Toward quantitative metabarcoding

Amplicon‐sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon‐sequencing studies—known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecology (Durham) Ročník 104; číslo 2; s. e3906 - n/a
Hlavní autori: Shelton, Andrew Olaf, Gold, Zachary J., Jensen, Alexander J., D′Agnese, Erin, Andruszkiewicz Allan, Elizabeth, Van Cise, Amy, Gallego, Ramón, Ramón‐Laca, Ana, Garber‐Yonts, Maya, Parsons, Kim, Kelly, Ryan P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.02.2023
Ecological Society of America
Predmet:
ISSN:0012-9658, 1939-9170, 1939-9170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Amplicon‐sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon‐sequencing studies—known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture—struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon‐sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.
AbstractList Amplicon‐sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon‐sequencing studies—known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture—struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon‐sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.
Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.
Author Shelton, Andrew Olaf
Jensen, Alexander J.
D′Agnese, Erin
Garber‐Yonts, Maya
Van Cise, Amy
Gold, Zachary J.
Gallego, Ramón
Kelly, Ryan P.
Ramón‐Laca, Ana
Andruszkiewicz Allan, Elizabeth
Parsons, Kim
Author_xml – sequence: 1
  givenname: Andrew Olaf
  orcidid: 0000-0002-8045-6141
  surname: Shelton
  fullname: Shelton, Andrew Olaf
  email: ole.shelton@noaa.gov
  organization: Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration
– sequence: 2
  givenname: Zachary J.
  orcidid: 0000-0003-0490-7630
  surname: Gold
  fullname: Gold, Zachary J.
  organization: CICOES, University of Washington and Northwest Fisheries Science Center, National Marine Fisheries Service
– sequence: 3
  givenname: Alexander J.
  orcidid: 0000-0002-2911-8884
  surname: Jensen
  fullname: Jensen, Alexander J.
  organization: University of Washington
– sequence: 4
  givenname: Erin
  surname: D′Agnese
  fullname: D′Agnese, Erin
  organization: University of Washington
– sequence: 5
  givenname: Elizabeth
  surname: Andruszkiewicz Allan
  fullname: Andruszkiewicz Allan, Elizabeth
  organization: University of Washington
– sequence: 6
  givenname: Amy
  surname: Van Cise
  fullname: Van Cise, Amy
  organization: North Gulf Oceanic Society, Visiting Scientist at Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration
– sequence: 7
  givenname: Ramón
  surname: Gallego
  fullname: Gallego, Ramón
  organization: Universidad Autonoma de Madrid, Unidad de Genetica
– sequence: 8
  givenname: Ana
  surname: Ramón‐Laca
  fullname: Ramón‐Laca, Ana
  organization: University of Washington
– sequence: 9
  givenname: Maya
  surname: Garber‐Yonts
  fullname: Garber‐Yonts, Maya
  organization: University of Washington
– sequence: 10
  givenname: Kim
  surname: Parsons
  fullname: Parsons, Kim
  organization: Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration
– sequence: 11
  givenname: Ryan P.
  orcidid: 0000-0001-5037-2441
  surname: Kelly
  fullname: Kelly, Ryan P.
  organization: University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36320096$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLAzEQB_AgFftQ8BNIxYuXrZNk8zpKqQ8oeKkHTyGbZGXLdrfN7lr67d2-FEQxl8nhl2Ey_z7qFGXhEbrEMMIA5M7bzYgq4CeohxVVkcICOqgHgEmkOJNd1K-qObQHx_IMdSmnBEDxHrqelWsT3HDVmKLOalNnH3648LVJTLCly4r3c3SamrzyF4c6QK8Pk9n4KZq-PD6P76eRjTHnEYdUSkZSLylTzjGXgKeWcedFyjC2jJoUFPEOiBWxsgmjzFFheHszBhI6QLf7vstQrhpf1XqRVdbnuSl82VSaSIyViKWK_6eC4pgIwaGlNz_ovGxC0X6kVQITGWPKWnV1UE2y8E4vQ7YwYaOPe2rBaA9sKKsq-FTb3bLKog4myzUGvQ1Ct0HobRDfI349OPb8hUZ7us5yv_nT6cn4bec_AasJk7o
CitedBy_id crossref_primary_10_1111_rec_70198
crossref_primary_10_3897_neobiota_101_153314
crossref_primary_10_1016_j_foodcont_2025_111667
crossref_primary_10_1111_geb_13837
crossref_primary_10_1002_edn3_70138
crossref_primary_10_1016_j_ecolind_2023_111483
crossref_primary_10_1007_s00114_023_01863_8
crossref_primary_10_1002_edn3_70131
crossref_primary_10_1002_edn3_70176
crossref_primary_10_1002_wat2_1749
crossref_primary_10_1016_j_tree_2023_09_017
