COMPLEX METHOD FOR NONLINEAR CONSTRAINED MULTI-CRITERIA (MULTI-OBJECTIVE FUNCTION) OPTIMIZATION of THERMAL PROCESSING

ABSTRACT The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of food process engineering Ročník 26; číslo 4; s. 357 - 375
Hlavní autori: ERDOǦDU, FERRUH, BALABAN, MURAT O.
Médium: Magazine Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.10.2003
Blackwell
Predmet:
ISSN:0145-8876, 1745-4530
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume‐average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi‐criteria thermal processing problems.
AbstractList The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume‐average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi‐criteria thermal processing problems.
ABSTRACT The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume‐average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi‐criteria thermal processing problems.
Author ERDOǦDU, FERRUH
BALABAN, MURAT O.
Author_xml – sequence: 1
  givenname: FERRUH
  surname: ERDOǦDU
  fullname: ERDOǦDU, FERRUH
  email: ferruherdogdu@yahoo.com
  organization: University of Mersin Food Engineering Department Çiftlikkoy-Mersin 33343, Turkey
– sequence: 2
  givenname: MURAT O.
  surname: BALABAN
  fullname: BALABAN, MURAT O.
  organization: Food Science and Human Nutrition University of Florida Gainesville, FL 32611
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15173985$$DView record in Pascal Francis
BookMark eNqVkV2PlDAYhYlZE2d3_Q-NiUYvYFtKKXijyDIzjHzJMGq8aQrTJowsrJSJs_9eCJO58Ep70_ek5zxN3nOtXbVdKzTtFYIGGs_dwUDUIrpFMDRMCLExlBDakBqnZ9ri8nSlLSAaZ8eh9gvtWqnDaCUEmgvt6KdxFgXfQRwU6_QeLNMcJGkShUng5cBPk22Re6O4B_EuKkLdz8MiyEMPvJ11-mkT-EX4NQDLXTIOafIOpFkRxuEPb1Kgk6BYB3nsRSDLUz_YbsNkdas9l7xR4uX5vtF2y6Dw13qUrkLfi_TKQjbVHSJFCUuHwEpYlulK6BLL3UOMhLBs6gpRir00KZK4siXi0jbLPXblmOCcVxDfaG9m7mPf_ToKNbCHWlWiaXgruqNiI4Q4LiSj8fXZyFXFG9nztqoVe-zrB94_MUQQxa4z-T7OvqrvlOqFZFU98KHu2qHndcMQZFMv7MCm5bNp-WzqhZ17YacR8f4vxOWXfwl_mMO_60Y8_UeSbZZZgAkdCfpMqNUgThcC738ym2JK2LdkxXCGoPPF3bDP-A9Pr6_Z
CODEN JFPEDM
CitedBy_id crossref_primary_10_1016_j_jfoodeng_2012_02_013
crossref_primary_10_1016_j_asoc_2016_04_034
crossref_primary_10_3390_en12142822
crossref_primary_10_1016_j_jfoodeng_2018_08_007
crossref_primary_10_1016_j_jfoodeng_2021_110594
crossref_primary_10_1111_j_1745_4530_2003_tb00603_x
crossref_primary_10_1038_s43016_022_00617_5
crossref_primary_10_1016_j_tifs_2019_02_002
crossref_primary_10_7455_ijfs_v2i1_79
crossref_primary_10_1016_j_fbp_2021_02_013
crossref_primary_10_1016_j_tifs_2015_02_001
crossref_primary_10_3390_sym12020260
crossref_primary_10_1016_j_jfoodeng_2012_01_022
crossref_primary_10_1111_j_1745_4530_2007_00135_x
crossref_primary_10_1016_j_foodcont_2013_01_002
crossref_primary_10_1515_ijfe_2014_0241
crossref_primary_10_1016_j_jfoodeng_2019_109839
crossref_primary_10_1080_87559129_2021_2012789
crossref_primary_10_1016_j_jfoodeng_2005_02_011
crossref_primary_10_1016_j_jfoodeng_2010_01_007
Cites_doi 10.1111/j.1365-2621.1975.tb00521.x
10.1111/j.1365-2621.1996.tb12179.x
10.1111/j.1365-2621.1979.tb06468.x
10.1016/0956-7135(93)90160-P
10.1111/j.1745-4530.1994.tb00333.x
10.1111/j.1745-4530.1997.tb00411.x
10.1016/S0260-8774(99)00057-6
10.1111/j.1365-2621.1992.tb08086.x
10.1016/0260-8774(91)90052-T
10.1111/j.1745-4530.2002.tb00553.x
10.1111/j.1365-2621.1984.tb14966.x
10.1111/j.1745-4549.1996.tb00746.x
10.1111/j.1745-4530.1993.tb00321.x
10.1111/j.1745-4549.1993.tb00226.x
10.1111/j.1365-2621.1985.tb10467.x
10.1111/j.1365-2621.1994.tb02094.x
10.1016/S0260-8774(01)00111-X
10.1515/REVCE.2000.16.1.1
10.1016/0260-8774(85)90014-7
10.1016/S0260-8774(96)00035-0
10.1016/S0009-2509(01)00376-1
10.2139/ssrn.15071
10.1007/978-1-4613-3437-8_33
10.1016/0260-8774(92)90043-6
10.1111/j.1365-2621.1978.tb15242.x
10.1016/S0260-8774(01)00110-8
10.1016/S0098-1354(01)00633-0
10.1021/bp970015
ContentType Magazine Article
Copyright 2004 INIST-CNRS
Copyright_xml – notice: 2004 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1111/j.1745-4530.2003.tb00607.x
DatabaseName Istex
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1745-4530
EndPage 375
ExternalDocumentID 15173985
10_1111_j_1745_4530_2003_tb00607_x
JFPE357
ark_67375_WNG_3P108Q9J_K
