COMPLEX METHOD FOR NONLINEAR CONSTRAINED MULTI-CRITERIA (MULTI-OBJECTIVE FUNCTION) OPTIMIZATION of THERMAL PROCESSING
ABSTRACT The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the...
Uložené v:
| Vydané v: | Journal of food process engineering Ročník 26; číslo 4; s. 357 - 375 |
|---|---|
| Hlavní autori: | , |
| Médium: | Magazine Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford, UK
Blackwell Publishing Ltd
01.10.2003
Blackwell |
| Predmet: | |
| ISSN: | 0145-8876, 1745-4530 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume‐average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi‐criteria thermal processing problems. |
|---|---|
| AbstractList | The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume‐average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi‐criteria thermal processing problems. ABSTRACT The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume‐average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi‐criteria thermal processing problems. |
| Author | ERDOǦDU, FERRUH BALABAN, MURAT O. |
| Author_xml | – sequence: 1 givenname: FERRUH surname: ERDOǦDU fullname: ERDOǦDU, FERRUH email: ferruherdogdu@yahoo.com organization: University of Mersin Food Engineering Department Çiftlikkoy-Mersin 33343, Turkey – sequence: 2 givenname: MURAT O. surname: BALABAN fullname: BALABAN, MURAT O. organization: Food Science and Human Nutrition University of Florida Gainesville, FL 32611 |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15173985$$DView record in Pascal Francis |
| BookMark | eNqVkV2PlDAYhYlZE2d3_Q-NiUYvYFtKKXijyDIzjHzJMGq8aQrTJowsrJSJs_9eCJO58Ep70_ek5zxN3nOtXbVdKzTtFYIGGs_dwUDUIrpFMDRMCLExlBDakBqnZ9ri8nSlLSAaZ8eh9gvtWqnDaCUEmgvt6KdxFgXfQRwU6_QeLNMcJGkShUng5cBPk22Re6O4B_EuKkLdz8MiyEMPvJ11-mkT-EX4NQDLXTIOafIOpFkRxuEPb1Kgk6BYB3nsRSDLUz_YbsNkdas9l7xR4uX5vtF2y6Dw13qUrkLfi_TKQjbVHSJFCUuHwEpYlulK6BLL3UOMhLBs6gpRir00KZK4siXi0jbLPXblmOCcVxDfaG9m7mPf_ToKNbCHWlWiaXgruqNiI4Q4LiSj8fXZyFXFG9nztqoVe-zrB94_MUQQxa4z-T7OvqrvlOqFZFU98KHu2qHndcMQZFMv7MCm5bNp-WzqhZ17YacR8f4vxOWXfwl_mMO_60Y8_UeSbZZZgAkdCfpMqNUgThcC738ym2JK2LdkxXCGoPPF3bDP-A9Pr6_Z |
| CODEN | JFPEDM |
| CitedBy_id | crossref_primary_10_1016_j_jfoodeng_2012_02_013 crossref_primary_10_1016_j_asoc_2016_04_034 crossref_primary_10_3390_en12142822 crossref_primary_10_1016_j_jfoodeng_2018_08_007 crossref_primary_10_1016_j_jfoodeng_2021_110594 crossref_primary_10_1111_j_1745_4530_2003_tb00603_x crossref_primary_10_1038_s43016_022_00617_5 crossref_primary_10_1016_j_tifs_2019_02_002 crossref_primary_10_7455_ijfs_v2i1_79 crossref_primary_10_1016_j_fbp_2021_02_013 crossref_primary_10_1016_j_tifs_2015_02_001 crossref_primary_10_3390_sym12020260 crossref_primary_10_1016_j_jfoodeng_2012_01_022 crossref_primary_10_1111_j_1745_4530_2007_00135_x crossref_primary_10_1016_j_foodcont_2013_01_002 crossref_primary_10_1515_ijfe_2014_0241 crossref_primary_10_1016_j_jfoodeng_2019_109839 crossref_primary_10_1080_87559129_2021_2012789 crossref_primary_10_1016_j_jfoodeng_2005_02_011 crossref_primary_10_1016_j_jfoodeng_2010_01_007 |
| Cites_doi | 10.1111/j.1365-2621.1975.tb00521.x 10.1111/j.1365-2621.1996.tb12179.x 10.1111/j.1365-2621.1979.tb06468.x 10.1016/0956-7135(93)90160-P 10.1111/j.1745-4530.1994.tb00333.x 10.1111/j.1745-4530.1997.tb00411.x 10.1016/S0260-8774(99)00057-6 10.1111/j.1365-2621.1992.tb08086.x 10.1016/0260-8774(91)90052-T 10.1111/j.1745-4530.2002.tb00553.x 10.1111/j.1365-2621.1984.tb14966.x 10.1111/j.1745-4549.1996.tb00746.x 10.1111/j.1745-4530.1993.tb00321.x 10.1111/j.1745-4549.1993.tb00226.x 10.1111/j.1365-2621.1985.tb10467.x 10.1111/j.1365-2621.1994.tb02094.x 10.1016/S0260-8774(01)00111-X 10.1515/REVCE.2000.16.1.1 10.1016/0260-8774(85)90014-7 10.1016/S0260-8774(96)00035-0 10.1016/S0009-2509(01)00376-1 10.2139/ssrn.15071 10.1007/978-1-4613-3437-8_33 10.1016/0260-8774(92)90043-6 10.1111/j.1365-2621.1978.tb15242.x 10.1016/S0260-8774(01)00110-8 10.1016/S0098-1354(01)00633-0 10.1021/bp970015 |
| ContentType | Magazine Article |
| Copyright | 2004 INIST-CNRS |
| Copyright_xml | – notice: 2004 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1111/j.1745-4530.2003.tb00607.x |
| DatabaseName | Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1745-4530 |
| EndPage | 375 |