crossref_primary_10_1111_een_13297
crossref_primary_10_1002_eap_2914
crossref_primary_10_1007_s10531_024_02865_2
crossref_primary_10_5194_bg_21_4975_2024
crossref_primary_10_7717_peerj_17091
crossref_primary_10_1111_1755_0998_13849
crossref_primary_10_1111_1758_2229_70077
crossref_primary_10_1093_plankt_fbae057
crossref_primary_10_1093_icesjms_fsae097
crossref_primary_10_1007_s10123_023_00422_5
crossref_primary_10_1111_ddi_13665
crossref_primary_10_1002_edn3_70028
crossref_primary_10_1002_ece3_72125
crossref_primary_10_1002_edn3_70066
crossref_primary_10_1002_ece3_70556
crossref_primary_10_1007_s42974_024_00184_8
crossref_primary_10_1007_s11356_024_35025_8
crossref_primary_10_1002_aqc_4144
crossref_primary_10_1016_j_tim_2024_07_003
crossref_primary_10_1111_1755_0998_13816
crossref_primary_10_1111_icad_12710
crossref_primary_10_1111_jfb_15754
crossref_primary_10_1371_journal_pone_0302518
crossref_primary_10_1016_j_marpolbul_2025_118581
crossref_primary_10_1002_edn3_404
crossref_primary_10_3897_mbmg_8_128689
crossref_primary_10_1098_rsos_240445
crossref_primary_10_1002_edn3_400
crossref_primary_10_1002_edn3_489
crossref_primary_10_1002_edn3_521
crossref_primary_10_3897_mbmg_9_138172
crossref_primary_10_1002_ecy_3906
crossref_primary_10_1002_edn3_70030
crossref_primary_10_1111_conl_12971
crossref_primary_10_1111_1755_0998_14119
crossref_primary_10_1128_msystems_00158_25
crossref_primary_10_1093_icesjms_fsaf007
crossref_primary_10_1111_mec_17031
crossref_primary_10_1016_j_egg_2024_100317
crossref_primary_10_3390_ani15091283
crossref_primary_10_3897_mbmg_9_144935
crossref_primary_10_1002_edn3_496
crossref_primary_10_1371_journal_pone_0313170
crossref_primary_10_3390_dna4010001
crossref_primary_10_1016_j_marpol_2024_106151
crossref_primary_10_3389_fmicb_2025_1552305
crossref_primary_10_3390_ijfs11040132
crossref_primary_10_1016_j_ecolind_2024_111830
crossref_primary_10_1242_jeb_249697
crossref_primary_10_2166_wh_2024_290
crossref_primary_10_1016_j_ecolind_2023_110044
crossref_primary_10_1111_faf_70001
crossref_primary_10_1002_edn3_70005
crossref_primary_10_1111_1755_0998_14000
crossref_primary_10_1002_edn3_479
crossref_primary_10_1002_ece3_70856
crossref_primary_10_1002_edn3_70043
crossref_primary_10_1111_mec_17701
crossref_primary_10_1111_mms_70047
crossref_primary_10_1007_s10811_023_03127_4
crossref_primary_10_1111_1462_2920_70121
crossref_primary_10_3390_jmse13091605
crossref_primary_10_1073_pnas_2505772122
crossref_primary_10_1080_13102818_2024_2326293
crossref_primary_10_1002_2688_8319_70125
Cites_doi 10.1371/journal.pone.0176343
10.1371/journal.pcbi.1009113
10.1111/j.1365-294X.2011.05403.x
10.1371/journal.pone.0247031
10.1007/s10592-015-0775-4
10.1371/journal.pone.0169431
10.1098/rspb.2021.2613
10.1038/ismej.2013.28
10.1002/edn3.224
10.1111/j.1365-294X.2011.05261.x
10.1371/journal.pone.0041732
10.1111/mec.15530
10.1111/1755-0998.13227
10.1016/j.gexplo.2015.12.010
10.1007/s10592-010-0096-6
10.1890/15-1733.1
10.1016/j.dsr2.2017.09.008
10.1101/2022.07.27.501788
10.1371/journal.pone.0144956
10.1111/mec.13481
10.7717/peerj.4925
10.1016/j.csbj.2020.09.014
10.1007/978-94-009-4109-0
10.1007/s10531-020-01980-0
10.1186/s12864-018-4703-0
10.1128/AEM.00905-17
10.1111/j.2517-6161.1982.tb01195.x
10.1111/j.1365-294X.2012.05470.x
10.1093/nargab/lqaa103
10.1111/1755-0998.13568
10.1002/edn3.269
10.1093/oso/9780198767220.001.0001
10.3389/fmicb.2017.02224
10.1016/j.cub.2021.12.014
10.1111/1755-0998.12402
10.1111/mec.14920
10.1002/ece3.6362
10.1002/edn3.239
10.1111/1755-0998.12355
10.1111/1755-0998.12643
10.1111/2041-210X.12574
10.1098/rsbl.2008.0118
10.1038/nbt.3601
10.1371/journal.pone.0201741
10.1016/j.jas.2006.10.023
10.1002/edn3.117
10.7554/eLife.46923
10.1098/rsos.150088
10.1038/s41598-017-17333-x
10.1111/1755-0998.12490
10.1002/ecy.3906
10.1139/cjfas-2012-0478
10.1111/mec.13660
10.1038/s41598-019-48546-x
10.1111/1755-0998.12103
ContentType Journal Article
Copyright 2022 The Ecological Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2023 The Ecological Society of America
Copyright_xml – notice: 2022 The Ecological Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2023 The Ecological Society of America
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7T7
8FD
C1K
FR3
K9.