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBO
EBS
EBU
EJD
ESTFP
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
O8X
IQODW
7S9
L.6
ID FETCH-LOGICAL-c4167-85feb0b850ce4429f09549d031ee4679eebedf271f3c6f1af62bd39fb85aaac03
IEDL.DBID DRFUL
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185857900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0145-8876
IngestDate Sun Nov 09 10:29:24 EST 2025
Mon Jul 21 09:16:31 EDT 2025
Sat Nov 29 04:21:48 EST 2025
Tue Nov 18 22:31:03 EST 2025
Wed Jan 22 16:51:23 EST 2025
Sun Sep 21 06:16:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Heat treatment
Foodstuff
Method
Optimization
Multiobjective programming
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4167-85feb0b850ce4429f09549d031ee4679eebedf271f3c6f1af62bd39fb85aaac03
Notes istex:08780EC577B7B0ED416AD968B32BBB46EEE14DE0
ArticleID:JFPE357
ark:/67375/WNG-3P108Q9J-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 46758905
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_46758905
pascalfrancis_primary_15173985
crossref_citationtrail_10_1111_j_1745_4530_2003_tb00607_x
crossref_primary_10_1111_j_1745_4530_2003_tb00607_x
wiley_primary_10_1111_j_1745_4530_2003_tb00607_x_JFPE357
istex_primary_ark_67375_WNG_3P108Q9J_K
PublicationCentury 2000
PublicationDate October 2003
PublicationDateYYYYMMDD 2003-10-01
PublicationDate_xml – month: 10
  year: 2003
  text: October 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
PublicationTitle Journal of food process engineering
PublicationYear 2003
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References DURANCE, T.D., DOU, J. and MAZZA, J. 1997. Selection of variable retort temperature processes for canned salmon. J. Food Process Engineering 20, 65-76.
NADKARNI, M.M. and HATTON, T.A. 1985. Optimal nutrient retention during the thermal processing of conduction-heated canned foods: Application of the distributed minimum principle. J. Food Sci. 50, 1312-1321.
TEIXEIRA, A.A., STUMBO, C.R. and ZAHRADNIK, J.W. 1975. Computer simulation of variable retort control and container geometry as a possible means of improving thiamin retention in thermally processed foods. J. Food Sci. 40, 653-655.
RAO, S.S. 1996. Engineering Optimization: Theory and Practice, 3rd Ed. John Wiley & Sons, New York .
HOLDSWORTH, S.D. 1985. Optimization of thermal processing: a review. J. Food Eng. 4, 89-116.
RAMESH, M.N. 1995. Optimum sterilization of foods by thermal processin - A review. Food Sci. Technol. Today 9, 217-227.
NORONHA, J., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996b. Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles. J. Food Eng. 30, 83-297.
ALMONACID-MERINO, S.F., SIMPSON, R. and TORRES, J.A. 1993. Time-variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model. J. Food Process Engineering 16, 271-287.
BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002b. A novel, efficient and reliable method for thermal process design and optimization. Part II. applications. J. Food Eng. 52, 235-247.
ERDOǦCDU, F. and BALABAN, M.O. 2002. Nonlinear constrained optimization of thermal processing: I. Development of a modified algorithm of complex method. J. Food Process Engineering 25, 1-22.
SILVA, C.L.M., HENDRICKX, F., OLIVEIRA, F. and TOBBACK, P. 1992b. Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients. J. Food Sci. 57, 743-748.
TEIXEIRA, A.A., DIXON, J.R., ZAHRADNIK, J.W. and ZINMEISTER, G.E. 1969. Computer optimization of nutrient retention in the thermal processing of conduction heated foods. Food Technol. 23, 137-142.
BIEGLER, L.T., CERVANTES, A.M. and WACHTER, A. 2002. Advance in simultaneous strategies for dynamic and process optimization. Chem. Eng. Sci. 57, 575-593.
BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002a. A novel, efficient and reliable method for thermal process design and optimization. Part I. theory. J. Food Eng. 52, 227-234.
SILVA, C.L.M., OLIVEIRA, F.A.R. and PEREIRA, P.A.M. 1994a. Optimum sterilization: A comparative study between average and surface quality. J. Food Process Engineering 17, 155-176.
BANGA, J.R., PAN, Z. and SINGH, R.P. 2001. On the optimal control of contact cooking processes. Trans. Ind. Chem. Eng. 79, 145-151.
SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1994b. Quality optimization of conduction heating foods sterilized in different packages. Intern. J. Food Sci. Technol. 29, 515-530.
SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1993. Modeling optimum processing conditions for the sterilization of prepackaged foods. Food Control 4, 67-78.
DEB, K. 2002. Multi-objective Optimization Using Evolutionary Algorithms John Wiley & Sons, New York .
MISHKIN, M., KAREL, M. and SAGUY, I. 1982. Applications of optimization in food dehydration. Food Technol. 36, 101-109.
BANGA, J.R., ALONSO, A.A. and SINGH, R.P. 1997. Stochastic dynamic optimization of batch and semicontinuous bioprocess. Biotechnol. Progress 13, 326-335.
SILVA, C.L.M., HENDRICKX, M., OLIVEIRA, F. and TOBBACK, P. 1992a. Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat-preserved foods J. Food Eng. 17, 241-258.
NORBACK, J.B. 1980. Techniques for optimization of food processes. Food Technol. 34, 86-88.
NORONHA, J.F., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996a. an empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods. J. Food Processing Preservation 20, 251-264.
THIJSSEN, H.A.C., KERKHOF, A.M. and LIEFKENS, A.A.A. 1978. Shortcut method for the calculation of sterilization conditions yielding optimum quality retention for conduction-type heating of packaged foods. J. Food Sci. 43, 1096-1101.
BANGA, J.R., MARTIN, R.I.P., GALLARDO, J.M. and CASARES, J.J. 1991. Optimization of thermal processing of conduction-heated canned foods: Study of several objective functions. J. Food Eng. 14, 25-51.
LUND, D.B. 1982. Applications of optimization in heat processing. Food Technol. 36, 97-100.
BALSA-CANTO, E., BANGA, ALONSO, A.A. and VASSILIADIS, V.S. 2001. Dynamic optimization of chemical and biochemical processes using restricted Second order information. Comp. Chem. Eng. 25, 539-546.
EDGAR, T.F., HIMMELBLAU, D.M. and LASDON, L.S. 2001. Optimization of Chemical Processes, 2nd Ed. McGraw Hill, New York .
SAGUY, I. and KAREL, M. 1979. Optimal retort temperature profile in optimizing thiamin retention in conduction-type heating of canned foods. J. Food Sci. 4, 1485-1490.
BHASKAR, V., GUPTA, S.K. and RAY, A.K. 2000. Applications of multiobjective optimization in chemical engineering. Rev. Chem. Eng. 16, 1-54.
TERAJIMA, Y. and NONAKA, Y. 1996. Retort temperature profile for optimum quality during conduction heating of foods in retortable pouches. J. Food Sci. 61, 673-678, 682.
NORONHA, J., HENDRICKX, M., SUYS, J. and TOBBACK, P. 1993. Optimization of surface quality retention during the thermal processing of conduction heated foods using variable temperature retort profiles. J. Food Processing Preservation 17, 75-91.
LUND, D.B. 1977. Design of thermal processes for maximizing nutrient retention. Food Technol. 31, 71-78.
CHALABI, Z.S., VAN WILLIGENBURG, L.G. and VAN STRATEN, G. 1999. Robust optimal receding horizon control of the thermal sterilization of canned foods. J. Food Eng. 40, 207-218.
SUMMANWAR, V.S., JAYARAMAN, V.K., KULKARNI, B.D., KUSUMAKAR, H.S. and RAJESH, J. 2002. Solution of constrained optimization problems by multi-objective genetic algorithm. Comp. Chem. Eng. 26, 1481-1492.
MIETTINEN, K.M. 1999. Nonlinear Multiobjective Optimization Kluwer, Norwell , MA .
MISHKIN, M., SAGUY, I. and KAREL, M. 1984. Optimization of nutrient retention during processing: Ascorbic acid in potato dehydration. J. Food Sci. 49, 1262-1266.
1995; 9
1982; 36
1994a; 17
2002a; 52
1991; 14
1985; 4
1997; 20
1984; 49
2002; 57
1996
1999; 40
2002b; 52
2002
2001; 25
1993; 4
1999
2002; 25
2002; 26
2000; 16
1993; 17
1993; 16
2001
1996a; 20
1992a; 17
2000
1978; 43
1980; 34
1997; 13
1994b; 29
1969; 23
1996; 61
1977; 31
1979; 4
1985; 50
2001; 79
1996b; 30
1992b; 57
1975; 40
NORBACK J.B. (e_1_2_1_27_1) 1980; 34
MIETTINEN K.M. (e_1_2_1_23_1) 1999
DEB K. (e_1_2_1_13_1) 2002
LUND D.B. (e_1_2_1_21_1) 1977; 31
TEIXEIRA A.A. (e_1_2_1_40_1) 1969; 23
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
MISHKIN M. (e_1_2_1_24_1) 1982; 36
EDGAR T.F. (e_1_2_1_15_1) 2001
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
RAO S.S. (e_1_2_1_32_1) 1996
SUMMANWAR V.S. (e_1_2_1_39_1) 2002; 26
e_1_2_1_7_1
LUND D.B. (e_1_2_1_22_1) 1982; 36
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_36_1
BANGA J.R. (e_1_2_1_8_1) 2001; 79
e_1_2_1_9_1
e_1_2_1_18_1
RAMESH M.N. (e_1_2_1_31_1) 1995; 9
e_1_2_1_19_1
References_xml – reference: EDGAR, T.F., HIMMELBLAU, D.M. and LASDON, L.S. 2001. Optimization of Chemical Processes, 2nd Ed. McGraw Hill, New York .