| ExternalDocumentID | 15173985 10_1111_j_1745_4530_2003_tb00607_x JFPE357 ark_67375_WNG_3P108Q9J_K |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 A8Z AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABPVW ACAHQ ACBWZ ACCZN ACGFS ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBO EBS EBU EJD ESTFP F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ XG1 ZL0 ZZTAW ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION O8X IQODW 7S9 L.6 |
| ID | FETCH-LOGICAL-c4167-85feb0b850ce4429f09549d031ee4679eebedf271f3c6f1af62bd39fb85aaac03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185857900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0145-8876 |
| IngestDate | Sun Nov 09 10:29:24 EST 2025 Mon Jul 21 09:16:31 EDT 2025 Sat Nov 29 04:21:48 EST 2025 Tue Nov 18 22:31:03 EST 2025 Wed Jan 22 16:51:23 EST 2025 Sun Sep 21 06:16:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Heat treatment Foodstuff Method Optimization Multiobjective programming |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4167-85feb0b850ce4429f09549d031ee4679eebedf271f3c6f1af62bd39fb85aaac03 |
| Notes | istex:08780EC577B7B0ED416AD968B32BBB46EEE14DE0 ArticleID:JFPE357 ark:/67375/WNG-3P108Q9J-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 46758905 |
| PQPubID | 24069 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_46758905 pascalfrancis_primary_15173985 crossref_citationtrail_10_1111_j_1745_4530_2003_tb00607_x crossref_primary_10_1111_j_1745_4530_2003_tb00607_x wiley_primary_10_1111_j_1745_4530_2003_tb00607_x_JFPE357 istex_primary_ark_67375_WNG_3P108Q9J_K |
| PublicationCentury | 2000 |
| PublicationDate | October 2003 |
| PublicationDateYYYYMMDD | 2003-10-01 |
| PublicationDate_xml | – month: 10 year: 2003 text: October 2003 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA |
| PublicationTitle | Journal of food process engineering |
| PublicationYear | 2003 |
| Publisher | Blackwell Publishing Ltd Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
| References | DURANCE, T.D., DOU, J. and MAZZA, J. 1997. Selection of variable retort temperature processes for canned salmon. J. Food Process Engineering 20, 65-76. NADKARNI, M.M. and HATTON, T.A. 1985. Optimal nutrient retention during the thermal processing of conduction-heated canned foods: Application of the distributed minimum principle. J. Food Sci. 50, 1312-1321. TEIXEIRA, A.A., STUMBO, C.R. and ZAHRADNIK, J.W. 1975. Computer simulation of variable retort control and container geometry as a possible means of improving thiamin retention in thermally processed foods. J. Food Sci. 40, 653-655. RAO, S.S. 1996. Engineering Optimization: Theory and Practice, 3rd Ed. John Wiley & Sons, New York . HOLDSWORTH, S.D. 1985. Optimization of thermal processing: a review. J. Food Eng. 4, 89-116. RAMESH, M.N. 1995. Optimum sterilization of foods by thermal processin - A review. Food Sci. Technol. Today 9, 217-227. NORONHA, J., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996b. Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles. J. Food Eng. 30, 83-297. ALMONACID-MERINO, S.F., SIMPSON, R. and TORRES, J.A. 1993. Time-variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model. J. Food Process Engineering 16, 271-287. BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002b. A novel, efficient and reliable method for thermal process design and optimization. Part II. applications. J. Food Eng. 52, 235-247. ERDOǦCDU, F. and BALABAN, M.O. 2002. Nonlinear constrained optimization of thermal processing: I. Development of a modified algorithm of complex method. J. Food Process Engineering 25, 1-22. SILVA, C.L.M., HENDRICKX, F., OLIVEIRA, F. and TOBBACK, P. 1992b. Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients. J. Food Sci. 57, 743-748. TEIXEIRA, A.A., DIXON, J.R., ZAHRADNIK, J.W. and ZINMEISTER, G.E. 1969. Computer optimization of nutrient retention in the thermal processing of conduction heated foods. Food Technol. 