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1002/ecy.3906
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
Entomology Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
Public Health
EISSN 1939-9170
EndPage n/a
ExternalDocumentID 36320096
10_1002_ecy_3906
ECY3906
Genre researchArticle
Journal Article
GroupedDBID ---
-~X
.-4
0R~
0VX
1OB
1OC
29G
2AX
2KS
33P
3V.
4.4
42X
53G
5GY
692
6TJ
7X2
7X7
7XC
85S
88A
88E
88I
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
A.K
A6W
AAESR
AAFWJ
AAHBH
AAHHS
AAHKG
AAHQN
AAIHA
AAISJ
AAKGQ
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCUV
ABDQB
ABEFU
ABGFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABRJW
ABTLG
ABUWG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACHIC
ACKIV
ACKOT
ACNCT
ACPOU
ACPRK
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUPB
AEUQT
AEUYN
AEUYR
AFAZZ
AFBPY
AFFPM
AFKRA
AFQQW
AFRAH
AFWVQ
AFXHP
AFZJQ
AGNAY
AHBTC
AHXOZ
AIAGR
AIDAL
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AQVQM
AS~
ATCPS
AZFZN
AZQEC
AZVAB
BBNVY
BCR
BCU
BEC
BENPR
BES
BFHJK
BHPHI
BKOMP
BKSAR
BLC
BMXJE
BPHCQ
BRXPI
BVXVI
C1A
CBGCD
CCPQU
CS3
CUYZI
D0L
D1J
DCZOG
DDYGU
DEVKO
DOOOF
DRFUL
DRSTM
DU5
DWQXO
E.L
EBS
ECGQY
EJD
F5P
FVMVE
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HF~
HGD
HGLYW
HMCUK
HQ2
HTVGU
HVGLF
IAG
IAO
IEA
IEP
IGH
IGS
IOF
IPO
IPSME
ITC
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
KQ8
LATKE
LEEKS
LITHE
LK8
LOXES
LU7
LUTES
LYRES
M0K
M0L
M1P
M2O
M2P
M7P
MEWTI
MV1
MVM
MW2
N9A
NHB
NXSMM
O9-
OK1
OMK
P2P
P2W
PALCI
PATMY
PCBAR
PQQKQ
PRG
PROAC
PSQYO
PYCSY
Q2X
QZG
R05
RJQFR
ROL
RSZ
RWL
RXW
SA0
SAMSI
SJFOW
SJN
SUPJJ
TAE
TN5
U5U
UBC
UHB
UKHRP
UKR
V62
VOH
VQA
WBKPD
WH7
WHG
WOHZO
WXSBR
WYJ
XIH
XSW
Y6R
YR2
YV5
YXE
YYM
YYP
YZZ
Z0I
ZCA
ZCG
ZO4
ZZTAW
~02
~KM
AAMMB
AAYXX
ABAWQ
ABSQW
ABUFD
ACHJO
ADXHL
AEFGJ
AEYWJ
AFFHD
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
Z5M
7QG
7SN
7SS
7ST
7T7
8FD
C1K
FR3
K9.