– reference: TERAJIMA, Y. and NONAKA, Y. 1996. Retort temperature profile for optimum quality during conduction heating of foods in retortable pouches. J. Food Sci. 61, 673-678, 682.
– reference: BHASKAR, V., GUPTA, S.K. and RAY, A.K. 2000. Applications of multiobjective optimization in chemical engineering. Rev. Chem. Eng. 16, 1-54.
– reference: DEB, K. 2002. Multi-objective Optimization Using Evolutionary Algorithms John Wiley & Sons, New York .
– reference: THIJSSEN, H.A.C., KERKHOF, A.M. and LIEFKENS, A.A.A. 1978. Shortcut method for the calculation of sterilization conditions yielding optimum quality retention for conduction-type heating of packaged foods. J. Food Sci. 43, 1096-1101.
– reference: MISHKIN, M., KAREL, M. and SAGUY, I. 1982. Applications of optimization in food dehydration. Food Technol. 36, 101-109.
– reference: SAGUY, I. and KAREL, M. 1979. Optimal retort temperature profile in optimizing thiamin retention in conduction-type heating of canned foods. J. Food Sci. 4, 1485-1490.
– reference: CHALABI, Z.S., VAN WILLIGENBURG, L.G. and VAN STRATEN, G. 1999. Robust optimal receding horizon control of the thermal sterilization of canned foods. J. Food Eng. 40, 207-218.
– reference: LUND, D.B. 1982. Applications of optimization in heat processing. Food Technol. 36, 97-100.
– reference: MIETTINEN, K.M. 1999. Nonlinear Multiobjective Optimization Kluwer, Norwell , MA .
– reference: SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1993. Modeling optimum processing conditions for the sterilization of prepackaged foods. Food Control 4, 67-78.
– reference: NORONHA, J., HENDRICKX, M., SUYS, J. and TOBBACK, P. 1993. Optimization of surface quality retention during the thermal processing of conduction heated foods using variable temperature retort profiles. J. Food Processing Preservation 17, 75-91.
– reference: RAMESH, M.N. 1995. Optimum sterilization of foods by thermal processin - A review. Food Sci. Technol. Today 9, 217-227.
– reference: NADKARNI, M.M. and HATTON, T.A. 1985. Optimal nutrient retention during the thermal processing of conduction-heated canned foods: Application of the distributed minimum principle. J. Food Sci. 50, 1312-1321.
– reference: BANGA, J.R., PAN, Z. and SINGH, R.P. 2001. On the optimal control of contact cooking processes. Trans. Ind. Chem. Eng. 79, 145-151.
– reference: NORBACK, J.B. 1980. Techniques for optimization of food processes. Food Technol. 34, 86-88.
– reference: LUND, D.B. 1977. Design of thermal processes for maximizing nutrient retention. Food Technol. 31, 71-78.
– reference: SILVA, C.L.M., HENDRICKX, F., OLIVEIRA, F. and TOBBACK, P. 1992b. Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients. J. Food Sci. 57, 743-748.
– reference: TEIXEIRA, A.A., STUMBO, C.R. and ZAHRADNIK, J.W. 1975. Computer simulation of variable retort control and container geometry as a possible means of improving thiamin retention in thermally processed foods. J. Food Sci. 40, 653-655.
– reference: MISHKIN, M., SAGUY, I. and KAREL, M. 1984. Optimization of nutrient retention during processing: Ascorbic acid in potato dehydration. J. Food Sci. 49, 1262-1266.
– reference: DURANCE, T.D., DOU, J. and MAZZA, J. 1997. Selection of variable retort temperature processes for canned salmon. J. Food Process Engineering 20, 65-76.
– reference: RAO, S.S. 1996. Engineering Optimization: Theory and Practice, 3rd Ed. John Wiley & Sons, New York .
– reference: NORONHA, J.F., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996a. an empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods. J. Food Processing Preservation 20, 251-264.
– reference: BANGA, J.R., ALONSO, A.A. and SINGH, R.P. 1997. Stochastic dynamic optimization of batch and semicontinuous bioprocess. Biotechnol. Progress 13, 326-335.
– reference: BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002a. A novel, efficient and reliable method for thermal process design and optimization. Part I. theory. J. Food Eng. 52, 227-234.
– reference: ERDOǦCDU, F. and BALABAN, M.O. 2002. Nonlinear constrained optimization of thermal processing: I. Development of a modified algorithm of complex method. J. Food Process Engineering 25, 1-22.
– reference: SUMMANWAR, V.S., JAYARAMAN, V.K., KULKARNI, B.D., KUSUMAKAR, H.S. and RAJESH, J. 2002. Solution of constrained optimization problems by multi-objective genetic algorithm. Comp. Chem. Eng. 26, 1481-1492.
