Push‐through filtration of emulsified adipose tissue over a 500‐μm mesh significantly reduces the amount of stromal vascular fraction and mesenchymal stem cells publication-title: Aesthet Surg J – volume: 12 start-page: 044501 issue: 4 year: 2018 article-title: Effect of the bowl structure in an automated cell‐isolation device on stromal vascular fraction's isolation yield publication-title: J Med Devices – volume: 7 start-page: 7 year: 2019 article-title: Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results publication-title: Front Cell Dev Biol – volume: 15 start-page: 641 issue: 6 year: 2013 end-page: 648 article-title: Stromal cells from the adipose tissue‐derived stromal vascular fraction and culture expanded adipose tissue‐derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) publication-title: Cytotherapy – volume: 1 issue: 4 year: 2019 article-title: Cellular optimization of nanofat: comparison of two nanofat processing devices in terms of cell count and viability publication-title: Aesthet Surg J – volume: 144 start-page: 1079 issue: 5 year: 2019 end-page: 1088 article-title: Nanofat cell aggregates: a nearly constitutive stromal cell inoculum for regenerative site‐specific therapies publication-title: Plast Reconstr Surg – volume: 10 start-page: 223 issue: 1 year: 2019 article-title: Autologous micro‐fragmented adipose tissue for the treatment of diabetic foot minor amputations: a randomized controlled single‐center clinical trial (MiFrAADiF) publication-title: Stem Cell Res Ther – volume: 20 start-page: 87 year: 2017 end-page: 91 article-title: Adipose‐derived stem cells: comparison between two methods of isolation for clinical applications publication-title: Ann Med Surg – volume: 11 year: 2023 article-title: Micro‐fragmented and nanofat adipose tissue derivatives: in vitro qualitative and quantitative analysis publication-title: Front Bioeng Biotechnol – volume: 10 issue: 12 year: 2022 article-title: Hybrid stromal vascular fraction (Hybrid‐SVF): a new paradigm in mechanical regenerative cell processing publication-title: Plast Reconstr Surg – volume: 10 start-page: 36 issue: 1 year: 2020 article-title: Simple and rapid non‐enzymatic procedure allows the isolation of structurally preserved connective tissue micro‐fragments enriched with SVF publication-title: Cells – volume: 66 start-page: 663 issue: 4 year: 2017 end-page: 671 article-title: Nanofat 2.0: experimental evidence for a fat grafting rich in mesenchymal stem cells publication-title: Physiol Res – volume: 43 start-page: Np49 issue: 1 year: 2023 end-page: Np55 article-title: Fat juice: a novel approach on the usage and preparation of adipose tissue by‐products publication-title: Aesthet Surg J – volume: 23 start-page: 3 issue: 1 year: 2021 article-title: A novel method for processing adipose‐derived stromal stem cells using a closed cell washing concentration device with a hollow fiber membrane module publication-title: Biomed Microdevices – volume: 22 start-page: 2063 issue: 11 year: 2013 end-page: 2077 article-title: A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte‐like elements by mild mechanical forces from human lipoaspirates