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4166-60f8852fe8359dd5db0e3c56de7f511c53af092ed02c749cb535d37a6cb5aa0b3
IEDL.DBID DRFUL
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901933200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-9658
1939-9170
IngestDate Fri Sep 05 17:26:04 EDT 2025
Fri Sep 05 09:04:12 EDT 2025
Mon Oct 06 17:59:18 EDT 2025
Wed Feb 19 02:25:13 EST 2025
Sat Nov 29 03:24:31 EST 2025
Tue Nov 18 22:27:29 EST 2025
Wed Jan 22 16:20:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords amplicon sequencing
bias adjustment
diet analysis
community structure
environmental DNA
compositional analysis
Language English
License 2022 The Ecological Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4166-60f8852fe8359dd5db0e3c56de7f511c53af092ed02c749cb535d37a6cb5aa0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0490-7630
0000-0002-8045-6141
0000-0002-2911-8884
0000-0001-5037-2441
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ecy.3906
PMID 36320096
PQID 2771284135
PQPubID 34868
PageCount 18
ParticipantIDs proquest_miscellaneous_2811974894
proquest_miscellaneous_2731427760
proquest_journals_2771284135
pubmed_primary_36320096
crossref_citationtrail_10_1002_ecy_3906
crossref_primary_10_1002_ecy_3906
wiley_primary_10_1002_ecy_3906_ECY3906
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
2023-Feb
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Brooklyn
PublicationTitle Ecology (Durham)
PublicationTitleAlternate Ecology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Ecological Society of America
Publisher_xml – name: John Wiley & Sons, Inc
– name: Ecological Society of America
References 2019; 8
2015; 2
2017; 83
2010; 11
2017; 7
2015; 15
2017; 8
2019; 9
2021; 3
2021; 22
2020; 20
2013; 70
2008; 4
2020; 10
2013; 7
2016; 17
2021; 30
2016; 16
2007; 34
2016; 164
2016; 34
2016; 11
2020; 18
2018; 19
2018; 6
2021; 16
2016; 7
2020; 2
2018; 150
2021; 11
2022
2022; 4
2013; 13
2017; 17
2021; 17
1982; 44
2017; 12
2019; 28
1986
2018
2022; 32
2012; 7
2016; 26
2012; 21
2016; 25
2022; 289
2020; 29
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Hoshino T. (e_1_2_8_30_1) 2021; 11
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Egozcue J. J. (e_1_2_8_17_1) 2020; 2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 7
  year: 2012
  article-title: Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples
  publication-title: PLoS One
– volume: 30
  start-page: 3057
  year: 2021
  end-page: 67
  article-title: Estimating Fish Population Abundance by Integrating Quantitative Data on Environmental DNA and Hydrodynamic Modelling
  publication-title: Molecular Ecology
– volume: 11
  start-page: 2039
  year: 2010
  end-page: 48
  article-title: Pyrosequencing Faecal DNA to Determine Diet of Little Penguins: Is What Goes in What Comes Out?
  publication-title: Conservation Genetics
– volume: 18
  start-page: 2789
  year: 2020
  end-page: 98
  article-title: Naught all Zeros in Sequence Count Data Are the Same
  publication-title: Computational and Structural Biotechnology Journal
– volume: 9
  start-page: 1
  year: 2019
  end-page: 14
  article-title: Understanding PCR Processes to Draw Meaningful Conclusions from Environmental DNA Studies
  publication-title: Scientific Reports
– volume: 3
  start-page: 1172
  year: 2021
  end-page: 91
  article-title: Community eDNA Metabarcoding as a Detection Tool for Documenting Freshwater Mussel (Unionidae) Species Assemblages
  publication-title: Environmental DNA
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Estimating and Mitigating Amplification Bias in Qualitative and Quantitative Arthropod Metabarcoding
  publication-title: Scientific Reports
– volume: 70
  start-page: 522
  year: 2013
  end-page: 6
  article-title: Detection of Asian Carp DNA as Part of a Great Lakes Basin‐Wide Surveillance Program
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– year: 2018
– volume: 8
  start-page: 2224
  year: 2017
  article-title: Microbiome Datasets Are Compositional: And this Is Not Optional
  publication-title: Frontiers in Microbiology
– year: 1986
– volume: 2
  start-page: 391
  year: 2020
  end-page: 406