– reference: ALMONACID-MERINO, S.F., SIMPSON, R. and TORRES, J.A. 1993. Time-variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model. J. Food Process Engineering 16, 271-287.
– reference: BIEGLER, L.T., CERVANTES, A.M. and WACHTER, A. 2002. Advance in simultaneous strategies for dynamic and process optimization. Chem. Eng. Sci. 57, 575-593.
– reference: NORONHA, J., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996b. Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles. J. Food Eng. 30, 83-297.
– reference: SILVA, C.L.M., OLIVEIRA, F.A.R. and PEREIRA, P.A.M. 1994a. Optimum sterilization: A comparative study between average and surface quality. J. Food Process Engineering 17, 155-176.
– reference: SILVA, C.L.M., HENDRICKX, M., OLIVEIRA, F. and TOBBACK, P. 1992a. Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat-preserved foods J. Food Eng. 17, 241-258.
– reference: TEIXEIRA, A.A., DIXON, J.R., ZAHRADNIK, J.W. and ZINMEISTER, G.E. 1969. Computer optimization of nutrient retention in the thermal processing of conduction heated foods. Food Technol. 23, 137-142.
– reference: SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1994b. Quality optimization of conduction heating foods sterilized in different packages. Intern. J. Food Sci. Technol. 29, 515-530.
– reference: BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002b. A novel, efficient and reliable method for thermal process design and optimization. Part II. applications. J. Food Eng. 52, 235-247.
– reference: BANGA, J.R., MARTIN, R.I.P., GALLARDO, J.M. and CASARES, J.J. 1991. Optimization of thermal processing of conduction-heated canned foods: Study of several objective functions. J. Food Eng. 14, 25-51.
– reference: HOLDSWORTH, S.D. 1985. Optimization of thermal processing: a review. J. Food Eng. 4, 89-116.
– reference: BALSA-CANTO, E., BANGA, ALONSO, A.A. and VASSILIADIS, V.S. 2001. Dynamic optimization of chemical and biochemical processes using restricted Second order information. Comp. Chem. Eng. 25, 539-546.
– volume: 79
  start-page: 145
  year: 2001
  end-page: 151
  article-title: On the optimal control of contact cooking processes
  publication-title: Trans. Ind. Chem. Eng.
– volume: 17
  start-page: 241
  year: 1992a
  end-page: 258
  article-title: Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat‐preserved foods
  publication-title: J. Food Eng.
– volume: 25
  start-page: 539
  year: 2001
  end-page: 546
  article-title: Dynamic optimization of chemical and biochemical processes using restricted Second order information
  publication-title: Comp. Chem. Eng.
– start-page: 563
  year: 1996
  end-page: 583
– year: 2001
– volume: 57
  start-page: 575
  year: 2002
  end-page: 593
  article-title: Advance in simultaneous strategies for dynamic and process optimization
  publication-title: Chem. Eng. Sci.
– volume: 26
  start-page: 1481
  year: 2002
  end-page: 1492
  article-title: Solution of constrained optimization problems by multi‐objective genetic algorithm. Comp
  publication-title: Chem. Eng.
– volume: 31
  start-page: 71
  year: 1977
  end-page: 78
  article-title: Design of thermal processes for maximizing nutrient retention
  publication-title: Food Technol.
– volume: 49
  start-page: 1262
  year: 1984
  end-page: 1266
  article-title: Optimization of nutrient retention during processing: Ascorbic acid in potato dehydration
  publication-title: J. Food Sci.
– year: 1996
– year: 2000
– volume: 52
  start-page: 235
  year: 2002b
  end-page: 247
  article-title: A novel, efficient and reliable method for thermal process design and optimization. Part II. applications
  publication-title: J. Food Eng.
– volume: 23
  start-page: 137
  year: 1969
  end-page: 142
  article-title: Computer optimization of nutrient retention in the thermal processing of conduction heated foods
  publication-title: Food Technol.
– volume: 43
  start-page: 1096
  year: 1978
  end-page: 1101
  article-title: Shortcut method for the calculation of sterilization conditions yielding optimum quality retention for conduction‐type heating of packaged foods
  publication-title: J. Food Sci.
– volume: 4
  start-page: 67
  year: 1993
  end-page: 78
  article-title: Modeling optimum processing conditions for the sterilization of prepackaged foods
  publication-title: Food Control
– volume: 16
  start-page: 1
  year: 2000
  end-page: 54
  article-title: Applications of multiobjective optimization in chemical engineering
  publication-title: Rev. Chem. Eng.
– volume: 30
  start-page: 83
  year: 1996b
  end-page: 297
  article-title: Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles
  publication-title: J. Food Eng.
– volume: 17
  start-page: 75
  year: 1993
  end-page: 91
  article-title: Optimization of surface quality retention during the thermal processing of conduction heated foods using variable temperature retort profiles
  publication-title: J. Food Processing Preservation
– volume: 17
  start-page: 155
  year: 1994a
  end-page: 176
  article-title: Optimum sterilization: A comparative study between average and surface quality
  publication-title: J. Food Process Engineering
– volume: 16
  start-page: 271
  year: 1993
  end-page: 287
  article-title: Time‐variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model
  publication-title: J. Food Process Engineering
– volume: 52
  start-page: 227
  year: 2002a
  end-page: 234
  article-title: A novel, efficient and reliable method for thermal process design and optimization. Part I. theory
  publication-title: J. Food Eng.
– volume: 14
  start-page: 25
  year: 1991
  end-page: 51
  article-title: Optimization of thermal processing of conduction‐heated canned foods: Study of several objective functions
  publication-title: J. Food Eng.
– volume: 34
  start-page: 86
  year: 1980
  end-page: 88
  article-title: Techniques for optimization of food processes
  publication-title: Food Technol.
– volume: 9
  start-page: 217
  year: 1995
  end-page: 227
  article-title: Optimum sterilization of foods by thermal processin — A review
  publication-title: Food Sci. Technol. Today
– volume: 40
  start-page: 653
  year: 1975
  end-page: 655
  article-title: Computer simulation of variable retort control and container geometry as a possible means of improving thiamin retention in thermally processed foods
  publication-title: J. Food Sci.
– volume: 25
  start-page: 1
  year: 2002
  end-page: 22
  article-title: Nonlinear constrained optimization of thermal processing: I. Development of a modified algorithm of complex method
  publication-title: J. Food Process Engineering
– year: 2002
– volume: 61
  start-page: 673
  year: 1996
  end-page: 678
  article-title: Retort temperature profile for optimum quality during conduction heating of foods in retortable pouches
  publication-title: J. Food Sci.
– volume: 40
  start-page: 207
  year: 1999
  end-page: 218
  article-title: Robust optimal receding horizon control of the thermal sterilization of canned foods
  publication-title: J. Food Eng.
– volume: 36
  start-page: 101
  year: 1982
  end-page: 109
  article-title: Applications of optimization in food dehydration
  publication-title: Food Technol.
– volume: 57
  start-page: 743
  year: 1992b
  end-page: 748
  article-title: Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients
  publication-title: J. Food Sci.
– volume: 13
  start-page: 326
  year: 1997
  end-page: 335
  article-title: Stochastic dynamic optimization of batch and semicontinuous bioprocess
  publication-title: Biotechnol. Progress
– volume: 20
  start-page: 65
  year: 1997
  end-page: 76
  article-title: Selection of variable retort temperature processes for canned salmon
  publication-title: J. Food Process Engineering
– volume: 20
  start-page: 251
  year: 1996a
  end-page: 264
  article-title: an empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods
  publication-title: J. Food Processing Preservation
– volume: 4
  start-page: 89
  year: 1985
  end-page: 116
  article-title: Optimization of thermal processing: a review
  publication-title: J. Food Eng.
– volume: 36
  start-page: 97
  year: 1982
  end-page: 100
  article-title: Applications of optimization in heat processing
  publication-title: Food Technol.
– volume: 4
  start-page: 1485
  year: 1979
  end-page: 1490
  article-title: Optimal retort temperature profile in optimizing thiamin retention in conduction‐type heating of canned foods
  publication-title: J. Food Sci.
– volume: 29
  start-page: 515
  year: 1994b
  end-page: 530
  article-title: Quality optimization of conduction heating foods sterilized in different packages
  publication-title: Intern. J. Food Sci. Technol.
– year: 1999
– volume: 50
  start-page: 1312
  year: 1985
  end-page: 1321
  article-title: Optimal nutrient retention during the thermal processing of conduction‐heated canned foods: Application of the distributed minimum principle
  publication-title: J. Food Sci.
– ident: e_1_2_1_41_1
  doi: 10.1111/j.1365-2621.1975.tb00521.x
– ident: e_1_2_1_42_1
  doi: 10.1111/j.1365-2621.1996.tb12179.x
– volume: 36
  start-page: 97
  year: 1982
  ident: e_1_2_1_22_1
  article-title: Applications of optimization in heat processing
  publication-title: Food Technol.
– ident: e_1_2_1_33_1
  doi: 10.1111/j.1365-2621.1979.tb06468.x
– ident: e_1_2_1_36_1
  doi: 10.1016/0956-7135(93)90160-P
– volume-title: Engineering Optimization: Theory and Practice
  year: 1996
  ident: e_1_2_1_32_1
– ident: e_1_2_1_37_1
  doi: 10.1111/j.1745-4530.1994.tb00333.x
– ident: e_1_2_1_16_1
– ident: e_1_2_1_14_1
  doi: 10.1111/j.1745-4530.1997.tb00411.x
– volume: 23
  start-page: 137
  year: 1969
  ident: e_1_2_1_40_1
  article-title: Computer optimization of nutrient retention in the thermal processing of conduction heated foods
  publication-title: Food Technol.