publication-title: Cell Transplant – volume: 72 start-page: 203 issue: 2 year: 2020 end-page: 215 article-title: The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio publication-title: Cytotechnology – volume: 20 start-page: 5471 issue: 21 year: 2019 article-title: Impact of the different preparation methods to obtain human adipose‐derived stromal vascular fraction cells (AD‐SVFs) and human adipose‐derived mesenchymal stem cells (AD‐MSCs): enzymatic digestion versus mechanical centrifugation publication-title: Int J Mol Sci – volume: 2017 start-page: 1 year: 2017 end-page: 14 article-title: Evaluation of three devices for the isolation of the stromal vascular fraction from adipose tissue and for ASC culture: a comparative study publication-title: Stem Cells Int – volume: 9 start-page: 2158 issue: 10 year: 2020 article-title: Development and validation of a fully GMP‐compliant process for manufacturing stromal vascular fraction: a cost‐effective alternative to automated methods publication-title: Cells – volume: 11 issue: 6 year: 2023 article-title: A closed‐system technology for mechanical isolation of high quantities of stromal vascular fraction from fat for immediate clinical use publication-title: Plast Reconstr Surg – volume: 62 start-page: e1 issue: 10 year: 2009 end-page: e34 article-title: The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: explanation and elaboration publication-title: J Clin Epidemiol – volume: 153 issue: 4 year: 2018 article-title: Understanding costs of care in the operating room publication-title: JAMA Surg – volume: 24 start-page: 1976 issue: 13 year: 2020 end-page: 1982 article-title: Separation of adipose‐derived stromal vascular fraction cells by a variety of physical methods: a comparative study publication-title: Chin J Tissue Eng Res – volume: 7 start-page: 10015 issue: 1 year: 2017 article-title: Maximizing non‐enzymatic methods for harvesting adipose‐derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery publication-title: Sci Rep – volume: 21 start-page: 4252 issue: 18 year: 2017 end-page: 4260 article-title: How to isolate a ready‐to‐use adipose‐derived stem cells pellet for clinical application publication-title: Eur Rev Med Pharmacol Sci – volume: 17 start-page: 203 issue: 2 year: 2020 end-page: 208 article-title: Optimal condition of isolation from an adipose tissue‐derived stromal vascular fraction for the development of automated systems publication-title: Tissue Eng Regen Med – volume: 164 year: 2020 article-title: Isolation of viable adipocytes and stromal vascular fraction from human visceral adipose tissue suitable for RNA analysis and macrophage phenotyping publication-title: J Vis Exp – volume: 214 start-page: 413 issue: 2 year: 2008 end-page: 421 article-title: Multipotential human adipose‐derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo publication-title: J Cell Physiol – volume: 12 start-page: 30 issue: 1 year: 2022 article-title: The composition of adipose‐derived regenerative cells isolated from lipoaspirate using a point of care system does not depend on the subject's individual age, sex, body mass index and ethnicity publication-title: Cells – volume: 13 