  article-title: Methodological Trends and Perspectives of Animal Dietary Studies by Noninvasive Fecal DNA Metabarcoding
  publication-title: Environmental DNA
– volume: 150
  start-page: 229
  year: 2018
  end-page: 41
  article-title: Exploring Deep‐Water Coral Communities Using Environmental DNA
  publication-title: Deep Sea Research Part II: Topical Studies in Oceanography
– volume: 289
  year: 2022
  article-title: Environmental DNA Provides Quantitative Estimates of Pacific Hake Abundance and Distribution in the Open Ocean
  publication-title: Proceedings of the Royal Society B
– volume: 25
  start-page: 527
  year: 2016
  end-page: 41
  article-title: Assessing Vertebrate Biodiversity in a Kelp Forest Ecosystem Using Environmental DNA
  publication-title: Molecular Ecology
– volume: 22
  start-page: 1440
  year: 2021
  end-page: 53
  article-title: Fish eDNA Metabarcoding from Aquatic Biofilm Samples: Methodological Aspects
  publication-title: Molecular Ecology Resources
– volume: 44
  start-page: 139
  year: 1982
  end-page: 60
  article-title: The Statistical Analysis of Compositional Data
  publication-title: Journal of the Royal Statistical Society: Series B: Methodological
– volume: 20
  start-page: 1620
  year: 2020
  end-page: 31
  article-title: Tagsteady: A Metabarcoding Library Preparation Protocol to Avoid False Assignment of Sequences to Samples
  publication-title: Molecular Ecology Resources
– year: 2022
– volume: 12
  year: 2017
  article-title: Biomonitoring of Marine Vertebrates in Monterey Bay Using eDNA Metabarcoding
  publication-title: PLoS One
– volume: 2
  year: 2020
  article-title: Compositional Data Analysis and Related Methods Applied to Genomics—A First Special Issue from NAR Genomics and Bioinformatics
  publication-title: NAR Genomics and Bioinformatics
– year: 2022
  article-title: Message in a Bottle: Archived DNA Reveals Impacts of a Marine Heatwave on Fish Assemblages over Multiple Decades
  publication-title: Science Advances
– volume: 12
  year: 2017
  article-title: Application of Stochastic Labeling with Random‐Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16 S rRNA Genes
  publication-title: PLoS One
– volume: 15
  start-page: 1289
  year: 2015
  end-page: 303
  article-title: Tag Jumps Illuminated–Reducing Sequence‐to‐Sample Misidentifications in Metabarcoding Studies
  publication-title: Molecular Ecology Resources
– volume: 4
  start-page: 423
  year: 2008
  end-page: 5
  article-title: Species Detection Using Environmental DNA from Water Samples
  publication-title: Biology Letters
– volume: 32
  start-page: 701
  year: 2022
  end-page: 7
  article-title: Airborne Environmental DNA for Terrestrial Vertebrate Community Monitoring
  publication-title: Current Biology
– volume: 16
  start-page: 714
  year: 2016
  end-page: 26
  article-title: Quantitative DNA Metabarcoding: Improved Estimates of Species Proportional Biomass Using Correction Factors Derived from Control Material
  publication-title: Molecular Ecology Resources
– volume: 28
  start-page: 420
  year: 2019
  end-page: 30
  article-title: How Quantitative Is Metabarcoding: A Meta‐Analytical Approach
  publication-title: Molecular Ecology
– volume: 21
  start-page: 2045
  year: 2012
  end-page: 50
  article-title: Towards Next‐Generation Biodiversity Assessment Using DNA Metabarcoding
  publication-title: Molecular Ecology
– volume: 2
  year: 2015
  article-title: MiFish, a Set of Universal PCR Primers for Metabarcoding Environmental DNA from Fishes: Detection of More than 230 Subtropical Marine Species
  publication-title: Royal Society Open Science
– volume: 13
  year: 2018
  article-title: Evaluating Freshwater Macroinvertebrates from eDNA Metabarcoding: A River Nalón Case Study
  publication-title: PLoS One
– volume: 4
  start-page: 674
  year: 2022
  end-page: 86
  article-title: Evaluating Bioinformatics Pipelines for Population‐Level Inference Using Environmental DNA
  publication-title: Environmental DNA
– volume: 19
  start-page: 332
  year: 2018
  article-title: Characterization and Remediation of Sample Index Swaps by Non‐redundant Dual Indexing on Massively Parallel Sequencing Platforms