23, 137-142. BIEGLER, L.T., CERVANTES, A.M. and WACHTER, A. 2002. Advance in simultaneous strategies for dynamic and process optimization. Chem. Eng. Sci. 57, 575-593. BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002a. A novel, efficient and reliable method for thermal process design and optimization. Part I. theory. J. Food Eng. 52, 227-234. SILVA, C.L.M., OLIVEIRA, F.A.R. and PEREIRA, P.A.M. 1994a. Optimum sterilization: A comparative study between average and surface quality. J. Food Process Engineering 17, 155-176. BANGA, J.R., PAN, Z. and SINGH, R.P. 2001. On the optimal control of contact cooking processes. Trans. Ind. Chem. Eng. 79, 145-151. SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1994b. Quality optimization of conduction heating foods sterilized in different packages. Intern. J. Food Sci. Technol. 29, 515-530. SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1993. Modeling optimum processing conditions for the sterilization of prepackaged foods. Food Control 4, 67-78. DEB, K. 2002. Multi-objective Optimization Using Evolutionary Algorithms John Wiley & Sons, New York . MISHKIN, M., KAREL, M. and SAGUY, I. 1982. Applications of optimization in food dehydration. Food Technol. 36, 101-109. BANGA, J.R., ALONSO, A.A. and SINGH, R.P. 1997. Stochastic dynamic optimization of batch and semicontinuous bioprocess. Biotechnol. Progress 13, 326-335. SILVA, C.L.M., HENDRICKX, M., OLIVEIRA, F. and TOBBACK, P. 1992a. Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat-preserved foods J. Food Eng. 17, 241-258. NORBACK, J.B. 1980. Techniques for optimization of food processes. Food Technol. 34, 86-88. NORONHA, J.F., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996a. an empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods. J. Food Processing Preservation 20, 251-264. THIJSSEN, H.A.C., KERKHOF, A.M. and LIEFKENS, A.A.A. 1978. Shortcut method for the calculation of sterilization conditions yielding optimum quality retention for conduction-type heating of packaged foods. J. Food Sci. 43, 1096-1101. BANGA, J.R., MARTIN, R.I.P., GALLARDO, J.M. and CASARES, J.J. 1991. Optimization of thermal processing of conduction-heated canned foods: Study of several objective functions. J. Food Eng. 14, 25-51. LUND, D.B. 1982. Applications of optimization in heat processing. Food Technol. 36, 97-100. BALSA-CANTO, E., BANGA, ALONSO, A.A. and VASSILIADIS, V.S. 2001. Dynamic optimization of chemical and biochemical processes using restricted Second order information. Comp. Chem. Eng. 25, 539-546. EDGAR, T.F., HIMMELBLAU, D.M. and LASDON, L.S. 2001. Optimization of Chemical Processes, 2nd Ed. McGraw Hill, New York . SAGUY, I. and KAREL, M. 1979. Optimal retort temperature profile in optimizing thiamin retention in conduction-type heating of canned foods. J. Food Sci. 4, 1485-1490. BHASKAR, V., GUPTA, S.K. and RAY, A.K. 2000. Applications of multiobjective optimization in chemical engineering. Rev. Chem. Eng. 16, 1-54. TERAJIMA, Y. and NONAKA, Y. 1996. Retort temperature profile for optimum quality during conduction heating of foods in retortable pouches. J. Food Sci. 61, 673-678, 682. NORONHA, J., HENDRICKX, M., SUYS, J. and TOBBACK, P. 1993. Optimization of surface quality retention during the thermal processing of conduction heated foods using variable temperature retort profiles. J. Food Processing Preservation 17, 75-91. LUND, D.B. 1977. Design of thermal processes for maximizing nutrient retention. Food Technol. 31, 71-78. CHALABI, Z.S., VAN WILLIGENBURG, L.G. and VAN STRATEN, G. 1999. Robust optimal receding horizon control of the thermal sterilization of canned foods. J. Food Eng. 40, 207-218. SUMMANWAR, V.S., JAYARAMAN, V.K., KULKARNI, B.D., KUSUMAKAR, H.S. and RAJESH, J. 2002. Solution of constrained optimization problems by multi-objective genetic algorithm. Comp. Chem. Eng. 26, 1481-1492. MIETTINEN, K.M. 1999. Nonlinear Multiobjective Optimization Kluwer, Norwell , MA . MISHKIN, M., SAGUY, I. and KAREL, M. 1984. Optimization of nutrient retention during processing: Ascorbic acid in potato dehydration. J. Food Sci. 49, 1262-1266. 1995; 9 1982; 36 1994a; 17 2002a; 52 1991; 14 1985; 4 1997; 20 1984; 49 2002; 57 1996 1999; 40 2002b; 52 2002 2001; 25 1993; 4 1999 2002; 25 2002; 26 2000; 16 1993; 17 1993; 16 2001 1996a; 20 1992a; 17 2000 1978; 43 1980; 34 1997; 13 1994b; 29 1969; 23 1996; 61 1977; 31 1979; 4 1985; 50 2001; 79 1996b; 30 1992b; 57 1975; 40 NORBACK J.B. (e_1_2_1_27_1) 1980; 34 MIETTINEN K.M. (e_1_2_1_23_1) 1999 DEB K. (e_1_2_1_13_1) 2002 LUND D.B. (e_1_2_1_21_1) 1977; 31 TEIXEIRA A.A. (e_1_2_1_40_1) 1969; 23 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 MISHKIN M. (e_1_2_1_24_1) 1982; 36 EDGAR T.F. (e_1_2_1_15_1) 2001 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 RAO S.S. (e_1_2_1_32_1) 1996 SUMMANWAR V.S. (e_1_2_1_39_1) 2002; 26 e_1_2_1_7_1 LUND D.B. (e_1_2_1_22_1) 1982; 36 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_36_1 BANGA J.R. (e_1_2_1_8_1) 2001; 79 e_1_2_1_9_1 e_1_2_1_18_1 RAMESH M.N. (e_1_2_1_31_1) 1995; 9 e_1_2_1_19_1 |