– ident: e_1_2_1_12_1
  doi: 10.1016/S0260-8774(99)00057-6
– ident: e_1_2_1_35_1
  doi: 10.1111/j.1365-2621.1992.tb08086.x
– ident: e_1_2_1_7_1
  doi: 10.1016/0260-8774(91)90052-T
– ident: e_1_2_1_18_1
  doi: 10.1111/j.1745-4530.2002.tb00553.x
– ident: e_1_2_1_25_1
  doi: 10.1111/j.1365-2621.1984.tb14966.x
– ident: e_1_2_1_29_1
  doi: 10.1111/j.1745-4549.1996.tb00746.x
– ident: e_1_2_1_2_1
  doi: 10.1111/j.1745-4530.1993.tb00321.x
– volume-title: Optimization of Chemical Processes
  year: 2001
  ident: e_1_2_1_15_1
– ident: e_1_2_1_28_1
  doi: 10.1111/j.1745-4549.1993.tb00226.x
– volume: 79
  start-page: 145
  year: 2001
  ident: e_1_2_1_8_1
  article-title: On the optimal control of contact cooking processes
  publication-title: Trans. Ind. Chem. Eng.
– volume: 26
  start-page: 1481
  year: 2002
  ident: e_1_2_1_39_1
  article-title: Solution of constrained optimization problems by multi‐objective genetic algorithm. Comp
  publication-title: Chem. Eng.
– volume: 34
  start-page: 86
  year: 1980
  ident: e_1_2_1_27_1
  article-title: Techniques for optimization of food processes
  publication-title: Food Technol.
– ident: e_1_2_1_26_1
  doi: 10.1111/j.1365-2621.1985.tb10467.x
– ident: e_1_2_1_38_1
  doi: 10.1111/j.1365-2621.1994.tb02094.x
– ident: e_1_2_1_17_1
– ident: e_1_2_1_4_1
  doi: 10.1016/S0260-8774(01)00111-X
– ident: e_1_2_1_10_1
  doi: 10.1515/REVCE.2000.16.1.1
– ident: e_1_2_1_19_1
  doi: 10.1016/0260-8774(85)90014-7
– volume-title: Nonlinear Multiobjective Optimization
  year: 1999
  ident: e_1_2_1_23_1
– volume: 9
  start-page: 217
  year: 1995
  ident: e_1_2_1_31_1
  article-title: Optimum sterilization of foods by thermal processin — A review
  publication-title: Food Sci. Technol. Today
– volume: 36
  start-page: 101
  year: 1982
  ident: e_1_2_1_24_1
  article-title: Applications of optimization in food dehydration
  publication-title: Food Technol.
– volume: 31
  start-page: 71
  year: 1977
  ident: e_1_2_1_21_1
  article-title: Design of thermal processes for maximizing nutrient retention
  publication-title: Food Technol.
– ident: e_1_2_1_30_1
  doi: 10.1016/S0260-8774(96)00035-0
– volume-title: Multi‐objective Optimization Using Evolutionary Algorithms
  year: 2002
  ident: e_1_2_1_13_1
– ident: e_1_2_1_11_1
  doi: 10.1016/S0009-2509(01)00376-1
– ident: e_1_2_1_20_1
  doi: 10.2139/ssrn.15071
– ident: e_1_2_1_9_1
  doi: 10.1007/978-1-4613-3437-8_33
– ident: e_1_2_1_34_1
  doi: 10.1016/0260-8774(92)90043-6
– ident: e_1_2_1_43_1
  doi: 10.1111/j.1365-2621.1978.tb15242.x
– ident: e_1_2_1_3_1
  doi: 10.1016/S0260-8774(01)00110-8
– ident: e_1_2_1_5_1
  doi: 10.1016/S0098-1354(01)00633-0
– ident: e_1_2_1_6_1
  doi: 10.1021/bp970015
SSID ssj0035502
Score 1.2056134
Snippet ABSTRACT The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a...
The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms algorithms
Biological and medical sciences
density
dimensions
duration
equations
Food engineering
Food industries
food nutrient losses
food preservation
food processing
food safety
Fundamental and applied biological sciences. Psychology
General aspects
heat transfer
heat treatment
temperature profiles
thermal conductivity
thiamin
volume
Title COMPLEX METHOD FOR NONLINEAR CONSTRAINED MULTI-CRITERIA (MULTI-OBJECTIVE FUNCTION) OPTIMIZATION of THERMAL PROCESSING