  publication-title: BMC Genomics
– volume: 6
  year: 2018
  article-title: Non‐biological Synthetic Spike‐in Controls and the AMPtk Software Pipeline Improve Mycobiome Data
  publication-title: PeerJ
– volume: 8
  year: 2019
  article-title: Consistent and Correctable Bias in Metagenomic Sequencing Experiments
  publication-title: eLife
– volume: 83
  start-page: e00905
  year: 2017
  end-page: 17
  article-title: Different Amplicon Targets for Sequencing‐Based Studies of Fungal Diversity
  publication-title: Applied and Environmental Microbiology
– volume: 7
  start-page: 1008
  year: 2016
  end-page: 18
  article-title: The Ecologist's Field Guide to Sequence‐Based Identification of Biodiversity
  publication-title: Methods in Ecology and Evolution
– volume: 17
  year: 2021
  article-title: Measuring and Mitigating PCR Bias in Microbiota Datasets
  publication-title: PLoS Computational Biology
– volume: 17
  start-page: 1
  year: 2016
  end-page: 17
  article-title: The Ecology of Environmental DNA and Implications for Conservation Genetics
  publication-title: Conservation Genetics
– volume: 11
  start-page: 1
  year: 2021
  end-page: 9
  article-title: Simultaneous Absolute Quantification and Sequencing of Fish Environmental DNA in a Mesocosm by Quantitative Sequencing Technique
  publication-title: Scientific Reports
– volume: 2
  year: 2020
  article-title: Some Thoughts on Counts in Sequencing Studies
  publication-title: NAR Genomics and Bioinformatics
– volume: 164
  start-page: 28
  year: 2016
  end-page: 32
  article-title: Spatial Analysis of Compositional Data: A Historical Review
  publication-title: Journal of Geochemical Exploration
– volume: 34
  start-page: 1361
  year: 2007
  end-page: 6
  article-title: Animal DNA in PCR Reagents Plagues Ancient DNA Research
  publication-title: Journal of Archaeological Science
– volume: 11
  year: 2016
  article-title: Estimation of a Killer Whale ( ) Population's Diet Using Sequencing Analysis of DNA from Feces
  publication-title: PLoS One
– volume: 15
  start-page: 819
  year: 2015
  end-page: 30
  article-title: Universal and Blocking Primer Mismatches Limit the Use of High‐Throughput DNA Sequencing for the Quantitative Metabarcoding of Arthropods
  publication-title: Molecular Ecology Resources
– volume: 3
  start-page: 1007
  year: 2021
  end-page: 22
  article-title: Proper Environmental DNA Metabarcoding Data Transformation Reveals Temporal Stability of Fish Communities in a Dendritic River System
  publication-title: Environmental DNA
– volume: 17
  start-page: 904
  year: 2017
  end-page: 14
  article-title: eDNA Metabarcoding: A Promising Method for Anuran Surveys in Highly Diverse Tropical Forests
  publication-title: Molecular Ecology Resources
– volume: 13
  start-page: 620
  year: 2013
  end-page: 33
  article-title: Quantifying Sequence Proportions in a DNA‐Based Diet Study Using Ion Torrent Amplicon Sequencing: Which Counts Count?
  publication-title: Molecular Ecology Resources
– volume: 29
  start-page: 2089
  year: 2020
  end-page: 121
  article-title: Applications of Environmental DNA (eDNA) in Ecology and Conservation: Opportunities, Challenges and Prospects
  publication-title: Biodiversity and Conservation
– volume: 21
  start-page: 1966
  year: 2012
  end-page: 79
  article-title: Meta‐Barcoding of ‘dirt'DNA from Soil Reflects Vertebrate Biodiversity
  publication-title: Molecular Ecology
– volume: 7
  start-page: 1262
  year: 2013
  end-page: 73
  article-title: Dispersal in Microbes: Fungi in Indoor Air Are Dominated by Outdoor Air and Show Dispersal Limitation at Short Distances
  publication-title: The ISME Journal
– volume: 34
  start-page: 942
  year: 2016
  end-page: 9
  article-title: Systematic Improvement of Amplicon Marker Gene Methods for Increased Accuracy in Microbiome Studies
  publication-title: Nature Biotechnology
– volume: 16
  year: 2021
  article-title: Endangered Predators and Endangered Prey: Seasonal Diet of Southern Resident Killer Whales
  publication-title: PLoS One
– volume: 21
  start-page: 1931
  year: 2012
  end-page: 50
  article-title: Who Is Eating What: Diet Assessment Using Next Generation Sequencing
  publication-title: Molecular Ecology
– volume: 25
  start-page: 3101
  year: 2016
  end-page: 19
  article-title: Environmental DNA Metabarcoding of Lake Fish Communities Reflects Long‐Term Data from Established Survey Methods
  publication-title: Molecular Ecology
– volume: 26
  start-page: 1645
  year: 2016
  end-page: 59
  article-title: A Framework for Inferring Biological Communities from Environmental DNA
  publication-title: Ecological Applications
– volume: 10
  start-page: 6310
  year: 2020
  end-page: 32
  article-title: In Silico and Empirical Evaluation of Twelve Metabarcoding Primer Sets for Insectivorous Diet Analyses
  publication-title: Ecology and Evolution
– volume: 2
  year: 2020
  ident: e_1_2_8_17_1
  article-title: Some Thoughts on Counts in Sequencing Studies
  publication-title: NAR Genomics and Bioinformatics
– ident: e_1_2_8_7_1
  doi: 10.1371/journal.pone.0176343
– ident: e_1_2_8_52_1
  doi: 10.1371/journal.pcbi.1009113
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1365-294X.2011.05403.x
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pone.0247031
– ident: e_1_2_8_8_1
  doi: 10.1007/s10592-015-0775-4
– ident: e_1_2_8_29_1
  doi: 10.1371/journal.pone.0169431
– ident: e_1_2_8_51_1
  doi: 10.1098/rspb.2021.2613
– ident: e_1_2_8_2_1
  doi: 10.1038/ismej.2013.28
– volume: 11
  start-page: 1
  year: 2021
  ident: e_1_2_8_30_1
  article-title: Simultaneous Absolute Quantification and Sequencing of Fish Environmental DNA in a Mesocosm by Quantitative Sequencing Technique
  publication-title: Scientific Reports
– ident: e_1_2_8_35_1
  doi: 10.1002/edn3.224
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1365-294X.2011.05261.x
– ident: e_1_2_8_57_1
  doi: 10.1371/journal.pone.0041732
– ident: e_1_2_8_23_1
  doi: 10.1111/mec.15530
– ident: e_1_2_8_10_1
  doi: 10.1111/1755-0998.13227
– ident: e_1_2_8_43_1
  doi: 10.1016/j.gexplo.2015.12.010
– ident: e_1_2_8_15_1
  doi: 10.1007/s10592-010-0096-6
– ident: e_1_2_8_50_1
  doi: 10.1890/15-1733.1
– ident: e_1_2_8_19_1
  doi: 10.1016/j.dsr2.2017.09.008
– ident: e_1_2_8_26_1
  doi: 10.1101/2022.07.27.501788
– ident: e_1_2_8_22_1
  doi: 10.1371/journal.pone.0144956
– ident: e_1_2_8_46_1
  doi: 10.1111/mec.13481
– ident: e_1_2_8_42_1
  doi: 10.7717/peerj.4925
– ident: e_1_2_8_53_1
  doi: 10.1016/j.csbj.2020.09.014
– ident: e_1_2_8_4_1
  doi: 10.1007/978-94-009-4109-0
– ident: e_1_2_8_9_1
  doi: 10.1007/s10531-020-01980-0
– ident: e_1_2_8_12_1
  doi: 10.1186/s12864-018-4703-0
– ident: e_1_2_8_14_1
  doi: 10.1128/AEM.00905-17
– ident: e_1_2_8_3_1
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1365-294X.2012.05470.x
– ident: e_1_2_8_18_1
  doi: 10.1093/nargab/lqaa103
– ident: e_1_2_8_47_1
  doi: 10.1111/1755-0998.13568
– ident: e_1_2_8_39_1
  doi: 10.1002/edn3.269
– ident: e_1_2_8_54_1
  doi: 10.1093/oso/9780198767220.001.0001
– ident: e_1_2_8_24_1
  doi: 10.3389/fmicb.2017.02224
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cub.2021.12.014
– ident: e_1_2_8_48_1
  doi: 10.1111/1755-0998.12402
– ident: e_1_2_8_34_1
  doi: 10.1111/mec.14920
– ident: e_1_2_8_58_1
  doi: 10.1002/ece3.6362
– ident: e_1_2_8_11_1
  doi: 10.1002/edn3.239
– ident: e_1_2_8_44_1
  doi: 10.1111/1755-0998.12355
– ident: e_1_2_8_37_1
  doi: 10.1111/1755-0998.12643
– ident: e_1_2_8_13_1
  doi: 10.1111/2041-210X.12574
– ident: e_1_2_8_21_1
  doi: 10.1098/rsbl.2008.0118
– ident: e_1_2_8_25_1
  doi: 10.1038/nbt.3601
– ident: e_1_2_8_20_1
  doi: 10.1371/journal.pone.0201741
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jas.2006.10.023
– ident: e_1_2_8_6_1
  doi: 10.1002/edn3.117
– ident: e_1_2_8_40_1
  doi: 10.7554/eLife.46923
– ident: e_1_2_8_41_1
  doi: 10.1098/rsos.150088
– ident: e_1_2_8_33_1
  doi: 10.1038/s41598-017-17333-x
– ident: e_1_2_8_56_1
  doi: 10.1111/1755-0998.12490
– ident: e_1_2_8_49_1
  doi: 10.1002/ecy.3906
– ident: e_1_2_8_31_1
  doi: 10.1139/cjfas-2012-0478
– ident: e_1_2_8_27_1
  doi: 10.1111/mec.13660
– ident: e_1_2_8_32_1
  doi: 10.1038/s41598-019-48546-x
– ident: e_1_2_8_16_1
  doi: 10.1111/1755-0998.12103
SSID ssj0000148
Score 2.646104
Snippet Amplicon‐sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At...
Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e3906
SubjectTerms amplicon sequencing
bias adjustment
Biodiversity
community structure
compositional analysis
Conserved sequence
Deoxyribonucleic acid
diet analysis
DNA
DNA - genetics
DNA barcoding
DNA Barcoding, Taxonomic - methods
Ecology
Environmental DNA
microbiome
Microbiomes
Microbiota
Mixtures
Nucleotide sequence
Polymerase chain reaction
Public health
Reaction mechanisms
Sequences
Title Toward quantitative metabarcoding
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecy.3906
https://www.ncbi.nlm.nih.gov/pubmed/36320096
https://www.proquest.com/docview/2771284135
https://www.proquest.com/docview/2731427760
https://www.proquest.com/docview/2811974894
Volume 104
WOSCitedRecordID wos000901933200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-9170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000148
  issn: 0012-9658
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB80qeCL1Wo0ViVCaZ8ON7ffj2ITfBApopA-HXv7AYK9VJMI_vfu3G2Sim0RfLqFm12G2Z2d2d2Z3wB8MaUj1seTaqAKb6tCyDQLZaZD0E5Y4oioE4Uv5OWlGo30jxRVibkwDT7E4sINNaPer1HBTTk5WYKGevuEB3axCu08Llvegvb3q-HNxR_gUSztw3mGECdz6FmSn8z7vjRGrzzMlw5rbXGGH9_D6yZsJD-zd9osjC1Y8dUnWGsqTz7F1sCmVmewTHWLHZKuT7bh-LqOqO3dz0xVZ6LFfbH3y08xBsCO0eTtwM1wcH12nqWCCpmNfpfIBAlK8Tz46HZp57griaeWC-dliI6X5dQEonPvSG4l07bklDsqjYgtY0hJO9CqxpXfg57QVFNj-ogGzxAZPUjm-kJJZix3Snbh21yyhU1o41j04q5ocJLzIsqkQJl04XhB-btB2PgLzcF8coqkY5MilxKNa5_yOMTid9QOfPIwlR_PkIb2WSQU5D80Cp9SmdKsC7vNxC8YoYLi81Fk4Gs9v__ksBic_cTv_lsJP8M6Vq5vAsAPoDV9mPlD-GAfp7eThyNYlSN1lFb0M7-l9wk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxsxDBddurG-dN3WtGmzLYGxPR1xzj77TJ9KlpDRLIyRQPZ0-PwBhe6y5aPQ_77WfSQL7cZgT2c42QhbsmTZ-gngvUoN0dafVB2NMVrlXCCZSwPpnDRcE0N4nig8EuNxPJvJr3twUeXCFPgQm4Abaka-X6OCY0C6s0UNtfoOT-z8CewzL0VevPc_fRtMR7-hR7FyIw4DxDipsGdJ2Kn67lqjBy7mrseam5zBi_9i9ggOS0-zdVmIxkvYs9kreFbUnrzzrb4uW_X-NtnNdyi1ffka2pP8TW3r11pleS6a3xlbP-wKXwHoORq9Y5gO-pPeMChLKgTae1484MTFcRQ66x0vaUxkUmKpjrixwnnXS0dUOSJDa0ioBZM6jWhkqFDct5QiKa1DLZtn9hRaXFJJleoiHjxDbHQnmOnyWDClIxOLBnyspjbRJd44lr24SQqk5DDxc5LgnDSgvaH8WWBsPELTrFYnKbVsmYRCoHnt0sgPsfnt9QMvPVRm52ukoV3mCTn5C02Ml6kslqwBJ8XKbxihnOIFkmfgQ77Af-Qw6fe-4_fsXwnfwfPh5MsoGX0eX53DAdaxL56DN6G2WqztG3iqb1fXy8XbUrDvAbrX-hE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5cuw25pG1aJ06d1obSnpbIK620IqcS26TUGFNscE6LVg8otGsntgP599Hsw25IWgo97cCOxCBpHnrMNwAfVWqItn6n6miMp1XOBZK5NJDOScM1MYTnicIjMR7H87mc1OC8yoUp8CG2B26oGbm9RgW3S-POdqihVt_hjp0_gwbDGjJ1aPS_D2ej39CjWGmIwwAxTirsWRKeVW0feqNHIebDiDV3OcOX_yXsKzgoI83Ol2JpvIaazQ7hRVF78s5TA11SzcEu2c03KLV99Qa60_xNbed6o7I8F81bxs4vu8ZXAHqBTu8tzIaD6cVlUJZUCLSPvHjAiYvjKHTWB17SmMikxFIdcWOF86GXjqhyRIbWkFALJnUa0chQobinlCIpbUI9W2T2GDpcUkmV6iEePENsdCeY6fFYMKUjE4sWfK6GNtEl3jiWvfiZFEjJYeLHJMExaUF3y7ksMDae4GlXs5OUWrZKQiHQvfZo5LvY_vb6gZceKrOLDfLQHvOMnPyFJ8bLVBZL1oKjYua3glBO8QLJC_Apn-A_SpgMLq7we_KvjB9gb9IfJqOv42_vYB_L2BevwdtQX99s7Ck817frH6ub9-W6vgdOgPmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+quantitative+metabarcoding&rft.jtitle=Ecology+%28Durham%29&rft.au=Shelton%2C+Andrew+Olaf&rft.au=Gold%2C+Zachary+J&rft.au=Jensen%2C+Alexander+J&rft.au=D+Agnese%2C+Erin&rft.date=2023-02-01&rft.eissn=1939-9170&rft.volume=104&rft.issue=2&rft.spage=e3906&rft_id=info:doi/10.1002%2Fecy.3906&rft_id=info%3Apmid%2F36320096&rft.externalDocID=36320096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-9658&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-9658&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-9658&client=summon