| References_xml | – reference: EDGAR, T.F., HIMMELBLAU, D.M. and LASDON, L.S. 2001. Optimization of Chemical Processes, 2nd Ed. McGraw Hill, New York . – reference: TERAJIMA, Y. and NONAKA, Y. 1996. Retort temperature profile for optimum quality during conduction heating of foods in retortable pouches. J. Food Sci. 61, 673-678, 682. – reference: BHASKAR, V., GUPTA, S.K. and RAY, A.K. 2000. Applications of multiobjective optimization in chemical engineering. Rev. Chem. Eng. 16, 1-54. – reference: DEB, K. 2002. Multi-objective Optimization Using Evolutionary Algorithms John Wiley & Sons, New York . – reference: THIJSSEN, H.A.C., KERKHOF, A.M. and LIEFKENS, A.A.A. 1978. Shortcut method for the calculation of sterilization conditions yielding optimum quality retention for conduction-type heating of packaged foods. J. Food Sci. 43, 1096-1101. – reference: MISHKIN, M., KAREL, M. and SAGUY, I. 1982. Applications of optimization in food dehydration. Food Technol. 36, 101-109. – reference: SAGUY, I. and KAREL, M. 1979. Optimal retort temperature profile in optimizing thiamin retention in conduction-type heating of canned foods. J. Food Sci. 4, 1485-1490. – reference: CHALABI, Z.S., VAN WILLIGENBURG, L.G. and VAN STRATEN, G. 1999. Robust optimal receding horizon control of the thermal sterilization of canned foods. J. Food Eng. 40, 207-218. – reference: LUND, D.B. 1982. Applications of optimization in heat processing. Food Technol. 36, 97-100. – reference: MIETTINEN, K.M. 1999. Nonlinear Multiobjective Optimization Kluwer, Norwell , MA . – reference: SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1993. Modeling optimum processing conditions for the sterilization of prepackaged foods. Food Control 4, 67-78. – reference: NORONHA, J., HENDRICKX, M., SUYS, J. and TOBBACK, P. 1993. Optimization of surface quality retention during the thermal processing of conduction heated foods using variable temperature retort profiles. J. Food Processing Preservation 17, 75-91. – reference: RAMESH, M.N. 1995. Optimum sterilization of foods by thermal processin - A review. Food Sci. Technol. Today 9, 217-227. – reference: NADKARNI, M.M. and HATTON, T.A. 1985. Optimal nutrient retention during the thermal processing of conduction-heated canned foods: Application of the distributed minimum principle. J. Food Sci. 50, 1312-1321. – reference: BANGA, J.R., PAN, Z. and SINGH, R.P. 2001. On the optimal control of contact cooking processes. Trans. Ind. Chem. Eng. 79, 145-151. – reference: NORBACK, J.B. 1980. Techniques for optimization of food processes. Food Technol. 34, 86-88. – reference: LUND, D.B. 1977. Design of thermal processes for maximizing nutrient retention. Food Technol. 31, 71-78. – reference: SILVA, C.L.M., HENDRICKX, F., OLIVEIRA, F. and TOBBACK, P. 1992b. Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients. J. Food Sci. 57, 743-748. – reference: TEIXEIRA, A.A., STUMBO, C.R. and ZAHRADNIK, J.W. 1975. Computer simulation of variable retort control and container geometry as a possible means of improving thiamin retention in thermally processed foods. J. Food Sci. 40, 653-655. – reference: MISHKIN, M., SAGUY, I. and KAREL, M. 1984. Optimization of nutrient retention during processing: Ascorbic acid in potato dehydration. J. Food Sci. 49, 1262-1266. – reference: DURANCE, T.D., DOU, J. and MAZZA, J. 1997. Selection of variable retort temperature processes for canned salmon. J. Food Process Engineering 20, 65-76. – reference: RAO, S.S. 1996. Engineering Optimization: Theory and Practice, 3rd Ed. John Wiley & Sons, New York . – reference: NORONHA, J.F., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996a. an empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods. J. Food Processing Preservation 20, 251-264. – reference: BANGA, J.R., ALONSO, A.A. and SINGH, R.P. 1997. Stochastic dynamic optimization of batch and semicontinuous bioprocess. Biotechnol. Progress 13, 326-335. – reference: BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002a. A novel, efficient and reliable method for thermal process design and optimization. Part I. theory. J. Food Eng. 52, 227-234. – reference: ERDOǦCDU, F. and BALABAN, M.O. 2002. Nonlinear constrained optimization of thermal processing: I. Development of a modified algorithm of complex method. J. Food Process Engineering 25, 1-22. – reference: SUMMANWAR, V.S., JAYARAMAN, V.K., KULKARNI, B.D., KUSUMAKAR, H.S. and RAJESH, J. 2002. Solution of constrained optimization problems by multi-objective genetic algorithm. Comp. Chem. Eng. 26, 1481-1492. – reference: ALMONACID-MERINO, S.F., SIMPSON, R. and TORRES, J.A. 1993. Time-variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model. J. Food Process Engineering 16, 271-287. – reference: BIEGLER, L.T., CERVANTES, A.M. and WACHTER, A. 2002. Advance in simultaneous strategies for dynamic and process optimization. Chem. Eng. Sci. 57, 575-593. – reference: NORONHA, J., LOEY, A.V., HENDRICKX, M. and TOBBACK, P. 1996b. Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles. J. Food Eng. 30, 83-297. – reference: SILVA, C.L.M., OLIVEIRA, F.A.R. and PEREIRA, P.A.M. 1994a. Optimum sterilization: A comparative study between average and surface quality. J. Food Process Engineering 17, 155-176. – reference: SILVA, C.L.M., HENDRICKX, M., OLIVEIRA, F. and TOBBACK, P. 1992a. Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat-preserved foods J. Food Eng. 17, 241-258. – reference: TEIXEIRA, A.A., DIXON, J.R., ZAHRADNIK, J.W. and ZINMEISTER, G.E. 1969. Computer optimization of nutrient retention in the thermal processing of conduction heated foods. Food Technol. 23, 137-142. – reference: SILVA, C.L.M., OLIVEIRA, F.A.R. and HENDRICKX, M. 1994b. Quality optimization of conduction heating foods sterilized in different packages. Intern. J. Food Sci. Technol. 29, 515-530. – reference: BALSA-CANTO, E., ALONSO, A.A. and BANGA, J.R. 2002b. A novel, efficient and reliable method for thermal process design and optimization. Part II. applications. J. Food Eng. 52, 235-247. – reference: BANGA, J.R., MARTIN, R.I.P., GALLARDO, J.M. and CASARES, J.J. 1991. Optimization of thermal processing of conduction-heated canned foods: Study of several objective functions. J. Food Eng. 14, 25-51. – reference: HOLDSWORTH, S.D. 1985. Optimization of thermal processing: a review. J. Food Eng. 4, 89-116. – reference: BALSA-CANTO, E., BANGA, ALONSO, A.A. and VASSILIADIS, V.S. 2001. Dynamic optimization of chemical and biochemical processes using restricted Second order information. Comp. Chem. Eng. 25, 539-546. – volume: 79 start-page: 145 year: 2001 end-page: 151 article-title: On the optimal control of contact cooking processes publication-title: Trans. Ind. Chem. Eng. – volume: 17 start-page: 241 year: 1992a end-page: 258 article-title: Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat‐preserved foods publication-title: J. Food Eng. – volume: 25 start-page: 539 year: 2001 end-page: 546 article-title: Dynamic optimization of chemical and biochemical processes using restricted Second order information publication-title: Comp. Chem. Eng. – start-page: 563 year: 1996 end-page: 583 – year: 2001 – volume: 57 start-page: 575 year: 2002 end-page: 593 article-title: Advance in simultaneous strategies for dynamic and process optimization publication-title: Chem. Eng. Sci. – volume: 26 start-page: 1481 year: 2002 end-page: 1492 article-title: Solution of constrained optimization problems by multi‐objective genetic algorithm. Comp publication-title: Chem. Eng. – volume: 31 start-page: 71 year: 1977 end-page: 78 article-title: Design of thermal processes for maximizing nutrient retention publication-title: Food Technol. – volume: 49 start-page: 1262 year: 1984 end-page: 1266 article-title: Optimization of nutrient retention during processing: Ascorbic acid in potato dehydration publication-title: J. Food Sci. – year: 