start-page: 8005 issue: 1 year: 2023 article-title: An enzyme‐free technique enables the isolation of a large number of adipose‐derived stem cells at the bedside publication-title: Sci Rep – volume: 7 start-page: 16 year: 2007 article-title: Utilization of the PICO framework to improve searching PubMed for clinical questions publication-title: BMC Med Inform Decis Mak – volume: 23 start-page: 125 issue: 3 year: 2017 end-page: 135 article-title: Isolation of adipose‐derived stromal vascular fraction cells using a novel point‐of‐care device: cell characterization and review of the literature publication-title: Tissue Eng Part C Methods – volume: 154 year: 2019 article-title: An enzyme‐free method for isolation and expansion of human adipose‐derived mesenchymal stem cells publication-title: J Vis Exp – volume: 40 start-page: 1232 issue: 11 year: 2020 end-page: 1240 article-title: In‐vitro comparative examination of the effect of stromal vascular fraction isolated by mechanical and enzymatic methods on wound healing publication-title: Aesthet Surg J – volume: 32 year: 2023 article-title: Highly pluripotent adipose‐derived stem cell‐enriched nanofat: a novel translational system in stem cell therapy publication-title: Cell Transplant – volume: 154 year: 2019 ident: e_1_2_11_23_1 article-title: An enzyme‐free method for isolation and expansion of human adipose‐derived mesenchymal stem cells publication-title: J Vis Exp – ident: e_1_2_11_48_1 doi: 10.1002/sctm.18-0051 – ident: e_1_2_11_46_1 doi: 10.1097/PRS.0000000000006155 – ident: e_1_2_11_64_1 doi: 10.1097/PRS.0000000000002356 – ident: e_1_2_11_49_1 doi: 10.1093/asj/sjab033 – ident: e_1_2_11_34_1 doi: 10.1089/ten.tec.2016.0377 – ident: e_1_2_11_52_1 doi: 10.1038/s41598-023-34915-0 – ident: e_1_2_11_15_1 doi: 10.1186/s13287-018-0886-1 – ident: e_1_2_11_66_1 doi: 10.1186/s13287-019-1328-4 – ident: e_1_2_11_47_1 doi: 10.3390/cells10010036 – ident: e_1_2_11_25_1 doi: 10.1186/s12967-020-02489-4 – ident: e_1_2_11_14_1 doi: 10.1016/j.jcyt.2013.02.006 – ident: e_1_2_11_5_1 doi: 10.1002/jcp.21210 – ident: e_1_2_11_4_1 doi: 10.1089/ars.2010.3507 – ident: e_1_2_11_12_1 doi: 10.1186/1472-6947-7-16 – ident: e_1_2_11_18_1 doi: 10.1007/s13770-019-00238-3 – ident: e_1_2_11_55_1 doi: 10.1007/s10544-020-00541-0 – ident: e_1_2_11_19_1 doi: 10.1007/s10616-020-00369-9 – ident: e_1_2_11_35_1 doi: 10.1097/PRS.0000000000002494 – ident: e_1_2_11_41_1 doi: 10.22203/eCM.v037a08 – ident: e_1_2_11_24_1 doi: 10.3390/cells12010030 – ident: e_1_2_11_63_1 doi: 10.1001/jamasurg.2017.6233 – ident: e_1_2_11_32_1 doi: 10.3390/ijms20215471 – ident: e_1_2_11_51_1 doi: 10.1093/asj/sjz223 – ident: e_1_2_11_57_1 doi: 10.3389/fbioe.2023.911600 – ident: e_1_2_11_13_1 doi: 10.3727/096368912X657855 – ident: e_1_2_11_27_1 doi: 10.3892/etm.2017.4069 – ident: e_1_2_11_29_1 doi: 10.1007/978-1-4939-7799-4_13 – ident: e_1_2_11_31_1 doi: 10.3389/fcell.2021.723057 – ident: e_1_2_11_39_1 doi: 10.1115/1.4041191 – ident: e_1_2_11_37_1 doi: 10.3390/ijms19072061 – ident: e_1_2_11_16_1 doi: 10.1038/s41598-017-10710-6 – ident: e_1_2_11_43_1 doi: 10.1155/2017/9289213 – ident: e_1_2_11_42_1 doi: 10.1016/j.amsu.2017.07.018 – ident: e_1_2_11_65_1 