URI https://api.istex.fr/ark:/67375/WNG-3P108Q9J-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-4530.2003.tb00607.x
https://www.proquest.com/docview/46758905
Volume 26
WOSCitedRecordID wos000185857900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQlgNclqcoj8UHhOAQ5MR5Hqs02XZJnRClS8XFchJbQqAWtbtoufET-I38EsZu0m0lDoA4JvI4yWQeHs_4G4ReUIi4SNBGlhTEs1zfbqxIqNqqhXBau22pNL0Oz7OAsXCxiIrueLQ-C7PFh9htuGnNMPZaK7ioN4dKHrgwvUeJgfU0e5w-Cd7AinKgT1lBKDYYl-k86y0zuFZTg6gzaRYol9-BkO4qe34724HDGmjeX-kCSrEBHqpt84uD1en-Gtc4qfT4_37eHXTcg0_j0Va87qIbcnkP3d7DMLyPvsX5rMiSBZ4l1SQfY4gqMctZNmXJqMRxznRXZrgY49k8q6Y_v_-ISzCX5XSEX_V3ctN0ZXqe4HTOTFXLa5wXFdjVD2YLDa8UriZJORtluCjzWLsAdvoAzdOkiidW18_BalwNrx56StakDj3SSBf8oCI6x9iCWZES7HUkQaBa5QS2oo2vbKF8p25ppIBCCNEQ-hAdLVdL-QhhX8AwxwcCJV0BqyynlrZwal-Ejc6UDlHU_zTedGDnuufGZ74X9AB_ueavbsVJecdffjVEdEf7ZQv58UdUL41s7EjE-pMumgs8_p6dclrYJHwXnfG3Q3RyIDzXz_DsgEahN0TPe2nioOs6gSOWcnW54a6O7iICI0IjOn_xevwsLRLqBY__nfQJunVdyfgUHV2sL-UzdLP5evFxsz7pdO0XqDEg_g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VCRJwKU-RAu0eEIKD0drr5zFy7CatX1hOibis1vauhKgSlLSo3PgJ_EZ-CbObOE0kDoA42vKs7fE8dh7-BqFXFCIu4rWBIThxDNs1GyPgsjZqzq3WbFsq9KzDi8TLMn82C4oDlHb_wqzxIbYJN6UZ2l4rBVcJ6X0t92xY36FE43rqJKdLvHewpezbLvX8HuqPyniadKYZfKtuQlSlNAO0y92gkG5be3672p7H6ivm36gOSr4CJsr19Iu97enuJld7qfjwP7_fA3TYwU_j4VrAHqIDMX-E7u-gGD5G38I8LZJohtOoGucjDHElzvIsmWTRsMRhnqm5zHAwwuk0qSY_v_8ISzCY5WSI33Rncj12ZXIR4Xia6b6WtzgvKrCsH3USDS8krsZRmQ4TXJR5qJxAdvoETeOoCsfGZqKD0dgKYN13pKhJ7TukETZ4QklUlbEFwyIEWOxAgEi10vJMSRtXmly6Vt3SQAIF57wh9CnqzRdz8Qxhl8NllgsEUtgc9llWLUxu1S73G1UrHaCg-2qs2cCdq6kbl2wn7AH-MsVfNYyTsg1_2c0A0S3tlzXoxx9RvdbCsSXhy8-qbc5z2IfslNHCJP774IydD9DxnvTc3sMxPRr4zgCddOLEQNtVCYfPxeJ6xWwV3wUErvC17PzF47GzuIio4x39O-kJujuu0oSBAJ0_R_du-xpfoN7V8lq8RHear1efVsvjjeL9AhKNJO4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VCUJwKU81PNo9IAQHI9vr1x6jxG7S-oXllIjLam3vSgiUVEmLyo2fwG_klzC7sdNE4gCIoy3P2h7Pc2f8DUKvCGRcpt9QQ3DTNRzPqg3KZWVUnNuN1TRE6FmHF7GfpsF8TvMDlHT_wmzwIbYbbkoztL1WCi4uG7mv5b4D67vE1LieepPTM_13EFL2HZe6Tg_1x0U0izvTDL5VNyGqUpoB2uW1KKTb1p7frrbnsfqK-Teqg5KvgYlyM_1iLzzdDXK1l4oO__P7PUCHHfw0Hm4E7CE6EItH6P4OiuFj9G2UJXkcznESlpNsjCGvxGmWxtM0HBZ4lKVqLjMcjHEyi8vpz-8_RgUYzGI6xG-6M5keuzK9CHE0S3Vfy1uc5SVY1o96Ew0vJS4nYZEMY5wX2Ug5gfT0CZpFYTmaGO1EB6N2FMB64EpRmVXgmrVwwBNKU1UZGzAsQoDFpgJEqpG2b0lSe9Li0rOrhlAJFJzz2iRPUW-xXIgjhD0Ol9keEEjhcIiz7EpY3K48HtSqVjpAtPtqrG7hztXUjS9sJ-0B_jLFXzWMk7CWv-xmgMiW9nID-vFHVK-1cGxJ-OqzapvzXfYhPWUkt8zgPT1j5wN0vCc9t_dwLZ_QwB2gk06cGGi7KuHwhVher5mj8jtqwhWBlp2_eDx2FuUhcf1n_056gu7m44iB_Jw_R_du2xpfoN7V6lq8RHfqr1ef1qvjVu9-AWLiJGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPLEX+METHOD+FOR+NONLINEAR+CONSTRAINED+MULTI%E2%80%90CRITERIA+%28MULTI%E2%80%90OBJECTIVE+FUNCTION%29+OPTIMIZATION+of+THERMAL+PROCESSING&rft.jtitle=Journal+of+food+process+engineering&rft.au=ERDO%C7%A6DU%2C+FERRUH&rft.au=BALABAN%2C+MURAT+O.&rft.date=2003-10-01&rft.issn=0145-8876&rft.eissn=1745-4530&rft.volume=26&rft.issue=4&rft.spage=357&rft.epage=375&rft_id=info:doi/10.1111%2Fj.1745-4530.2003.tb00607.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1745_4530_2003_tb00607_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-8876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-8876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-8876&client=summon