1996 – year: 2000 – volume: 52 start-page: 235 year: 2002b end-page: 247 article-title: A novel, efficient and reliable method for thermal process design and optimization. Part II. applications publication-title: J. Food Eng. – volume: 23 start-page: 137 year: 1969 end-page: 142 article-title: Computer optimization of nutrient retention in the thermal processing of conduction heated foods publication-title: Food Technol. – volume: 43 start-page: 1096 year: 1978 end-page: 1101 article-title: Shortcut method for the calculation of sterilization conditions yielding optimum quality retention for conduction‐type heating of packaged foods publication-title: J. Food Sci. – volume: 4 start-page: 67 year: 1993 end-page: 78 article-title: Modeling optimum processing conditions for the sterilization of prepackaged foods publication-title: Food Control – volume: 16 start-page: 1 year: 2000 end-page: 54 article-title: Applications of multiobjective optimization in chemical engineering publication-title: Rev. Chem. Eng. – volume: 30 start-page: 83 year: 1996b end-page: 297 article-title: Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles publication-title: J. Food Eng. – volume: 17 start-page: 75 year: 1993 end-page: 91 article-title: Optimization of surface quality retention during the thermal processing of conduction heated foods using variable temperature retort profiles publication-title: J. Food Processing Preservation – volume: 17 start-page: 155 year: 1994a end-page: 176 article-title: Optimum sterilization: A comparative study between average and surface quality publication-title: J. Food Process Engineering – volume: 16 start-page: 271 year: 1993 end-page: 287 article-title: Time‐variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model publication-title: J. Food Process Engineering – volume: 52 start-page: 227 year: 2002a end-page: 234 article-title: A novel, efficient and reliable method for thermal process design and optimization. Part I. theory publication-title: J. Food Eng. – volume: 14 start-page: 25 year: 1991 end-page: 51 article-title: Optimization of thermal processing of conduction‐heated canned foods: Study of several objective functions publication-title: J. Food Eng. – volume: 34 start-page: 86 year: 1980 end-page: 88 article-title: Techniques for optimization of food processes publication-title: Food Technol. – volume: 9 start-page: 217 year: 1995 end-page: 227 article-title: Optimum sterilization of foods by thermal processin — A review publication-title: Food Sci. Technol. Today – volume: 40 start-page: 653 year: 1975 end-page: 655 article-title: Computer simulation of variable retort control and container geometry as a possible means of improving thiamin retention in thermally processed foods publication-title: J. Food Sci. – volume: 25 start-page: 1 year: 2002 end-page: 22 article-title: Nonlinear constrained optimization of thermal processing: I. Development of a modified algorithm of complex method publication-title: J. Food Process Engineering – year: 2002 – volume: 61 start-page: 673 year: 1996 end-page: 678 article-title: Retort temperature profile for optimum quality during conduction heating of foods in retortable pouches publication-title: J. Food Sci. – volume: 40 start-page: 207 year: 1999 end-page: 218 article-title: Robust optimal receding horizon control of the thermal sterilization of canned foods publication-title: J. Food Eng. – volume: 36 start-page: 101 year: 1982 end-page: 109 article-title: Applications of optimization in food dehydration publication-title: Food Technol. – volume: 57 start-page: 743 year: 1992b end-page: 748 article-title: Optimal sterilization temperatures for conduction heating foods considering finite surface heat transfer coefficients publication-title: J. Food Sci. – volume: 13 start-page: 326 year: 1997 end-page: 335 article-title: Stochastic dynamic optimization of batch and semicontinuous bioprocess publication-title: Biotechnol. Progress – volume: 20 start-page: 65 year: 1997 end-page: 76 article-title: Selection of variable retort temperature processes for canned salmon publication-title: J. Food Process Engineering – volume: 20 start-page: 251 year: 1996a end-page: 264 article-title: an empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods publication-title: J. Food Processing Preservation – volume: 4 start-page: 89 year: 1985 end-page: 116 article-title: Optimization of thermal processing: a review publication-title: J. Food Eng. – volume: 36 start-page: 97 year: 1982 end-page: 100 article-title: Applications of optimization in heat processing publication-title: Food Technol. – volume: 4 start-page: 1485 year: 1979 end-page: 1490 article-title: Optimal retort temperature profile in optimizing thiamin retention in conduction‐type heating of canned foods publication-title: J. Food Sci. – volume: 29 start-page: 515 year: 1994b end-page: 530 article-title: Quality optimization of conduction heating foods sterilized in different packages publication-title: Intern. J. Food Sci. Technol. – year: 1999 – volume: 50 start-page: 1312 year: 1985 end-page: 1321 article-title: Optimal nutrient retention during the thermal processing of conduction‐heated canned foods: Application of the distributed minimum principle publication-title: J. Food Sci. – ident: e_1_2_1_41_1 doi: 10.1111/j.1365-2621.1975.tb00521.x – ident: e_1_2_1_42_1 doi: 10.1111/j.1365-2621.1996.tb12179.x – volume: 36 start-page: 97 year: 1982 ident: e_1_2_1_22_1 article-title: Applications of optimization in heat processing publication-title: Food Technol. – ident: e_1_2_1_33_1 doi: 10.1111/j.1365-2621.1979.tb06468.x – ident: e_1_2_1_36_1 doi: 10.1016/0956-7135(93)90160-P – volume-title: Engineering Optimization: Theory and Practice year: 1996 ident: e_1_2_1_32_1 – ident: e_1_2_1_37_1 doi: 10.1111/j.1745-4530.1994.tb00333.x – ident: e_1_2_1_16_1 – ident: e_1_2_1_14_1 doi: 10.1111/j.1745-4530.1997.tb00411.x – volume: 23 start-page: 137 year: 1969 ident: e_1_2_1_40_1 article-title: Computer optimization of nutrient retention in the thermal processing of conduction heated foods publication-title: Food Technol. – ident: e_1_2_1_12_1 doi: 10.1016/S0260-8774(99)00057-6 – ident: e_1_2_1_35_1 doi: 10.1111/j.1365-2621.1992.tb08086.x – ident: e_1_2_1_7_1 doi: 10.1016/0260-8774(91)90052-T – ident: e_1_2_1_18_1 doi: 10.1111/j.1745-4530.2002.tb00553.x – ident: e_1_2_1_25_1 doi: 10.1111/j.1365-2621.1984.tb14966.x – ident: e_1_2_1_29_1 doi: 10.1111/j.1745-4549.1996.tb00746.x – ident: e_1_2_1_2_1 doi: 10.1111/j.1745-4530.1993.tb00321.x – volume-title: Optimization of Chemical Processes year: 2001 ident: e_1_2_1_15_1 – ident: e_1_2_1_28_1 doi: 10.1111/j.1745-4549.1993.tb00226.x – volume: 79 start-page: 145 year: 2001 ident: e_1_2_1_8_1 article-title: On the optimal control of contact cooking processes publication-title: Trans. Ind. Chem. Eng. – volume: 26 start-page: 1481 year: 2002 ident: e_1_2_1_39_1 article-title: Solution of constrained optimization problems by multi‐objective genetic algorithm. Comp publication-title: Chem. Eng. – volume: 34 start-page: 86 year: 1980 ident: e_1_2_1_27_1 article-title: Techniques for optimization of food processes publication-title: Food Technol. – ident: e_1_2_1_26_1 doi: 10.1111/j.1365-2621.1985.tb10467.x – ident: e_1_2_1_38_1 doi: 10.1111/j.1365-2621.1994.tb02094.x – ident: e_1_2_1_17_1 – ident: e_1_2_1_4_1 doi: 10.1016/S0260-8774(01)00111-X – ident: e_1_2_1_10_1 doi: 10.1515/REVCE.2000.16.1.1 – ident: e_1_2_1_19_1 doi: 10.1016/0260-8774(85)90014-7 – volume-title: Nonlinear Multiobjective Optimization year: 1999 ident: e_1_2_1_23_1 – volume: 9 start-page: 217 year: 1995 ident: e_1_2_1_31_1 article-title: Optimum sterilization of foods by thermal processin — A review publication-title: Food Sci. Technol. Today – volume: 36 start-page: 101 year: 1982 ident: e_1_2_1_24_1 article-title: Applications of optimization in food dehydration publication-title: Food Technol. – volume: 31 start-page: 71 year: 1977 ident: e_1_2_1_21_1 article-title: Design of thermal processes for maximizing nutrient retention publication-title: Food Technol. – ident: e_1_2_1_30_1 doi: 10.1016/S0260-8774(96)00035-0 – volume-title: Multi‐objective Optimization Using Evolutionary Algorithms year: 2002 ident: e_1_2_1_13_1 – ident: e_1_2_1_11_1 doi: 10.1016/S0009-2509(01)00376-1 – ident: e_1_2_1_20_1 doi: 10.2139/ssrn.15071 – ident: e_1_2_1_9_1 doi: 10.1007/978-1-4613-3437-8_33 – ident: e_1_2_1_34_1 doi: 10.1016/0260-8774(92)90043-6 – ident: e_1_2_1_43_1 doi: 10.1111/j.1365-2621.1978.tb15242.x – ident: e_1_2_1_3_1 doi: 10.1016/S0260-8774(01)00110-8 – ident: e_1_2_1_5_1 doi: 10.1016/S0098-1354(01)00633-0 – ident: e_1_2_1_6_1 doi: 10.1021/bp970015 |
| SSID | ssj0035502 |
| Score | 1.2056134 |
| Snippet | ABSTRACT
The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a... The goal in a multi‐objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 357 |
| SubjectTerms | algorithms Biological and medical sciences density dimensions duration equations Food engineering Food industries food nutrient losses food preservation food processing food safety Fundamental and applied biological sciences. Psychology General aspects heat transfer heat treatment temperature profiles thermal conductivity thiamin volume |
| Title | COMPLEX METHOD FOR NONLINEAR CONSTRAINED MULTI-CRITERIA (MULTI-OBJECTIVE FUNCTION) OPTIMIZATION of THERMAL PROCESSING |
| URI | https://api.istex.fr/ark:/67375/WNG-3P108Q9J-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-4530.2003.tb00607.x https://www.proquest.com/docview/46758905 |
| Volume | 26 |
| WOSCitedRecordID | wos000185857900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQlgNclqcoj8UHhOAQ5MR5Hqs02XZJnRClS8XFchJbQqAWtbtoufET-I38EsZu0m0lDoA4JvI4yWQeHs_4G4ReUIi4SNBGlhTEs1zfbqxIqNqqhXBau22pNL0Oz7OAsXCxiIrueLQ-C7PFh9htuGnNMPZaK7ioN4dKHrgwvUeJgfU0e5w-Cd7AinKgT1lBKDYYl-k86y0zuFZTg6gzaRYol9-BkO4qe34724HDGmjeX-kCSrEBHqpt84uD1en-Gtc4qfT4_37eHXTcg0_j0Va87qIbcnkP3d7DMLyPvsX5rMiSBZ4l1SQfY4gqMctZNmXJqMRxznRXZrgY49k8q6Y_v_-ISzCX5XSEX_V3ctN0ZXqe4HTOTFXLa5wXFdjVD2YLDa8UriZJORtluCjzWLsAdvoAzdOkiidW18_BalwNrx56StakDj3SSBf8oCI6x9iCWZES7HUkQaBa5QS2oo2vbKF8p25ppIBCCNEQ-hAdLVdL-QhhX8AwxwcCJV0BqyynlrZwal-Ejc6UDlHU_zTedGDnuufGZ74X9AB_ueavbsVJecdffjVEdEf7ZQv58UdUL41s7EjE-pMumgs8_p6dclrYJHwXnfG3Q3RyIDzXz_DsgEahN0TPe2nioOs6gSOWcnW54a6O7iICI0IjOn_xevwsLRLqBY__nfQJunVdyfgUHV2sL-UzdLP5evFxsz7pdO0XqDEg_g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VCRJwKU-RAu0eEIKD0drr5zFy7CatX1hOibis1vauhKgSlLSo3PgJ_EZ-CbObOE0kDoA42vKs7fE8dh7-BqFXFCIu4rWBIThxDNs1GyPgsjZqzq3WbFsq9KzDi8TLMn82C4oDlHb_wqzxIbYJN6UZ2l4rBVcJ6X0t92xY36FE43rqJKdLvHewpezbLvX8HuqPyniadKYZfKtuQlSlNAO0y92gkG5be3672p7H6ivm36gOSr4CJsr19Iu97enuJld7qfjwP7_fA3TYwU_j4VrAHqIDMX-E7u-gGD5G38I8LZJohtOoGucjDHElzvIsmWTRsMRhnqm5zHAwwuk0qSY_v_8ISzCY5WSI33Rncj12ZXIR4Xia6b6WtzgvKrCsH3USDS8krsZRmQ4TXJR5qJxAdvoETeOoCsfGZqKD0dgKYN13pKhJ7TukETZ4QklUlbEFwyIEWOxAgEi10vJMSRtXmly6Vt3SQAIF57wh9CnqzRdz8Qxhl8NllgsEUtgc9llWLUxu1S73G1UrHaCg-2qs2cCdq6kbl2wn7AH-MsVfNYyTsg1_2c0A0S3tlzXoxx9RvdbCsSXhy8-qbc5z2IfslNHCJP774IydD9DxnvTc3sMxPRr4zgCddOLEQNtVCYfPxeJ6xWwV3wUErvC17PzF47GzuIio4x39O-kJujuu0oSBAJ0_R_du-xpfoN7V8lq8RHear1efVsvjjeL9AhKNJO4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VCUJwKU81PNo9IAQHI9vr1x6jxG7S-oXllIjLam3vSgiUVEmLyo2fwG_klzC7sdNE4gCIoy3P2h7Pc2f8DUKvCGRcpt9QQ3DTNRzPqg3KZWVUnNuN1TRE6FmHF7GfpsF8TvMDlHT_wmzwIbYbbkoztL1WCi4uG7mv5b4D67vE1LieepPTM_13EFL2HZe6Tg_1x0U0izvTDL5VNyGqUpoB2uW1KKTb1p7frrbnsfqK-Teqg5KvgYlyM_1iLzzdDXK1l4oO__P7PUCHHfw0Hm4E7CE6EItH6P4OiuFj9G2UJXkcznESlpNsjCGvxGmWxtM0HBZ4lKVqLjMcjHEyi8vpz-8_RgUYzGI6xG-6M5keuzK9CHE0S3Vfy1uc5SVY1o96Ew0vJS4nYZEMY5wX2Ug5gfT0CZpFYTmaGO1EB6N2FMB64EpRmVXgmrVwwBNKU1UZGzAsQoDFpgJEqpG2b0lSe9Li0rOrhlAJFJzz2iRPUW-xXIgjhD0Ol9keEEjhcIiz7EpY3K48HtSqVjpAtPtqrG7hztXUjS9sJ-0B_jLFXzWMk7CWv-xmgMiW9nID-vFHVK-1cGxJ-OqzapvzXfYhPWUkt8zgPT1j5wN0vCc9t_dwLZ_QwB2gk06cGGi7KuHwhVher5mj8jtqwhWBlp2_eDx2FuUhcf1n_056gu7m44iB_Jw_R_du2xpfoN7V6lq8RHfqr1ef1qvjVu9-AWLiJGk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPLEX+METHOD+FOR+NONLINEAR+CONSTRAINED+MULTI%E2%80%90CRITERIA+%28MULTI%E2%80%90OBJECTIVE+FUNCTION%29+OPTIMIZATION+of+THERMAL+PROCESSING&rft.jtitle=Journal+of+food+process+engineering&rft.au=ERDO%C7%A6DU%2C+FERRUH&rft.au=BALABAN%2C+MURAT+O.&rft.date=2003-10-01&rft.issn=0145-8876&rft.eissn=1745-4530&rft.volume=26&rft.issue=4&rft.spage=357&rft.epage=375&rft_id=info:doi/10.1111%2Fj.1745-4530.2003.tb00607.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1745_4530_2003_tb00607_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-8876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-8876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-8876&client=summon |