doi: 10.1007/s10151-021-02524-6 – ident: e_1_2_11_58_1 doi: 10.1177/09636897231175968 – ident: e_1_2_11_2_1 doi: 10.1016/S0094-1298(20)32659-6 – ident: e_1_2_11_21_1 doi: 10.1097/PRS.0000000000002790 – ident: e_1_2_11_54_1 doi: 10.1093/asj/sjad125 – ident: e_1_2_11_8_1 doi: 10.1093/asj/sjaa111 – ident: e_1_2_11_40_1 doi: 10.33549/physiolres.933451 – volume: 24 start-page: 1976 issue: 13 year: 2020 ident: e_1_2_11_20_1 article-title: Separation of adipose‐derived stromal vascular fraction cells by a variety of physical methods: a comparative study publication-title: Chin J Tissue Eng Res – volume: 11 issue: 6 year: 2023 ident: e_1_2_11_56_1 article-title: A closed‐system technology for mechanical isolation of high quantities of stromal vascular fraction from fat for immediate clinical use publication-title: Plast Reconstr Surg – volume: 21 start-page: 4252 issue: 18 year: 2017 ident: e_1_2_11_60_1 article-title: How to isolate a ready‐to‐use adipose‐derived stem cells pellet for clinical application publication-title: Eur Rev Med Pharmacol Sci – volume: 1 issue: 4 year: 2019 ident: e_1_2_11_36_1 article-title: Cellular optimization of nanofat: comparison of two nanofat processing devices in terms of cell count and viability publication-title: Aesthet Surg J – ident: e_1_2_11_33_1 doi: 10.1097/PRS.0000000000002920 – ident: e_1_2_11_3_1 doi: 10.1016/j.addr.2010.04.003 – volume: 10 issue: 12 year: 2022 ident: e_1_2_11_59_1 article-title: Hybrid stromal vascular fraction (Hybrid‐SVF): a new paradigm in mechanical regenerative cell processing publication-title: Plast Reconstr Surg – ident: e_1_2_11_50_1 doi: 10.1093/asj/sjaa154 – ident: e_1_2_11_28_1 doi: 10.1093/asj/sjac226 – ident: e_1_2_11_30_1 doi: 10.1007/978-1-4939-7113-8_12 – ident: e_1_2_11_53_1 doi: 10.3389/fbioe.2022.895735 – ident: e_1_2_11_38_1 doi: 10.3390/cells9102158 – ident: e_1_2_11_7_1 doi: 10.1002/term.2407 – ident: e_1_2_11_11_1 doi: 10.1016/j.jclinepi.2009.06.006 – volume: 164 year: 2020 ident: e_1_2_11_26_1 article-title: Isolation of viable adipocytes and stromal vascular fraction from human visceral adipose tissue suitable for RNA analysis and macrophage phenotyping publication-title: J Vis Exp – ident: e_1_2_11_6_1 doi: 10.1097/PRS.0000000000003372 – ident: e_1_2_11_17_1 doi: 10.1002/cpsc.41 – ident: e_1_2_11_22_1 doi: 10.1002/cpsc.68 – ident: e_1_2_11_62_1 doi: 10.1016/j.mayocp.2015.02.003 – ident: e_1_2_11_45_1 doi: 10.1371/journal.pone.0221457 – ident: e_1_2_11_9_1 doi: 10.1111/wrr.12482 – ident: e_1_2_11_61_1 doi: 10.1016/j.amsu.2017.11.002 – ident: e_1_2_11_10_1 doi: 10.1007/978-1-4939-9473-1_8 – ident: e_1_2_11_44_1 doi: 10.3389/fcell.2019.00088 |
| SSID | ssj0005598 |
| Score | 2.494517 |
| SecondaryResourceType | review_article |
| Snippet | The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1008 |
| SubjectTerms | adipose stromal cells Adipose Tissue - cytology Cell Separation - methods clinical grade stromal vascular fraction enzymatic isolation Humans lipoaspirate lipografting mechanical isolation Stromal Vascular Fraction Systematic Review |
| Title | Comparing mechanical and enzymatic isolation procedures to isolate adipose‐derived stromal vascular fraction: A systematic review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.13228 https://www.ncbi.nlm.nih.gov/pubmed/39444305 https://www.proquest.com/docview/3120058098 https://pubmed.ncbi.nlm.nih.gov/PMC11584359 |
| Volume | 32 |
| WOSCitedRecordID | wos001339768600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1524-475X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005598 issn: 1067-1927 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KGXQtXXloJM1UMvqZzEUWw4IWDFoUJoBereosSPshKboGSXqj0h8Qf4jfySju0ksIJKSL1EUTKJbM-M_U3i-QbgS2o5zhVlQZoUPGAhLwIehiKQRaJ5HEZRKo0rNpEeH_PxWJwswW6XC-P5IfoPbtYz3HxtHTwvmgdO_quuv9lQii_Dqk2qwshr9WA0PPt-v8MjET4TDucCBDJpSyxkN_L0Dy8uR48w5uOtkg8hrFuDhmv_1fp1eNVCT7LnbeU1LOnyDdzs-0KE5U8y1TYL2CqN5KUiuvzz2_G5kgnap1MgccudmmOITmZVe12TXE0uq0bfXd8qtOcrrUgzq6spvqfb50pM7RModsgeuSePJj5x5i2cDQ9P94-CtjBDIBG_8UDqKFJCJzzWscwRpDFjLLMdTwrGVJKnhlIT5zQ0TCiEhHFkjNLMMMYQDXEWv4OVsir1ByCurrgwcSQFZVKnghqeC0VVUghdUDGAr51-MtmyltviGRdZF73gSGZuJAfwuRe99FQdTwltd0rO0JHs35G81NW8ydAwbY1FKlDmvVd6_xqbPWy50QbAF8yhF7Ak3Yt3ysm5I-tGxI0dTmxHnD38u2nZj9HInXx8vugGvIwQZfnkyE-wMqvnehNeyKvZpKm3YDliJ3hMx3yrdY6_8DkVfw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datVAEB5qFfTGKv4dtXUVL7yJbJIN2S29KaWlpfVQSsXehWR_9IBNSs45Fb0S-gI-Y5_Emd0k7aEKgnchmSzZnZndbzcz3wC8zYnj3HAR5VklIxHLKpJxrCJdZVamcZLk2vliE_l4LE9O1OESbPS5MIEfYjhwI8_w8zU5OB1IX_Pyb237nvZS8hbcFrgqUUBfIg6vAjwyFRLhcCpAHJN3vEIUxzO8urga3YCYNyMlryNYvwTtrPzfxz-A-x30ZJvBVh7Ckq0fwcVWKERYf2anlrKASWmsrA2z9Y_vns-VTdA-vQKZX-7MHLfobNZ09y0rzeSsmdrLn78M2vO5NWw6a5tTbKePc2WuDQkU62yTXZFHs5A48xg-7mwfb-1GXWGGSCN-k5G2SWKUzWRqU10iSBPOEbOdzCohTFbmjnOXljx2QhmEhGninLHCCSEQDUmRPoHluqntM2C-rrhyaaIVF9rmijtZKsNNVilbcTWCd72CCt2xllPxjK9Fv3vBkSz8SI7gzSB6Fqg6_iT0utdygY5Ef0fK2jbzaYGGSTUWuUKZp0HrQzOUPUzcaCOQC_YwCBBJ9-KTevLFk3Uj4sYOZ9QRbxB__7Ti09GRv3j-76Kv4O7u8YeD4mBvvP8C7iWIuEKi5EtYnrVzuwp39PlsMm3XvG_8BmGhFhU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VglAvBcRPt6VgEAcuQU5iK3bFpWpZgUCrVQWityixx2WlNllld1u1JyReoM_YJ8E_SdpVQULiFiUTy_bM2J-TmW8A3mSO41xTFmW8FBGLRRmJOJaRKjmKNE6STBlfbCIbjcThoRyvwPsuFybwQ_Qf3Jxn-PXaOThOtbnh5WdN886dpcQduMt45t0yYePrAA8uQyKcXQosjslaXiEXx9O_urwb3YKYtyMlbyJYvwUNH_xf5x_Cegs9yW6wlUewgtVj-LUXChFWR-QEXRawUxopKk2wujj3fK5kYu3TK5D47U4v7BGdzOv2PpJCT6b1DK9-Xmprz6eoyWze1Ce2nS7OlZgmJFDskF1yTR5NQuLME_g2_PB172PUFmaIlMVvIlKYJFoiFymmqrAgjRnjmO0ELxnTvMgMpSYtaGyY1BYSpokxGplhjFk0JFj6FFarusINIL6uuDRpoiRlCjNJjSikppqXEksqB_C2U1CuWtZyVzzjOO9OL3Ymcz-TA3jdi04DVcefhF51Ws6tI7m_I0WF9WKWW8N0NRaptDLPgtb7Zlz2sONGG4BYsodewJF0Lz-pJj88WbdF3HbA3A3EG8Tfu5Z_PzjwF5v_LvoS7o_3h_mXT6PPW7CWWMAV8iSfw-q8WeA23FOn88mseeFd4zfP5RWQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+mechanical+and+enzymatic+isolation+procedures+to+isolate+adipose%E2%80%90derived+stromal+vascular+fraction%3A+A+systematic+review&rft.jtitle=Wound+repair+and+regeneration&rft.au=Uguten%2C+Mustafa&rft.au=van+der+Sluis%2C+Nanouk&rft.au=Vriend%2C+Linda&rft.au=Coert%2C+J.+H.&rft.date=2024-11-01&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=32&rft.issue=6&rft.spage=1008&rft.epage=1021&rft_id=info:doi/10.1111%2Fwrr.13228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_wrr_13228 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon |