Emerging of Heterostructure Materials in Energy Storage: A Review
With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 33; no. 27; pp. e2100855 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.07.2021
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built‐in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), lithium‐sulfur batteries (Li‐S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.
Constructing heterostructures is an effective way to enhance the electrochemical performance of active materials due to the unique heterointerface structure and some unrevealed synergistic effects. An overview of the recent advancements in heterostructured materials in terms of enhanced mechanism, synthesis techniques, and electrochemical performance is provided. Future development trends for design of heterostructured electrodes are analyzed. |
|---|---|
| AbstractList | With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built‐in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), lithium‐sulfur batteries (Li‐S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage. With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built‐in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), lithium‐sulfur batteries (Li‐S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage. Constructing heterostructures is an effective way to enhance the electrochemical performance of active materials due to the unique heterointerface structure and some unrevealed synergistic effects. An overview of the recent advancements in heterostructured materials in terms of enhanced mechanism, synthesis techniques, and electrochemical performance is provided. Future development trends for design of heterostructured electrodes are analyzed. With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage. |
| Author | Zhang, Jiawei Xia, Xinhui Li, Yu Chen, Qingguo Chen, Minghua |
| Author_xml | – sequence: 1 givenname: Yu surname: Li fullname: Li, Yu organization: Harbin University of Science and Technology – sequence: 2 givenname: Jiawei surname: Zhang fullname: Zhang, Jiawei organization: Nanyang Technological University – sequence: 3 givenname: Qingguo surname: Chen fullname: Chen, Qingguo organization: Harbin University of Science and Technology – sequence: 4 givenname: Xinhui surname: Xia fullname: Xia, Xinhui organization: Zhejiang University – sequence: 5 givenname: Minghua orcidid: 0000-0001-6014-328X surname: Chen fullname: Chen, Minghua email: mhchen@hrbust.edu.cn organization: Harbin University of Science and Technology |
| BookMark | eNqFkM9LwzAUx4NMcE6vngtevHQmadI23sqcTtgQ_HEOafYyMtpmpq1j_70ZE4WBeHp84fN5vPc9R4PGNYDQFcFjgjG9VctajSmmIeScn6Ah4ZTEDAs-QEMsEh6LlOVn6Lxt1xhjkeJ0iIppDX5lm1XkTDSDDrxrO9_rrvcQLVTIVlVtZJto2gRwF712zqsV3EVF9AKfFrYX6NQEBC6_5wi9P0zfJrN4_vz4NCnmsWYk5TFkJi0ZAUVIRhMt8jLBpTY0U4rREoMxWBiRLUU4Ps0yUpZCUUyYVumSU4BkhG4OezfeffTQdrK2rYaqUg24vpWUJ5QyygUL6PURuna9b8J1gWK5CGhOA8UOlA4_tx6M1LZTnXVN55WtJMFy36vc9yp_eg3a-EjbeFsrv_tbEAdhayvY_UPL4n5R_Lpf8OOLtA |
| CitedBy_id | crossref_primary_10_1039_D3QI00308F crossref_primary_10_1016_j_cej_2022_141181 crossref_primary_10_1016_j_jechem_2023_01_038 crossref_primary_10_1557_s43579_023_00412_8 crossref_primary_10_1002_cnma_202500102 crossref_primary_10_1063_5_0224095 crossref_primary_10_1016_j_cej_2021_134137 crossref_primary_10_1016_j_jpcs_2025_112959 crossref_primary_10_3390_ma17133075 crossref_primary_10_1007_s12274_022_4943_9 crossref_primary_10_1039_D5GC01687H crossref_primary_10_1002_smll_202309422 crossref_primary_10_1016_j_est_2025_118394 crossref_primary_10_1002_aenm_202405378 crossref_primary_10_1007_s12274_022_5066_z crossref_primary_10_1016_j_cej_2022_135990 crossref_primary_10_1039_D5CC01589H crossref_primary_10_1016_j_cej_2022_134661 crossref_primary_10_1016_j_cej_2024_149591 crossref_primary_10_1002_admt_202501420 crossref_primary_10_1002_smtd_202200658 crossref_primary_10_1002_ange_202405648 crossref_primary_10_1016_j_mtchem_2025_102637 crossref_primary_10_1088_1361_6463_acec85 crossref_primary_10_1002_smtd_202300350 crossref_primary_10_1016_j_est_2024_113301 crossref_primary_10_1021_acs_chemrev_5c00025 crossref_primary_10_1016_j_apcatb_2024_124506 crossref_primary_10_1016_j_fuel_2023_129946 crossref_primary_10_1016_j_apsusc_2023_157738 crossref_primary_10_1002_aenm_202303389 crossref_primary_10_1039_D5RA01184A crossref_primary_10_1016_j_cej_2023_142764 crossref_primary_10_1002_adfm_202421379 crossref_primary_10_1016_j_chemphys_2025_112835 crossref_primary_10_1002_ange_202216290 crossref_primary_10_1007_s11581_022_04805_y crossref_primary_10_1016_j_est_2024_114885 crossref_primary_10_1002_smtd_202301571 crossref_primary_10_1016_j_est_2024_113553 crossref_primary_10_1088_1361_648X_ada242 crossref_primary_10_1016_j_jallcom_2024_174667 crossref_primary_10_1016_j_cej_2024_152732 crossref_primary_10_1002_anie_202419850 crossref_primary_10_1002_smll_202305288 crossref_primary_10_1002_eem2_12866 crossref_primary_10_1002_cey2_703 crossref_primary_10_1002_smll_202300950 crossref_primary_10_1002_smll_202309647 crossref_primary_10_1016_j_est_2022_105302 crossref_primary_10_1002_adfm_202425947 crossref_primary_10_1016_j_jcis_2023_06_166 crossref_primary_10_1002_aenm_202202577 crossref_primary_10_1002_anie_202405648 crossref_primary_10_1039_D2QM01366E crossref_primary_10_1002_ange_202419850 crossref_primary_10_1016_j_mattod_2022_05_017 crossref_primary_10_1002_smll_202311421 crossref_primary_10_3390_nano12152668 crossref_primary_10_1002_smll_202206742 crossref_primary_10_1016_j_inoche_2025_115479 crossref_primary_10_1016_j_cej_2023_143834 crossref_primary_10_1016_j_est_2024_112889 crossref_primary_10_1016_j_cej_2022_135790 crossref_primary_10_1002_smll_202300534 crossref_primary_10_1016_j_apsusc_2024_159290 crossref_primary_10_1002_adom_202401685 crossref_primary_10_1016_j_inoche_2025_115359 crossref_primary_10_1021_acsnano_4c18215 crossref_primary_10_1007_s11426_023_1611_7 crossref_primary_10_1016_S1003_6326_24_66724_5 crossref_primary_10_1016_j_ensm_2025_104562 crossref_primary_10_1016_j_cej_2025_161934 crossref_primary_10_1039_D4QM00675E crossref_primary_10_7498_aps_74_20250410 crossref_primary_10_1016_j_mtener_2022_100993 crossref_primary_10_1002_smll_202107868 crossref_primary_10_1002_smll_202203140 crossref_primary_10_1016_j_est_2022_105525 crossref_primary_10_1002_adfm_202423990 crossref_primary_10_1007_s40820_024_01363_y crossref_primary_10_1016_j_jcis_2021_12_021 crossref_primary_10_1007_s10948_025_07023_5 crossref_primary_10_1016_j_jcis_2024_01_115 crossref_primary_10_1002_cphc_202300858 crossref_primary_10_1016_j_jcis_2023_06_192 crossref_primary_10_1002_adom_202300124 crossref_primary_10_1016_j_cej_2022_137998 crossref_primary_10_1021_acsanm_5c01052 crossref_primary_10_1002_celc_202300573 crossref_primary_10_1016_j_ces_2023_119437 crossref_primary_10_1007_s42114_025_01410_1 crossref_primary_10_1002_adfm_202315012 crossref_primary_10_1016_j_cej_2023_144698 crossref_primary_10_1002_smll_202500359 crossref_primary_10_1016_j_est_2024_111863 crossref_primary_10_1016_j_jechem_2022_08_022 crossref_primary_10_1002_smll_202301436 crossref_primary_10_1002_adfm_202310117 crossref_primary_10_1016_j_ces_2022_118215 crossref_primary_10_1016_j_jcis_2022_03_030 crossref_primary_10_1016_j_jallcom_2025_179422 crossref_primary_10_1007_s43938_024_00045_w crossref_primary_10_1016_j_jiec_2024_02_042 crossref_primary_10_1002_adma_202305149 crossref_primary_10_1016_j_jallcom_2024_178281 crossref_primary_10_3390_nano12234341 crossref_primary_10_1021_acsami_2c01159 crossref_primary_10_1088_1361_6528_ad12e7 crossref_primary_10_1002_aenm_202200403 crossref_primary_10_3390_coatings13091588 crossref_primary_10_1016_j_materresbull_2025_113488 crossref_primary_10_1016_j_jpowsour_2021_230861 crossref_primary_10_1016_j_cej_2024_154658 crossref_primary_10_1002_batt_202200264 crossref_primary_10_1093_nsr_nwae238 crossref_primary_10_1016_j_est_2022_105961 crossref_primary_10_1002_adfm_202505201 crossref_primary_10_1007_s12598_024_03049_1 crossref_primary_10_1016_j_jcis_2024_04_182 crossref_primary_10_1002_adma_202419927 crossref_primary_10_1016_j_electacta_2025_146334 crossref_primary_10_1088_1361_6528_ac4064 crossref_primary_10_3390_batteries10100339 crossref_primary_10_1039_D2SC04012C crossref_primary_10_1016_j_cej_2022_141005 crossref_primary_10_1038_s41467_023_37932_9 crossref_primary_10_3390_bioengineering10030307 crossref_primary_10_1016_j_cej_2022_141243 crossref_primary_10_1002_adma_202408918 crossref_primary_10_1002_batt_202200275 crossref_primary_10_1039_D5CP01495F crossref_primary_10_1002_adfm_202213578 crossref_primary_10_1016_j_cej_2023_145992 crossref_primary_10_1039_D1NR07209A crossref_primary_10_1007_s11581_024_05380_0 crossref_primary_10_1016_j_bios_2022_114554 crossref_primary_10_1039_D5EE00615E crossref_primary_10_1016_j_apsusc_2022_156080 crossref_primary_10_1016_j_est_2024_114924 crossref_primary_10_3390_nano12213762 crossref_primary_10_1002_smll_202400093 crossref_primary_10_1016_j_cej_2024_149171 crossref_primary_10_3390_nano14110935 crossref_primary_10_1155_2023_6211780 crossref_primary_10_1016_j_jallcom_2023_170281 crossref_primary_10_3389_fchem_2022_1111435 crossref_primary_10_1007_s11581_022_04520_8 crossref_primary_10_1002_cssc_202402434 crossref_primary_10_1016_j_cej_2023_143562 crossref_primary_10_1002_eom2_12197 crossref_primary_10_1007_s40820_025_01813_1 crossref_primary_10_1016_j_jechem_2021_12_043 crossref_primary_10_1007_s12598_025_03484_8 crossref_primary_10_26599_NRE_2024_9120148 crossref_primary_10_1002_smsc_202400544 crossref_primary_10_1002_sus2_261 crossref_primary_10_1002_ange_202408667 crossref_primary_10_1021_jacs_4c07482 crossref_primary_10_1002_smll_202306928 crossref_primary_10_1016_j_cej_2024_152569 crossref_primary_10_1002_adma_202407922 crossref_primary_10_1002_advs_202302301 crossref_primary_10_1016_j_jallcom_2022_167644 crossref_primary_10_1002_adma_202509966 crossref_primary_10_1002_aenm_202203720 crossref_primary_10_1016_j_est_2023_109570 crossref_primary_10_1016_j_cej_2021_133355 crossref_primary_10_1002_smll_202206462 crossref_primary_10_1007_s42864_025_00327_y crossref_primary_10_1007_s42823_024_00726_0 crossref_primary_10_1021_acsami_5c04503 crossref_primary_10_3390_nano13243084 crossref_primary_10_1002_admi_202200104 crossref_primary_10_1002_smll_202300256 crossref_primary_10_1002_smll_202303765 crossref_primary_10_1063_5_0279685 crossref_primary_10_1002_ente_202200409 crossref_primary_10_1016_j_nanoen_2023_109188 crossref_primary_10_1016_j_nxnano_2023_100005 crossref_primary_10_1039_D5CS00515A crossref_primary_10_1002_adfm_202213009 crossref_primary_10_1016_j_jechem_2023_09_049 crossref_primary_10_1016_j_jelechem_2025_119271 crossref_primary_10_1002_aenm_202402930 crossref_primary_10_1002_chem_202303665 crossref_primary_10_1016_j_microc_2024_110522 crossref_primary_10_1007_s42864_025_00316_1 crossref_primary_10_1016_j_cej_2025_159216 crossref_primary_10_1063_5_0177759 crossref_primary_10_1016_j_jcis_2023_02_132 crossref_primary_10_1002_adfm_202204687 crossref_primary_10_1002_adfm_202508749 crossref_primary_10_1016_j_susmat_2022_e00479 crossref_primary_10_1016_S1872_5805_22_60616_4 crossref_primary_10_1002_smll_202205158 crossref_primary_10_1016_j_est_2025_117567 crossref_primary_10_1016_j_ccr_2022_214985 crossref_primary_10_1016_j_ssi_2022_116114 crossref_primary_10_1002_adfm_202406915 crossref_primary_10_1002_ange_202410734 crossref_primary_10_1039_D2QM01294D crossref_primary_10_1016_j_mtcomm_2024_108689 crossref_primary_10_3390_cryst14070633 crossref_primary_10_1007_s42823_025_00858_x crossref_primary_10_1021_acsami_5c03797 crossref_primary_10_1007_s12596_023_01444_y crossref_primary_10_1016_j_apsusc_2024_160417 crossref_primary_10_1002_smll_202312167 crossref_primary_10_1016_j_optlastec_2023_110342 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_1002_aenm_202400498 crossref_primary_10_1002_aenm_202400493 crossref_primary_10_1016_j_jcis_2022_08_011 crossref_primary_10_1016_j_cej_2024_155353 crossref_primary_10_1002_smll_202407423 crossref_primary_10_1021_jacs_5c02480 crossref_primary_10_1002_aenm_202403757 crossref_primary_10_1002_est2_432 crossref_primary_10_1088_1361_6463_ad6a20 crossref_primary_10_1002_sstr_202300025 crossref_primary_10_1039_D3EE03282E crossref_primary_10_1002_adma_202105647 crossref_primary_10_1016_j_jechem_2022_11_049 crossref_primary_10_1016_j_apcatb_2024_124289 crossref_primary_10_1002_smll_202107370 crossref_primary_10_1039_D3QI00123G crossref_primary_10_1002_adfm_202212785 crossref_primary_10_1016_j_cej_2022_138341 crossref_primary_10_1002_adts_202400854 crossref_primary_10_1016_j_apsusc_2022_155843 crossref_primary_10_1021_acsami_4c13188 crossref_primary_10_1002_smll_202302598 crossref_primary_10_1002_smtd_202300708 crossref_primary_10_1016_j_est_2023_109415 crossref_primary_10_1016_j_jcis_2023_11_050 crossref_primary_10_1016_j_ccr_2024_215725 crossref_primary_10_1016_j_commatsci_2023_112536 crossref_primary_10_1016_j_cej_2024_154123 crossref_primary_10_1016_j_jelechem_2023_117252 crossref_primary_10_1002_smll_202405495 crossref_primary_10_1002_adfm_202418307 crossref_primary_10_1002_smll_202411941 crossref_primary_10_1016_j_cej_2022_138115 crossref_primary_10_1002_adma_202204250 crossref_primary_10_1016_j_jechem_2022_11_020 crossref_primary_10_1039_D2SC04008E crossref_primary_10_1002_smll_202300162 crossref_primary_10_1016_j_apsusc_2022_154864 crossref_primary_10_1002_aenm_202300978 crossref_primary_10_1016_j_jechem_2022_11_026 crossref_primary_10_1002_smtd_202500282 crossref_primary_10_1039_D2DT01951E crossref_primary_10_1002_adfm_202211679 crossref_primary_10_1002_adfm_202214828 crossref_primary_10_1002_advs_202414616 crossref_primary_10_1016_j_cej_2024_152294 crossref_primary_10_1002_aenm_202502253 crossref_primary_10_1007_s40820_023_01299_9 crossref_primary_10_1080_10408436_2023_2273465 crossref_primary_10_1016_j_cej_2022_140564 crossref_primary_10_1002_advs_202309865 crossref_primary_10_3390_molecules28114334 crossref_primary_10_1002_advs_202204671 crossref_primary_10_1016_j_commatsci_2024_112996 crossref_primary_10_1002_inf2_12377 crossref_primary_10_1007_s11426_024_2277_2 crossref_primary_10_1016_j_jallcom_2025_181936 crossref_primary_10_1002_adfm_202310399 crossref_primary_10_1016_j_actamat_2024_120419 crossref_primary_10_1016_j_jcis_2022_11_064 crossref_primary_10_1016_j_apsusc_2024_159732 crossref_primary_10_1088_2053_1583_ad00ca crossref_primary_10_1002_aenm_202402743 crossref_primary_10_26599_NRE_2025_9120179 crossref_primary_10_1039_D3SE00919J crossref_primary_10_1002_smll_202411838 crossref_primary_10_1016_j_colsurfa_2024_133342 crossref_primary_10_1002_adma_202402644 crossref_primary_10_3390_molecules28041831 crossref_primary_10_1016_j_cej_2023_147986 crossref_primary_10_1016_j_jcis_2024_11_211 crossref_primary_10_1002_aenm_202301438 crossref_primary_10_1039_D4EE04566A crossref_primary_10_1016_j_est_2025_116861 crossref_primary_10_1002_adfm_202414032 crossref_primary_10_1016_j_jallcom_2022_164981 crossref_primary_10_1007_s11581_024_05473_w crossref_primary_10_1002_cey2_691 crossref_primary_10_1002_cey2_572 crossref_primary_10_1002_cey2_213 crossref_primary_10_3390_cryst12101381 crossref_primary_10_1016_j_cej_2023_144590 crossref_primary_10_1039_D5CP02237A crossref_primary_10_3390_nano13212879 crossref_primary_10_1016_j_jelechem_2023_117219 crossref_primary_10_1002_adfm_202508107 crossref_primary_10_1002_adfm_202212689 crossref_primary_10_3390_polym15204159 crossref_primary_10_1063_5_0199239 crossref_primary_10_1002_cnl2_171 crossref_primary_10_1039_D5CP00156K crossref_primary_10_1016_j_jcis_2022_07_126 crossref_primary_10_1002_smll_202206081 crossref_primary_10_1002_smll_202406030 crossref_primary_10_1039_D2NR01787C crossref_primary_10_1007_s00170_023_12854_4 crossref_primary_10_1002_admi_202500308 crossref_primary_10_1002_smll_202304264 crossref_primary_10_1016_S1872_5805_24_60838_3 crossref_primary_10_1016_j_jallcom_2025_183486 crossref_primary_10_1002_anie_202216290 crossref_primary_10_1016_j_cej_2025_165275 crossref_primary_10_3390_molecules28041621 crossref_primary_10_1002_aenm_202403593 crossref_primary_10_1002_adma_202303520 crossref_primary_10_1002_smll_202202582 crossref_primary_10_1002_smll_202304132 crossref_primary_10_1002_smll_202304131 crossref_primary_10_1039_D5TA01405K crossref_primary_10_1016_j_cej_2024_157002 crossref_primary_10_1016_j_cej_2024_157001 crossref_primary_10_1016_j_cej_2022_139714 crossref_primary_10_1016_j_cej_2022_140824 crossref_primary_10_1002_slct_202203107 crossref_primary_10_1016_j_cej_2023_141609 crossref_primary_10_1016_j_ssi_2022_116097 crossref_primary_10_1016_j_est_2024_112168 crossref_primary_10_1002_anie_202408667 crossref_primary_10_1016_j_mtener_2022_100982 crossref_primary_10_1002_adma_202402961 crossref_primary_10_1002_inf2_70053 crossref_primary_10_1002_cphc_202300761 crossref_primary_10_1039_D5RA05408G crossref_primary_10_1088_1361_6528_ac61c9 crossref_primary_10_1016_j_jcis_2025_138052 crossref_primary_10_1063_5_0101429 crossref_primary_10_1016_j_ijhydene_2021_07_220 crossref_primary_10_1016_j_est_2024_115205 crossref_primary_10_1002_adfm_202411990 crossref_primary_10_1007_s12633_023_02417_3 crossref_primary_10_1002_smll_202502194 crossref_primary_10_1016_j_est_2024_113261 crossref_primary_10_1016_j_cej_2025_165492 crossref_primary_10_1039_D4CY01171F crossref_primary_10_1039_D3RA02350H crossref_primary_10_1016_j_jechem_2023_10_008 crossref_primary_10_1016_j_cej_2022_136222 crossref_primary_10_1002_aesr_202300115 crossref_primary_10_1002_aenm_202405674 crossref_primary_10_1016_j_matlet_2023_133824 crossref_primary_10_1002_adfm_202307835 crossref_primary_10_1002_smll_202303266 crossref_primary_10_1021_acs_inorgchem_5c00513 crossref_primary_10_1007_s11581_025_06106_6 crossref_primary_10_1016_j_mtener_2025_101998 crossref_primary_10_1007_s11581_023_04922_2 crossref_primary_10_1007_s12598_024_02704_x crossref_primary_10_1039_D5NR00156K crossref_primary_10_1002_idm2_12177 crossref_primary_10_1016_j_seppur_2022_121156 crossref_primary_10_1039_D3NR01836A crossref_primary_10_1002_adma_202306701 crossref_primary_10_1002_aenm_202402110 crossref_primary_10_1002_ente_202100547 crossref_primary_10_1039_D5MH00867K crossref_primary_10_1039_D3MH00420A crossref_primary_10_1002_smll_202203630 crossref_primary_10_1016_j_cej_2025_167546 crossref_primary_10_1016_j_jechem_2023_04_035 crossref_primary_10_1016_j_jiec_2024_05_034 crossref_primary_10_1007_s12598_023_02486_8 crossref_primary_10_1002_anie_202410734 crossref_primary_10_1002_smll_202311703 crossref_primary_10_1002_aenm_202204014 crossref_primary_10_1021_acsnano_4c02289 crossref_primary_10_1002_adma_202501490 crossref_primary_10_1016_j_ijhydene_2025_04_387 crossref_primary_10_1016_j_jcis_2024_01_176 crossref_primary_10_1002_adsu_202500056 crossref_primary_10_1002_smll_202406090 crossref_primary_10_1002_smtd_202201025 crossref_primary_10_3390_catal14060388 crossref_primary_10_1002_adma_202200777 crossref_primary_10_1007_s12274_024_6693_3 crossref_primary_10_1002_adma_202305513 crossref_primary_10_1007_s40843_021_1783_0 crossref_primary_10_1002_adfm_202211505 crossref_primary_10_1016_j_ccr_2024_215880 crossref_primary_10_1007_s11581_024_05839_0 crossref_primary_10_1039_D4TC04933K crossref_primary_10_1007_s40843_023_2599_9 crossref_primary_10_1039_D3NR06677K crossref_primary_10_1016_j_seppur_2025_132834 crossref_primary_10_1016_j_mtcomm_2022_104034 crossref_primary_10_1002_adfm_202305624 crossref_primary_10_1016_j_apsusc_2022_154668 crossref_primary_10_1016_j_cej_2023_147100 crossref_primary_10_1002_adts_202300579 crossref_primary_10_1007_s40820_025_01886_y crossref_primary_10_1016_j_cej_2023_146126 crossref_primary_10_1016_j_ssc_2022_115024 crossref_primary_10_1021_acsomega_5c04337 crossref_primary_10_1016_j_ccr_2023_215450 crossref_primary_10_1002_aenm_202204114 crossref_primary_10_1039_D4QI01704H crossref_primary_10_1016_j_jpowsour_2022_231593 crossref_primary_10_1016_j_jcis_2024_01_075 crossref_primary_10_26599_CF_2025_9200041 crossref_primary_10_1002_adfm_202411941 |
| Cites_doi | 10.1016/j.nanoen.2016.10.019 10.1016/j.carbon.2016.08.028 10.1038/ncomms7647 10.1021/acsami.5b11492 10.1016/j.ensm.2019.03.010 10.1021/acs.jpclett.5b02513 10.1016/j.jpowsour.2019.05.045 10.1038/s41467-019-09400-w 10.1002/aenm.201902674 10.1002/advs.201800613 10.1016/j.apsusc.2018.06.071 10.1021/acsami.9b11419 10.1016/j.nanoen.2017.01.009 10.1016/j.ensm.2017.12.015 10.1039/C6TA03083A 10.1016/j.apsusc.2019.02.044 10.1021/acsnano.9b06267 10.1039/C4TA05568C 10.1016/j.carbon.2019.07.001 10.1166/sam.2013.1626 10.1016/j.mtnano.2020.100076 10.1039/C9TA10088A 10.1002/adma.201705516 10.1002/er.4963 10.1016/j.cej.2018.08.187 10.1039/C8TA09423C 10.1002/smll.201700758 10.1364/OE.27.019843 10.1007/s11426-020-9858-3 10.1002/aenm.202002424 10.1002/smll.201704065 10.1039/C2TA00057A 10.1038/nenergy.2017.89 10.1002/sstr.202000047 10.1016/j.jpowsour.2018.10.066 10.1021/acs.jpcc.9b06070 10.1021/acsnano.7b08161 10.1016/j.apmt.2020.100765 10.1007/s40820-019-0245-5 10.1016/j.jpowsour.2018.09.046 10.1016/j.apsusc.2018.04.254 10.1021/acs.jpcc.8b05076 10.1016/j.nanoen.2018.03.012 10.1021/acs.nanolett.8b01988 10.1002/smll.201800659 10.1016/j.cej.2018.09.131 10.1021/acs.nanolett.6b00057 10.1002/aenm.201900567 10.1039/C8TA11249E 10.1002/cey2.14 10.1021/acsami.7b07939 10.1016/j.jpowsour.2017.12.046 10.1016/j.surfcoat.2018.12.128 10.1002/aelm.201900953 10.1016/j.cej.2018.03.042 10.1002/anie.201810579 10.1021/acsenergylett.6b00164 10.1016/j.electacta.2019.135311 10.1038/s41598-019-55776-6 10.1016/j.cej.2019.01.185 10.1002/sstr.202000010 10.1002/celc.202001409 10.1016/j.ensm.2019.07.001 10.1039/C7CS00160F 10.1016/j.ces.2017.09.007 10.1016/j.nanoen.2017.07.012 10.1038/nnano.2012.71 10.1016/j.cej.2018.10.026 10.1002/aenm.202000927 10.1039/C6TA04398D 10.1021/acsnano.9b00816 10.1016/j.ensm.2019.08.018 10.1002/smll.201702181 10.1016/j.cej.2020.124060 10.1021/acsami.8b01613 10.1021/acsami.9b14912 10.1002/admi.201601187 10.1016/j.jssc.2020.121230 10.1039/C8NR00865E 10.1016/j.jechem.2019.08.013 10.1016/j.jpowsour.2015.11.073 10.1021/acs.jpcc.8b07062 10.1002/adma.201404140 10.1039/C6TA03211G 10.1016/j.jpowsour.2017.07.079 10.1016/j.carbon.2019.03.022 10.1002/adfm.201703390 10.1002/aenm.201601285 10.1002/aenm.201500118 10.1016/j.cej.2017.09.155 10.1039/C9TA02388G 10.1016/j.cej.2019.123675 10.1016/j.apsusc.2019.02.081 10.1039/C9TA07302G 10.1116/1.4982736 10.1039/C9NR07249G 10.1016/j.jpowsour.2017.04.020 10.1002/adfm.201606232 10.1002/admi.201901729 10.1021/acsami.8b07082 10.1016/j.apsusc.2018.09.038 10.1039/C9EN01265F 10.1088/1361-6528/aba7e1 10.1039/C9TA11451C 10.1007/s12274-017-1531-5 10.1039/C8TA10422K 10.1002/cey2.57 10.1016/j.carbon.2018.03.028 10.1016/j.est.2020.101446 10.1021/acsnano.7b00557 10.1021/acsnano.8b05534 10.1016/j.apsusc.2019.05.110 10.1016/j.nanoen.2015.12.010 10.1039/C9TA00275H 10.1002/ente.201900649 10.1021/acsami.6b03368 10.1021/nl402810d 10.1016/j.ensm.2018.06.028 10.1039/C9TA00975B 10.1039/C9TA03551F 10.1021/acs.nanolett.5b01257 10.1002/adfm.201807971 10.1016/j.jpowsour.2020.228239 10.1016/j.nanoen.2020.104468 10.1002/adma.201805754 10.1021/jp302265n 10.1002/smtd.201900828 10.1021/acsnano.7b06061 10.1021/acsaem.9b00904 10.1039/C7TA06849B 10.1016/j.cej.2017.07.129 10.1038/s41563-019-0366-8 10.1021/acsami.8b04540 10.1016/j.electacta.2018.03.198 10.1038/nmat4703 10.1002/adfm.201302122 10.1149/2.0721816jes 10.1021/acsaem.0c01855 10.1039/C8TA12497C 10.1039/C9CE01621J 10.1016/j.jallcom.2019.153364 10.1039/C8TA09740B 10.1016/j.ensm.2020.04.004 10.1002/chem.201806231 10.1002/adma.201501059 10.1038/s41467-020-16077-z 10.1016/j.nanoen.2019.04.044 10.1039/C8TA09528K 10.1016/j.cej.2018.03.166 10.1016/j.nanoen.2019.103991 10.1002/cey2.2 10.1016/j.nanoen.2017.06.009 10.1016/j.apsusc.2018.02.053 10.1039/C8TA10442E 10.1039/C8CC06924G 10.1039/C9TA09646A 10.1002/aenm.202000091 10.1002/aenm.201700403 10.1002/adma.201700214 10.1016/j.ensm.2019.05.039 10.1039/C6NR05584B 10.1002/adfm.201807377 10.1002/smll.201704517 10.1016/j.jpowsour.2017.01.014 10.1016/j.cej.2020.125778 10.1016/j.cej.2017.10.007 10.1016/j.nanoen.2019.03.060 10.1016/j.electacta.2019.04.092 10.1021/acsami.0c18285 10.1039/C9TA02212K 10.1002/smll.202001714 10.1007/s40820-019-0290-0 10.1021/acsnano.0c00020 10.1002/smll.201907670 10.1016/j.electacta.2020.135695 10.1021/acs.jpcc.9b02399 10.1016/j.nanoen.2018.03.061 10.1016/j.nanoen.2019.104037 10.1039/C9TA11965E 10.1016/j.cej.2018.06.181 10.1016/j.nanoen.2014.04.007 10.1016/j.jmst.2019.05.074 10.1007/s12274-015-0783-1 10.1016/j.jallcom.2019.05.366 10.1002/adfm.201404078 10.1016/j.materresbull.2020.110817 10.1002/ppsc.201800138 10.1016/j.electacta.2020.136270 10.1016/j.electacta.2018.08.071 10.1002/celc.201801166 10.1039/C8QI01081A 10.1002/adma.201603040 10.1016/j.jpowsour.2013.10.019 10.1002/anie.201510978 10.1016/j.cej.2019.122672 10.1021/acsnano.9b02231 10.1002/anie.201907516 10.1002/anie.201913174 10.1088/1361-6463/aa5aaf 10.1016/j.cej.2018.08.143 10.1002/smtd.201800328 10.1016/j.apcatb.2019.03.021 10.1016/j.cej.2018.08.208 10.1021/acsenergylett.7b01063 10.1002/smtd.201700296 10.1016/j.jpowsour.2019.227616 10.1002/smll.202001090 10.1002/smll.202003434 10.1016/j.jechem.2019.04.023 10.1002/adfm.201901925 10.1021/acsami.7b19448 10.1016/j.electacta.2016.07.155 10.1002/aenm.201902352 10.1016/j.cej.2019.123890 10.1016/j.jpowsour.2019.226904 10.1002/advs.201600243 10.1016/j.nanoen.2019.104190 10.1016/j.jcis.2020.04.039 10.1021/acsami.8b19501 10.1002/chem.201705855 10.1007/s12274-013-0292-z 10.1016/j.jpowsour.2019.01.036 10.1016/j.electacta.2018.12.075 10.1016/j.jpowsour.2015.12.094 10.1038/nnano.2015.194 10.1016/j.nanoen.2018.04.001 10.1016/j.ensm.2018.11.024 10.1002/adma.201804084 10.1016/j.nanoen.2016.02.019 10.1039/C9NJ01255A 10.1021/acs.jpcc.8b10550 10.1016/j.ceramint.2016.02.146 10.1002/aenm.201900219 10.1039/C8NJ05514A 10.1002/cey2.66 10.1038/ncomms8873 10.1002/anie.201710616 10.1016/j.cej.2019.123373 10.1002/adma.201902603 10.1039/C8TA11419F 10.1002/adfm.201803901 10.1039/C8CE00487K 10.1002/cey2.85 10.1021/acsnano.8b07172 10.1016/j.cej.2018.04.125 10.1016/j.carbon.2019.07.040 10.1016/j.cej.2019.123206 10.1016/j.cej.2019.123734 10.1016/j.nanoen.2017.09.027 10.1002/aenm.201702383 10.1016/0927-0248(92)90095-7 10.1021/acsaem.8b02201 10.1002/aenm.202000081 10.1002/adfm.201707578 10.1039/C4TA05059B 10.1016/j.apsusc.2019.144586 10.1002/adfm.201803291 10.1016/j.surfcoat.2018.12.075 10.1016/j.cej.2020.125672 10.1016/j.electacta.2020.137629 10.1021/acsnano.7b03321 10.1039/C4TA05747C 10.1002/advs.201700887 10.1021/acsami.7b00248 10.1039/C5TA04311E 10.1021/nl4027549 10.1002/adfm.201910302 10.1039/C9TA09902F 10.1039/D0QM01012J 10.1016/j.nanoen.2019.03.002 10.1016/j.cej.2019.03.168 10.1021/acsnano.5b00376 10.1016/j.ensm.2018.10.002 10.1002/anie.201209689 10.1111/jace.16778 10.1002/smll.201800640 10.1007/s40820-021-00595-6 10.1002/chem.201702387 10.1016/j.cej.2019.122486 10.1016/j.cej.2019.122189 10.1002/cey2.34 10.1002/advs.201700491 10.1016/j.cej.2018.09.142 10.1016/j.carbon.2019.07.021 10.1002/adfm.201808522 10.1016/j.jpowsour.2019.227696 10.1016/j.jechem.2017.10.022 10.1038/nmat4299 10.1016/j.jpowsour.2015.11.027 10.1039/C8TA10972A 10.1002/sstr.202000093 10.1016/j.nanoen.2015.05.013 10.1016/j.materresbull.2020.111186 10.1088/1361-6528/aafcef 10.1039/C6TA07842G 10.1016/j.nanoen.2014.02.012 10.1007/s40820-019-0312-y 10.1039/C8TA11578H 10.1016/j.jallcom.2018.12.176 10.1021/acsnano.9b00375 10.1039/C9TA03330K 10.1016/j.nanoen.2015.01.003 10.1021/nn901632g 10.1088/1361-6528/aaf76c 10.1021/nl5032293 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202100855 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adma_202100855 ADMA202100855 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51502063; 51772272; 52073252; 51801180 – fundername: National youth talent support program of China – fundername: Fundamental Research Foundation for Universities of Heilongjiang Province funderid: LGYC2018JQ006 – fundername: Project for guiding local Science and Technology Development by Central Government of China funderid: ZY18C04 – fundername: Science Funds for Young Innovative Talents of HUST funderid: 201505 – fundername: Natural Science Funds for Distinguished Young Scholar of Zhejiang Province funderid: LR20E020001 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4165-e7f6b41ea11723c98b30bcf27aa42b0eff09f97d90856771bb9a2014ca6d52ee3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 680 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653749700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 09:36:29 EDT 2025 Fri Jul 25 07:37:50 EDT 2025 Sat Nov 29 07:16:31 EST 2025 Tue Nov 18 22:31:02 EST 2025 Wed Jan 22 16:28:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4165-e7f6b41ea11723c98b30bcf27aa42b0eff09f97d90856771bb9a2014ca6d52ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6014-328X |
| PQID | 2548925382 |
| PQPubID | 2045203 |
| PageCount | 37 |
| ParticipantIDs | proquest_miscellaneous_2532242594 proquest_journals_2548925382 crossref_citationtrail_10_1002_adma_202100855 crossref_primary_10_1002_adma_202100855 wiley_primary_10_1002_adma_202100855_ADMA202100855 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 441 2021; 64 2020; 20 2019; 11 2016; 306 2019; 10 2020; 285 2019; 13 2019; 12 2020; 16 2016; 30 2019; 19 2019; 18 2020; 14 2016; 304 2020; 13 2020; 12 2020; 11 2020; 10 2018; 451 2019; 20 2018; 333 2019; 23 2018; 456 2013; 52 2018; 334 2019; 25 2019; 27 2016; 42 2019; 29 2010; 4 2019; 153 2019; 31 2020; 383 2018; 347 2019; 30 2020; 384 2018; 343 2020; 381 2018; 345 2019; 36 2020; 380 2020; 820 2020; 387 2016; 16 2016; 4 2017; 50 2018; 352 2016; 1 2020; 31 2020; 30 2019; 43 2020; 392 2016; 20 2020; 24 2020; 22 1992; 27 2016; 213 2020; 399 2016; 8 2019; 298 2020; 29 2016; 22 2017; 41 2019; 409 2016; 109 2018; 402 2021; 368 2017; 46 2019; 59 2019; 58 2020; 126 2020; 59 2020; 55 2017; 353 2020; 8 55 2020; 7 2020; 6 2019; 60 2020; 4 2020; 3 2020; 2 2020; 1 2019; 61 2013; 13 2019; 66 2017; 39 2019; 65 2017; 38 2017; 32 2017; 35 2020; 44 2017; 363 2020; 43 2014; 7 2014; 6 2021; 8 2021; 5 2015; 6 2015; 5 2021; 3 2015; 3 2021; 2 2017; 27 2019; 309 2017; 23 2020; 346 2017; 29 2020; 103 2020; 465 2017; 330 2015; 9 2015; 8 2019; 782 2017; 16 2020 2017; 11 2017; 10 2020; 70 2017; 13 2019; 414 2017; 342 2018; 54 2018; 57 2018; 165 2013; 1 2018; 289 2014; 24 2013; 5 2013; 6 2018; 48 2018; 47 2014; 248 2018; 8 2018; 3 2018; 2 2018; 5 2020; 330 2020; 450 2014; 14 2020; 338 2018; 30 2020; 574 2019; 799 2019; 437 2019; 431 2018; 35 2019; 7 2018; 28 2019; 9 2019; 3 2019; 6 2019; 2 2019; 1 1994 2018; 20 2019; 463 2018; 27 2018; 24 2018; 18 2021; 137 2018; 12 2018; 11 2018; 10 2012; 116 2018; 15 2018; 14 2017; 5 2018; 122 2017; 7 2017; 2 2017; 4 2019; 487 2019; 366 2019; 360 2017; 9 2019; 123 2018; 133 2018; 378 2019; 357 2019; 358 2019; 479 2019; 355 2019; 356 2019; 359 2015; 12 2015; 15 2015; 14 2015; 10 2019; 148 2017; 174 2020; 505 2021; 14 2021; 13 2015; 25 2015; 27 2018; 272 2019; 378 2019; 250 2012; 7 1998; 32 2019; 370 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_277_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_292_1 Zhao D. (e_1_2_9_163_1) 2019; 12 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_314_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_265_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_288_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_280_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_278_1 e_1_2_9_270_1 e_1_2_9_293_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_315_1 Ding H. (e_1_2_9_289_1) 2020 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_266_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_281_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_279_1 Alferov Z. I. (e_1_2_9_2_1) 1998; 32 e_1_2_9_294_1 e_1_2_9_92_1 e_1_2_9_109_1 Huang M. (e_1_2_9_129_1) e_1_2_9_271_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 Song W. (e_1_2_9_316_1) 2020; 13 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_267_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_282_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_257_1 Rabiei Baboukani A. (e_1_2_9_79_1) e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 Frensley W. R. (e_1_2_9_4_1) 1994 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_245_1 Zhang Q. (e_1_2_9_65_1) 2021; 14 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_268_1 e_1_2_9_260_1 e_1_2_9_283_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 Hao J. (e_1_2_9_55_1) 2020 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_318_1 e_1_2_9_258_1 e_1_2_9_90_1 e_1_2_9_273_1 e_1_2_9_296_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 He J. (e_1_2_9_195_1) 2019; 12 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_269_1 e_1_2_9_306_1 e_1_2_9_284_1 e_1_2_9_261_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_259_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_186_1 e_1_2_9_311_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_307_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_285_1 e_1_2_9_262_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 Li C. (e_1_2_9_310_1) 2018; 11 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_298_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_237_1 e_1_2_9_275_1 e_1_2_9_252_1 e_1_2_9_290_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_312_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_308_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_286_1 e_1_2_9_263_1 e_1_2_9_240_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_300_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_276_1 e_1_2_9_299_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_291_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_264_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 Zhou T. (e_1_2_9_200_1) 2017; 10 e_1_2_9_116_1 e_1_2_9_177_1 Song Y. (e_1_2_9_202_1) 2018; 11 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_301_1 e_1_2_9_192_1 |
| References_xml | – volume: 48 start-page: 510 year: 2018 publication-title: Nano Energy – volume: 70 year: 2020 publication-title: Nano Energy – volume: 355 start-page: 390 year: 2019 publication-title: Chem. Eng. J. – volume: 15 start-page: 479 year: 2015 publication-title: Nano Energy – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 465 year: 2020 publication-title: J. Power Sources – volume: 4 start-page: 9403 year: 2016 publication-title: J. Mater. Chem. A – volume: 12 start-page: 344 year: 2019 publication-title: Energy Environ. Mater. – volume: 7 start-page: 1725 year: 2019 publication-title: J. Mater. Chem. A – volume: 363 start-page: 392 year: 2017 publication-title: J. Power Sources – volume: 358 start-page: 1253 year: 2019 publication-title: Chem. Eng. J. – volume: 42 start-page: 8909 year: 2016 publication-title: Ceram. Int. – volume: 463 start-page: 986 year: 2019 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 611 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 61 start-page: 96 year: 2019 publication-title: Nano Energy – volume: 13 start-page: 4977 year: 2020 publication-title: Energy Environ. Mater. – volume: 782 start-page: 38 year: 2019 publication-title: J. Alloys Compd. – volume: 123 start-page: 3959 year: 2019 publication-title: J. Phys. Chem. C – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 487 start-page: 285 year: 2019 publication-title: Appl. Surf. Sci. – volume: 248 start-page: 886 year: 2014 publication-title: J. Power Sources – volume: 353 start-page: 202 year: 2017 publication-title: J. Power Sources – volume: 10 start-page: 7343 year: 2018 publication-title: Nanoscale – volume: 2 start-page: 5219 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 133 start-page: 162 year: 2018 publication-title: Carbon – volume: 14 start-page: 826 year: 2015 publication-title: Nat. Mater. – volume: 148 start-page: 525 year: 2019 publication-title: Carbon – volume: 32 start-page: 494 year: 2017 publication-title: Nano Energy – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 381 year: 2020 publication-title: Chem. Eng. J. – year: 2020 publication-title: Natl. Sci. Rev. – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 345 start-page: 320 year: 2018 publication-title: Chem. Eng. J. – volume: 7 start-page: 7691 year: 2019 publication-title: J. Mater. Chem. A – volume: 333 start-page: 111 year: 2018 publication-title: Chem. Eng. J. – volume: 20 start-page: 5091 year: 2018 publication-title: CrystEngComm – volume: 6 start-page: 167 year: 2013 publication-title: Nano Res. – volume: 479 start-page: 225 year: 2019 publication-title: Appl. Surf. Sci. – volume: 3 start-page: 132 year: 2018 publication-title: ACS Energy Lett. – volume: 46 start-page: 4572 year: 2017 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 6647 year: 2015 publication-title: Nat. Commun. – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 126 year: 2020 publication-title: Mater. Res. Bull. – publication-title: Small Struct. – volume: 366 start-page: 460 year: 2019 publication-title: Chem. Eng. J. – volume: 47 start-page: 494 year: 2018 publication-title: Nano Energy – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 29 start-page: 121 year: 2020 publication-title: Energy Storage Mater. – volume: 384 year: 2020 publication-title: Chem. Eng. J. – volume: 43 start-page: 1688 year: 2019 publication-title: New J. Chem. – volume: 7 start-page: 2291 year: 2019 publication-title: J. Mater. Chem. A – volume: 213 start-page: 663 year: 2016 publication-title: Electrochim. Acta – volume: 298 start-page: 43 year: 2019 publication-title: Electrochim. Acta – volume: 3 start-page: 101 year: 2021 publication-title: Carbon Energy – volume: 18 start-page: 541 year: 2019 publication-title: Nat. Mater. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 356 start-page: 245 year: 2019 publication-title: Chem. Eng. J. – volume: 11 year: 2020 publication-title: Mater.Today Nano – volume: 20 start-page: 225 year: 2019 publication-title: Energy Storage Mater. – volume: 59 start-page: 582 year: 2019 publication-title: Nano Energy – volume: 22 start-page: 1197 year: 2020 publication-title: CrystEngComm – volume: 8 start-page: 3450 year: 2020 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2233 year: 2010 publication-title: ACS Nano – volume: 343 start-page: 572 year: 2018 publication-title: Chem. Eng. J. – volume: 378 year: 2019 publication-title: Chem. Eng. J. – volume: 1 start-page: 253 year: 2016 publication-title: ACS Energy Lett. – volume: 16 start-page: 170 year: 2017 publication-title: Nat. Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 30 year: 2020 publication-title: J. Energy Storage – volume: 285 year: 2020 publication-title: J. Solid State Chem. – volume: 59 start-page: 3638 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 109 start-page: 461 year: 2016 publication-title: Carbon – volume: 3 start-page: 1216 year: 2015 publication-title: J. Mater. Chem. A – volume: 356 start-page: 483 year: 2019 publication-title: Chem. Eng. J. – volume: 352 start-page: 29 year: 2018 publication-title: Chem. Eng. J. – volume: 20 start-page: 1 year: 2016 publication-title: Nano Energy – year: 2020 publication-title: Energy Environ. Mater. – volume: 41 start-page: 154 year: 2017 publication-title: Nano Energy – volume: 6 start-page: 117 year: 2019 publication-title: Inorg. Chem. Front. – volume: 3 start-page: 1717 year: 2015 publication-title: J. Mater. Chem. A – volume: 174 start-page: 104 year: 2017 publication-title: Chem. Eng. Sci. – volume: 5 start-page: 1694 year: 2021 publication-title: Mater. Chem. Front. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 12 start-page: 437 year: 2015 publication-title: Nano Energy – volume: 24 start-page: 1458 year: 2014 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 189 year: 2016 publication-title: Nano Energy – volume: 441 start-page: 232 year: 2018 publication-title: Appl. Surf. Sci. – volume: 450 year: 2020 publication-title: J. Power Sources – volume: 16 year: 2020 publication-title: Small – volume: 38 start-page: 368 year: 2017 publication-title: Nano Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 153 start-page: 217 year: 2019 publication-title: Carbon – volume: 820 year: 2020 publication-title: J. Alloys Compd. – volume: 380 year: 2020 publication-title: Chem. Eng. J. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 4633 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 227 year: 2018 publication-title: Nano Energy – volume: 7 start-page: 72 year: 2014 publication-title: Nano Energy – volume: 11 start-page: 3201 year: 2018 publication-title: Energy Environ. Mater. – volume: 10 start-page: 980 year: 2015 publication-title: Nat. Nanotechnol. – volume: 57 start-page: 1846 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 392 year: 2020 publication-title: Chem. Eng. J. – volume: 27 start-page: 335 year: 1992 publication-title: Sol. Energy Mater. Sol. Cells – volume: 2 start-page: 54 year: 2020 publication-title: Carbon Energy – volume: 103 start-page: 1088 year: 2020 publication-title: J. Am. Ceram. Soc. – volume: 36 start-page: 64 year: 2019 publication-title: J. Energy Chem. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 5 start-page: 1043 year: 2017 publication-title: J. Mater. Chem. A – volume: 24 start-page: 541 year: 2020 publication-title: Energy Storage Mater. – volume: 437 year: 2019 publication-title: J. Power Sources – volume: 7 start-page: 1160 year: 2019 publication-title: J. Mater. Chem. A – volume: 18 start-page: 107 year: 2019 publication-title: Energy Storage Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 55 start-page: 3408 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 57 year: 2019 publication-title: Carbon Energy – volume: 4 year: 2020 publication-title: Small Methods – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 start-page: 433 year: 2020 publication-title: J. Mater. Chem. A – volume: 11 start-page: 56 year: 2019 publication-title: Nano‐Micro Lett. – volume: 1 start-page: 173 year: 2019 publication-title: Carbon Energy – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 574 start-page: 355 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 1764 year: 2019 publication-title: Nat. Commun. – volume: 402 start-page: 340 year: 2018 publication-title: J. Power Sources – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 55 start-page: 167 year: 2020 publication-title: J. Mater. Sci. Technol. – volume: 13 start-page: 3666 year: 2019 publication-title: ACS Nano – volume: 8 start-page: 2763 year: 2015 publication-title: Nano Res. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 350 year: 2020 publication-title: Carbon Energy – volume: 347 start-page: 552 year: 2018 publication-title: Chem. Eng. J. – volume: 153 start-page: 625 year: 2019 publication-title: Carbon – volume: 35 year: 2018 publication-title: Part. Part. Syst. Charact. – volume: 3 start-page: 1258 year: 2015 publication-title: J. Mater. Chem. A – volume: 409 start-page: 112 year: 2019 publication-title: J. Power Sources – volume: 14 year: 2018 publication-title: Small – volume: 799 start-page: 345 year: 2019 publication-title: J. Alloys Compd. – volume: 289 start-page: 193 year: 2018 publication-title: Electrochim. Acta – volume: 11 start-page: 2620 year: 2018 publication-title: Energy Environ. Mater. – volume: 20 year: 2020 publication-title: Appl. Mater. Today – volume: 451 start-page: 280 year: 2018 publication-title: Appl. Surf. Sci. – volume: 27 start-page: 339 year: 2015 publication-title: Adv. Mater. – volume: 11 start-page: 6474 year: 2017 publication-title: ACS Nano – volume: 60 start-page: 332 year: 2019 publication-title: Nano Energy – volume: 306 start-page: 78 year: 2016 publication-title: J. Power Sources – volume: 13 start-page: 4876 year: 2013 publication-title: Nano Lett. – volume: 378 start-page: 248 year: 2018 publication-title: J. Power Sources – volume: 24 start-page: 3873 year: 2018 publication-title: Chem.‐Eur. J. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 456 start-page: 104 year: 2018 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 13 year: 2019 publication-title: Nano‐Micro Lett. – volume: 14 start-page: 3610 year: 2020 publication-title: ACS Nano – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 6964 year: 2014 publication-title: Nano Lett. – volume: 27 start-page: 3687 year: 2015 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 3953 year: 2018 publication-title: ChemElectroChem – volume: 7 start-page: 1315 year: 2019 publication-title: J. Mater. Chem. A – volume: 7 start-page: 465 year: 2012 publication-title: Nat. Nanotechnol. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 368 year: 2021 publication-title: Electrochim. Acta – volume: 431 start-page: 93 year: 2019 publication-title: J. Power Sources – volume: 153 start-page: 62 year: 2019 publication-title: Carbon – volume: 2 start-page: 2169 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 13 start-page: 5635 year: 2019 publication-title: ACS Nano – volume: 14 start-page: 965 year: 2021 publication-title: Energy Environ. Mater. – volume: 24 start-page: 208 year: 2020 publication-title: Energy Storage Mater. – volume: 10 start-page: 3136 year: 2017 publication-title: Nano Res. – volume: 10 start-page: 7201 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 304 start-page: 373 year: 2016 publication-title: J. Power Sources – volume: 39 start-page: 291 year: 2017 publication-title: Nano Energy – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 12 start-page: 1592 year: 2018 publication-title: ACS Nano – volume: 7 start-page: 753 year: 2020 publication-title: Environ. Sci.: Nano – volume: 505 year: 2020 publication-title: Appl. Surf. Sci. – volume: 414 start-page: 540 year: 2019 publication-title: J. Power Sources – volume: 64 start-page: 238 year: 2021 publication-title: Sci. China: Chem. – volume: 6 start-page: 7873 year: 2015 publication-title: Nat. Commun. – volume: 346 year: 2020 publication-title: Electrochim. Acta – volume: 8 year: 2016 publication-title: Nanoscale – volume: 7 start-page: 5760 year: 2019 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1260 year: 2019 publication-title: J. Mater. Chem. A – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 338 year: 2020 publication-title: Electrochim. Acta – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 356 start-page: 1042 year: 2019 publication-title: Chem. Eng. J. – volume: 479 start-page: 1098 year: 2019 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 779 year: 2020 publication-title: J. Mater. Chem. A – volume: 15 start-page: 374 year: 2018 publication-title: Energy Storage Mater. – volume: 15 start-page: 4135 year: 2015 publication-title: Nano Lett. – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 11 start-page: 2520 year: 2020 publication-title: Nat. Commun. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 18 start-page: 5569 year: 2018 publication-title: Nano Lett. – volume: 43 start-page: 129 year: 2020 publication-title: J. Energy Chem. – volume: 8 start-page: 2372 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 137 year: 2021 publication-title: Mater. Res. Bull. – volume: 306 start-page: 791 year: 2016 publication-title: J. Power Sources – volume: 330 start-page: 462 year: 2017 publication-title: Chem. Eng. J. – volume: 11 start-page: 81 year: 2019 publication-title: Nano‐Micro Lett. – volume: 342 start-page: 964 year: 2017 publication-title: J. Power Sources – volume: 1 year: 2020 publication-title: Small Struct. – volume: 44 start-page: 518 year: 2020 publication-title: Int. J. Energy Res. – volume: 23 year: 2017 publication-title: Chem.‐Eur. J. – volume: 387 year: 2020 publication-title: Chem. Eng. J. – volume: 2 year: 2018 publication-title: Small Methods – volume: 6 start-page: 5002 year: 2015 publication-title: J. Phys. Chem. Lett. – year: 1994 – volume: 8 start-page: 697 year: 2021 publication-title: ChemElectroChem – volume: 27 start-page: 591 year: 2018 publication-title: J. Energy Chem. – volume: 7 start-page: 1658 year: 2019 publication-title: J. Mater. Chem. A – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 6 start-page: 19 year: 2014 publication-title: Nano Energy – volume: 11 year: 2017 publication-title: ACS Nano – volume: 11 start-page: 5055 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 424 year: 2019 publication-title: Energy Storage Mater. – volume: 309 start-page: 234 year: 2019 publication-title: Electrochim. Acta – volume: 25 start-page: 1393 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 5289 year: 2013 publication-title: Nano Lett. – volume: 370 start-page: 400 year: 2019 publication-title: Chem. Eng. J. – volume: 27 year: 2019 publication-title: Opt. Express – volume: 35 year: 2017 publication-title: J. Vac. Sci. Technol., B – volume: 7 start-page: 2106 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 start-page: 5530 year: 2017 publication-title: ACS Nano – volume: 357 start-page: 220 year: 2019 publication-title: Chem. Eng. J. – volume: 43 start-page: 8444 year: 2019 publication-title: New J. Chem. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 3254 year: 2015 publication-title: ACS Nano – volume: 7 start-page: 9230 year: 2019 publication-title: J. Mater. Chem. A – volume: 1 start-page: 1055 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1667 year: 2013 publication-title: Sci. Adv. Mater. – volume: 2 start-page: 308 year: 2020 publication-title: Carbon Energy – volume: 13 start-page: 69 year: 2021 publication-title: Nano‐Micro Lett. – volume: 360 start-page: 73 year: 2019 publication-title: Surf. Coat. Technol. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 25 start-page: 5416 year: 2019 publication-title: Chem.‐Eur. J. – volume: 23 start-page: 35 year: 2019 publication-title: Energy Storage Mater. – volume: 7 start-page: 6644 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 66 year: 2019 publication-title: Nano Energy – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1694 year: 2017 publication-title: Energy Environ. Mater. – volume: 30 start-page: 347 year: 2016 publication-title: Nano Energy – volume: 12 start-page: 241 year: 2018 publication-title: Energy Storage Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 start-page: 1 year: 1998 publication-title: Fiz. Tekh. Poluprovodn. – volume: 359 start-page: 384 year: 2019 publication-title: Surf. Coat. Technol. – volume: 272 start-page: 77 year: 2018 publication-title: Electrochim. Acta – volume: 16 start-page: 2054 year: 2016 publication-title: Nano Lett. – volume: 250 start-page: 71 year: 2019 publication-title: Appl. Catal., B – volume: 334 start-page: 932 year: 2018 publication-title: Chem. Eng. J. – volume: 12 start-page: 2422 year: 2019 publication-title: Energy Environ. Mater. – volume: 31 year: 2020 publication-title: Nanotechnology – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: Energy Technol. – ident: e_1_2_9_85_1 doi: 10.1016/j.nanoen.2016.10.019 – ident: e_1_2_9_96_1 doi: 10.1016/j.carbon.2016.08.028 – ident: e_1_2_9_81_1 doi: 10.1038/ncomms7647 – ident: e_1_2_9_108_1 doi: 10.1021/acsami.5b11492 – ident: e_1_2_9_106_1 doi: 10.1016/j.ensm.2019.03.010 – ident: e_1_2_9_86_1 doi: 10.1021/acs.jpclett.5b02513 – ident: e_1_2_9_190_1 doi: 10.1016/j.jpowsour.2019.05.045 – ident: e_1_2_9_43_1 doi: 10.1038/s41467-019-09400-w – ident: e_1_2_9_302_1 doi: 10.1002/aenm.201902674 – ident: e_1_2_9_150_1 doi: 10.1002/advs.201800613 – ident: e_1_2_9_273_1 doi: 10.1016/j.apsusc.2018.06.071 – ident: e_1_2_9_221_1 doi: 10.1021/acsami.9b11419 – ident: e_1_2_9_62_1 doi: 10.1016/j.nanoen.2017.01.009 – ident: e_1_2_9_175_1 doi: 10.1016/j.ensm.2017.12.015 – ident: e_1_2_9_99_1 doi: 10.1039/C6TA03083A – ident: e_1_2_9_91_1 doi: 10.1016/j.apsusc.2019.02.044 – ident: e_1_2_9_212_1 doi: 10.1021/acsnano.9b06267 – ident: e_1_2_9_254_1 doi: 10.1039/C4TA05568C – ident: e_1_2_9_50_1 doi: 10.1016/j.carbon.2019.07.001 – ident: e_1_2_9_159_1 doi: 10.1166/sam.2013.1626 – ident: e_1_2_9_317_1 doi: 10.1016/j.mtnano.2020.100076 – ident: e_1_2_9_52_1 doi: 10.1039/C9TA10088A – volume: 13 start-page: 4977 year: 2020 ident: e_1_2_9_316_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_49_1 doi: 10.1002/adma.201705516 – ident: e_1_2_9_151_1 doi: 10.1002/er.4963 – ident: e_1_2_9_117_1 doi: 10.1016/j.cej.2018.08.187 – ident: e_1_2_9_90_1 doi: 10.1039/C8TA09423C – ident: e_1_2_9_84_1 doi: 10.1002/smll.201700758 – ident: e_1_2_9_155_1 doi: 10.1364/OE.27.019843 – ident: e_1_2_9_294_1 doi: 10.1007/s11426-020-9858-3 – ident: e_1_2_9_27_1 doi: 10.1002/aenm.202002424 – ident: e_1_2_9_115_1 doi: 10.1002/smll.201704065 – ident: e_1_2_9_73_1 doi: 10.1039/C2TA00057A – ident: e_1_2_9_5_1 doi: 10.1038/nenergy.2017.89 – ident: e_1_2_9_187_1 doi: 10.1002/sstr.202000047 – ident: e_1_2_9_235_1 doi: 10.1016/j.jpowsour.2018.10.066 – ident: e_1_2_9_283_1 doi: 10.1021/acs.jpcc.9b06070 – ident: e_1_2_9_95_1 doi: 10.1021/acsnano.7b08161 – ident: e_1_2_9_28_1 doi: 10.1016/j.apmt.2020.100765 – ident: e_1_2_9_33_1 doi: 10.1007/s40820-019-0245-5 – ident: e_1_2_9_144_1 doi: 10.1016/j.jpowsour.2018.09.046 – ident: e_1_2_9_229_1 doi: 10.1016/j.apsusc.2018.04.254 – ident: e_1_2_9_89_1 doi: 10.1021/acs.jpcc.8b05076 – year: 2020 ident: e_1_2_9_289_1 publication-title: Natl. Sci. Rev. – volume-title: VLSI Electronics Microstructure Science year: 1994 ident: e_1_2_9_4_1 – ident: e_1_2_9_39_1 doi: 10.1016/j.nanoen.2018.03.012 – ident: e_1_2_9_103_1 doi: 10.1021/acs.nanolett.8b01988 – ident: e_1_2_9_17_1 doi: 10.1002/smll.201800659 – ident: e_1_2_9_147_1 doi: 10.1016/j.cej.2018.09.131 – ident: e_1_2_9_131_1 doi: 10.1021/acs.nanolett.6b00057 – ident: e_1_2_9_51_1 doi: 10.1002/aenm.201900567 – volume: 32 start-page: 1 year: 1998 ident: e_1_2_9_2_1 publication-title: Fiz. Tekh. Poluprovodn. – ident: e_1_2_9_243_1 doi: 10.1039/C8TA11249E – ident: e_1_2_9_34_1 doi: 10.1002/cey2.14 – ident: e_1_2_9_178_1 doi: 10.1021/acsami.7b07939 – ident: e_1_2_9_233_1 doi: 10.1016/j.jpowsour.2017.12.046 – ident: e_1_2_9_224_1 doi: 10.1016/j.surfcoat.2018.12.128 – ident: e_1_2_9_256_1 doi: 10.1002/aelm.201900953 – ident: e_1_2_9_232_1 doi: 10.1016/j.cej.2018.03.042 – ident: e_1_2_9_213_1 doi: 10.1002/anie.201810579 – ident: e_1_2_9_87_1 doi: 10.1021/acsenergylett.6b00164 – ident: e_1_2_9_215_1 doi: 10.1016/j.electacta.2019.135311 – ident: e_1_2_9_44_1 doi: 10.1038/s41598-019-55776-6 – ident: e_1_2_9_184_1 doi: 10.1016/j.cej.2019.01.185 – ident: e_1_2_9_1_1 doi: 10.1002/sstr.202000010 – ident: e_1_2_9_18_1 doi: 10.1002/celc.202001409 – ident: e_1_2_9_267_1 doi: 10.1016/j.ensm.2019.07.001 – ident: e_1_2_9_9_1 doi: 10.1039/C7CS00160F – ident: e_1_2_9_165_1 doi: 10.1016/j.ces.2017.09.007 – ident: e_1_2_9_208_1 doi: 10.1016/j.nanoen.2017.07.012 – ident: e_1_2_9_227_1 doi: 10.1038/nnano.2012.71 – ident: e_1_2_9_69_1 doi: 10.1016/j.cej.2018.10.026 – ident: e_1_2_9_66_1 doi: 10.1002/aenm.202000927 – ident: e_1_2_9_72_1 doi: 10.1039/C6TA04398D – ident: e_1_2_9_11_1 doi: 10.1021/acsnano.9b00816 – ident: e_1_2_9_14_1 doi: 10.1016/j.ensm.2019.08.018 – ident: e_1_2_9_114_1 doi: 10.1002/smll.201702181 – ident: e_1_2_9_307_1 doi: 10.1016/j.cej.2020.124060 – ident: e_1_2_9_24_1 doi: 10.1021/acsami.8b01613 – ident: e_1_2_9_38_1 doi: 10.1021/acsami.9b14912 – volume: 11 start-page: 3201 year: 2018 ident: e_1_2_9_310_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_107_1 doi: 10.1002/admi.201601187 – ident: e_1_2_9_170_1 doi: 10.1016/j.jssc.2020.121230 – ident: e_1_2_9_30_1 doi: 10.1039/C8NR00865E – volume: 14 start-page: 965 year: 2021 ident: e_1_2_9_65_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_60_1 doi: 10.1016/j.jechem.2019.08.013 – ident: e_1_2_9_98_1 doi: 10.1016/j.jpowsour.2015.11.073 – ident: e_1_2_9_92_1 doi: 10.1021/acs.jpcc.8b07062 – ident: e_1_2_9_241_1 doi: 10.1002/adma.201404140 – ident: e_1_2_9_207_1 doi: 10.1039/C6TA03211G – ident: e_1_2_9_15_1 doi: 10.1016/j.jpowsour.2017.07.079 – ident: e_1_2_9_79_1 publication-title: Small Struct. – ident: e_1_2_9_181_1 doi: 10.1016/j.carbon.2019.03.022 – ident: e_1_2_9_45_1 doi: 10.1002/adfm.201703390 – ident: e_1_2_9_105_1 doi: 10.1002/aenm.201601285 – ident: e_1_2_9_185_1 doi: 10.1002/aenm.201500118 – ident: e_1_2_9_274_1 doi: 10.1016/j.cej.2017.09.155 – ident: e_1_2_9_153_1 doi: 10.1039/C9TA02388G – ident: e_1_2_9_291_1 doi: 10.1016/j.cej.2019.123675 – ident: e_1_2_9_116_1 doi: 10.1016/j.apsusc.2019.02.081 – ident: e_1_2_9_167_1 doi: 10.1039/C9TA07302G – ident: e_1_2_9_32_1 doi: 10.1116/1.4982736 – ident: e_1_2_9_219_1 doi: 10.1039/C9NR07249G – ident: e_1_2_9_265_1 doi: 10.1016/j.jpowsour.2017.04.020 – ident: e_1_2_9_225_1 doi: 10.1002/adfm.201606232 – ident: e_1_2_9_251_1 doi: 10.1002/admi.201901729 – ident: e_1_2_9_238_1 doi: 10.1021/acsami.8b07082 – ident: e_1_2_9_54_1 doi: 10.1016/j.apsusc.2018.09.038 – ident: e_1_2_9_156_1 doi: 10.1039/C9EN01265F – ident: e_1_2_9_40_1 doi: 10.1088/1361-6528/aba7e1 – ident: e_1_2_9_204_1 doi: 10.1039/C9TA11451C – ident: e_1_2_9_3_1 doi: 10.1007/s12274-017-1531-5 – ident: e_1_2_9_189_1 doi: 10.1039/C8TA10422K – ident: e_1_2_9_297_1 doi: 10.1002/cey2.57 – ident: e_1_2_9_109_1 doi: 10.1016/j.carbon.2018.03.028 – ident: e_1_2_9_286_1 doi: 10.1016/j.est.2020.101446 – ident: e_1_2_9_134_1 doi: 10.1021/acsnano.7b00557 – ident: e_1_2_9_206_1 doi: 10.1021/acsnano.8b05534 – ident: e_1_2_9_16_1 doi: 10.1016/j.apsusc.2019.05.110 – ident: e_1_2_9_180_1 doi: 10.1016/j.nanoen.2015.12.010 – ident: e_1_2_9_122_1 doi: 10.1039/C9TA00275H – ident: e_1_2_9_312_1 doi: 10.1002/ente.201900649 – ident: e_1_2_9_93_1 doi: 10.1021/acsami.6b03368 – ident: e_1_2_9_21_1 doi: 10.1021/nl402810d – ident: e_1_2_9_298_1 doi: 10.1016/j.ensm.2018.06.028 – ident: e_1_2_9_203_1 doi: 10.1039/C9TA00975B – ident: e_1_2_9_48_1 doi: 10.1039/C9TA03551F – ident: e_1_2_9_77_1 doi: 10.1021/acs.nanolett.5b01257 – ident: e_1_2_9_152_1 doi: 10.1002/adfm.201807971 – ident: e_1_2_9_264_1 doi: 10.1016/j.jpowsour.2020.228239 – ident: e_1_2_9_169_1 doi: 10.1016/j.nanoen.2020.104468 – ident: e_1_2_9_113_1 doi: 10.1002/adma.201805754 – ident: e_1_2_9_80_1 doi: 10.1021/jp302265n – ident: e_1_2_9_293_1 doi: 10.1002/smtd.201900828 – ident: e_1_2_9_210_1 doi: 10.1021/acsnano.7b06061 – ident: e_1_2_9_248_1 doi: 10.1021/acsaem.9b00904 – ident: e_1_2_9_100_1 doi: 10.1039/C7TA06849B – ident: e_1_2_9_281_1 doi: 10.1016/j.cej.2017.07.129 – ident: e_1_2_9_26_1 doi: 10.1038/s41563-019-0366-8 – ident: e_1_2_9_247_1 doi: 10.1021/acsami.8b04540 – ident: e_1_2_9_282_1 doi: 10.1016/j.electacta.2018.03.198 – ident: e_1_2_9_25_1 doi: 10.1038/nmat4703 – ident: e_1_2_9_75_1 doi: 10.1002/adfm.201302122 – ident: e_1_2_9_119_1 doi: 10.1149/2.0721816jes – ident: e_1_2_9_188_1 doi: 10.1021/acsaem.0c01855 – ident: e_1_2_9_304_1 doi: 10.1039/C8TA12497C – ident: e_1_2_9_157_1 doi: 10.1039/C9CE01621J – ident: e_1_2_9_279_1 doi: 10.1016/j.jallcom.2019.153364 – ident: e_1_2_9_126_1 doi: 10.1039/C8TA09740B – ident: e_1_2_9_171_1 doi: 10.1016/j.ensm.2020.04.004 – ident: e_1_2_9_205_1 doi: 10.1002/chem.201806231 – ident: e_1_2_9_29_1 doi: 10.1002/adma.201501059 – ident: e_1_2_9_139_1 doi: 10.1038/s41467-020-16077-z – ident: e_1_2_9_104_1 doi: 10.1016/j.nanoen.2019.04.044 – ident: e_1_2_9_249_1 doi: 10.1039/C8TA09528K – ident: e_1_2_9_102_1 doi: 10.1016/j.cej.2018.03.166 – ident: e_1_2_9_246_1 doi: 10.1016/j.nanoen.2019.103991 – ident: e_1_2_9_71_1 doi: 10.1002/cey2.2 – ident: e_1_2_9_242_1 doi: 10.1016/j.nanoen.2017.06.009 – ident: e_1_2_9_121_1 doi: 10.1016/j.apsusc.2018.02.053 – ident: e_1_2_9_237_1 doi: 10.1039/C8TA10442E – ident: e_1_2_9_216_1 doi: 10.1039/C8CC06924G – ident: e_1_2_9_53_1 doi: 10.1039/C9TA09646A – ident: e_1_2_9_201_1 doi: 10.1002/aenm.202000091 – ident: e_1_2_9_318_1 doi: 10.1002/aenm.201700403 – ident: e_1_2_9_129_1 publication-title: Small Struct. – ident: e_1_2_9_135_1 doi: 10.1002/adma.201700214 – ident: e_1_2_9_306_1 doi: 10.1016/j.ensm.2019.05.039 – ident: e_1_2_9_19_1 doi: 10.1039/C6NR05584B – ident: e_1_2_9_57_1 doi: 10.1002/adfm.201807377 – ident: e_1_2_9_146_1 doi: 10.1002/smll.201704517 – ident: e_1_2_9_223_1 doi: 10.1016/j.jpowsour.2017.01.014 – ident: e_1_2_9_272_1 doi: 10.1016/j.cej.2020.125778 – ident: e_1_2_9_162_1 doi: 10.1016/j.cej.2017.10.007 – ident: e_1_2_9_220_1 doi: 10.1016/j.nanoen.2019.03.060 – ident: e_1_2_9_305_1 doi: 10.1016/j.electacta.2019.04.092 – ident: e_1_2_9_295_1 doi: 10.1021/acsami.0c18285 – ident: e_1_2_9_308_1 doi: 10.1039/C9TA02212K – ident: e_1_2_9_70_1 doi: 10.1002/smll.202001714 – ident: e_1_2_9_301_1 doi: 10.1007/s40820-019-0290-0 – ident: e_1_2_9_173_1 doi: 10.1021/acsnano.0c00020 – ident: e_1_2_9_288_1 doi: 10.1002/smll.201907670 – ident: e_1_2_9_168_1 doi: 10.1016/j.electacta.2020.135695 – ident: e_1_2_9_313_1 doi: 10.1021/acs.jpcc.9b02399 – ident: e_1_2_9_309_1 doi: 10.1016/j.nanoen.2018.03.061 – ident: e_1_2_9_140_1 doi: 10.1016/j.nanoen.2019.104037 – ident: e_1_2_9_179_1 doi: 10.1039/C9TA11965E – ident: e_1_2_9_261_1 doi: 10.1016/j.cej.2018.06.181 – ident: e_1_2_9_280_1 doi: 10.1016/j.nanoen.2014.04.007 – ident: e_1_2_9_303_1 doi: 10.1016/j.jmst.2019.05.074 – ident: e_1_2_9_31_1 doi: 10.1007/s12274-015-0783-1 – ident: e_1_2_9_46_1 doi: 10.1016/j.jallcom.2019.05.366 – ident: e_1_2_9_145_1 doi: 10.1002/adfm.201404078 – ident: e_1_2_9_276_1 doi: 10.1016/j.materresbull.2020.110817 – ident: e_1_2_9_177_1 doi: 10.1002/ppsc.201800138 – ident: e_1_2_9_278_1 doi: 10.1016/j.electacta.2020.136270 – ident: e_1_2_9_59_1 doi: 10.1016/j.electacta.2018.08.071 – ident: e_1_2_9_125_1 doi: 10.1002/celc.201801166 – ident: e_1_2_9_160_1 doi: 10.1039/C8QI01081A – ident: e_1_2_9_197_1 doi: 10.1002/adma.201603040 – ident: e_1_2_9_97_1 doi: 10.1016/j.jpowsour.2013.10.019 – ident: e_1_2_9_174_1 doi: 10.1002/anie.201510978 – ident: e_1_2_9_214_1 doi: 10.1016/j.cej.2019.122672 – ident: e_1_2_9_47_1 doi: 10.1021/acsnano.9b02231 – ident: e_1_2_9_255_1 doi: 10.1002/anie.201907516 – ident: e_1_2_9_287_1 doi: 10.1002/anie.201913174 – ident: e_1_2_9_137_1 doi: 10.1088/1361-6463/aa5aaf – ident: e_1_2_9_209_1 doi: 10.1016/j.cej.2018.08.143 – ident: e_1_2_9_138_1 doi: 10.1002/smtd.201800328 – ident: e_1_2_9_158_1 doi: 10.1016/j.apcatb.2019.03.021 – ident: e_1_2_9_120_1 doi: 10.1016/j.cej.2018.08.208 – ident: e_1_2_9_285_1 doi: 10.1021/acsenergylett.7b01063 – ident: e_1_2_9_78_1 doi: 10.1002/smtd.201700296 – ident: e_1_2_9_262_1 doi: 10.1016/j.jpowsour.2019.227616 – ident: e_1_2_9_290_1 doi: 10.1002/smll.202001090 – ident: e_1_2_9_222_1 doi: 10.1002/smll.202003434 – ident: e_1_2_9_191_1 doi: 10.1016/j.jechem.2019.04.023 – ident: e_1_2_9_176_1 doi: 10.1002/adfm.201901925 – ident: e_1_2_9_127_1 doi: 10.1021/acsami.7b19448 – ident: e_1_2_9_263_1 doi: 10.1016/j.electacta.2016.07.155 – ident: e_1_2_9_311_1 doi: 10.1002/aenm.201902352 – ident: e_1_2_9_266_1 doi: 10.1016/j.cej.2019.123890 – ident: e_1_2_9_42_1 doi: 10.1016/j.jpowsour.2019.226904 – ident: e_1_2_9_132_1 doi: 10.1002/advs.201600243 – ident: e_1_2_9_192_1 doi: 10.1016/j.nanoen.2019.104190 – volume: 11 start-page: 2620 year: 2018 ident: e_1_2_9_202_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_277_1 doi: 10.1016/j.jcis.2020.04.039 – ident: e_1_2_9_218_1 doi: 10.1021/acsami.8b19501 – ident: e_1_2_9_148_1 doi: 10.1002/chem.201705855 – ident: e_1_2_9_41_1 doi: 10.1007/s12274-013-0292-z – ident: e_1_2_9_244_1 doi: 10.1016/j.jpowsour.2019.01.036 – ident: e_1_2_9_217_1 doi: 10.1016/j.electacta.2018.12.075 – ident: e_1_2_9_111_1 doi: 10.1016/j.jpowsour.2015.12.094 – ident: e_1_2_9_136_1 doi: 10.1038/nnano.2015.194 – ident: e_1_2_9_101_1 doi: 10.1016/j.nanoen.2018.04.001 – ident: e_1_2_9_22_1 doi: 10.1016/j.ensm.2018.11.024 – ident: e_1_2_9_186_1 doi: 10.1002/adma.201804084 – ident: e_1_2_9_275_1 doi: 10.1016/j.nanoen.2016.02.019 – ident: e_1_2_9_268_1 doi: 10.1039/C9NJ01255A – ident: e_1_2_9_314_1 doi: 10.1021/acs.jpcc.8b10550 – ident: e_1_2_9_253_1 doi: 10.1016/j.ceramint.2016.02.146 – ident: e_1_2_9_199_1 doi: 10.1002/aenm.201900219 – ident: e_1_2_9_284_1 doi: 10.1039/C8NJ05514A – ident: e_1_2_9_315_1 doi: 10.1002/cey2.66 – ident: e_1_2_9_36_1 doi: 10.1038/ncomms8873 – ident: e_1_2_9_123_1 doi: 10.1002/anie.201710616 – ident: e_1_2_9_271_1 doi: 10.1016/j.cej.2019.123373 – ident: e_1_2_9_13_1 doi: 10.1002/adma.201902603 – ident: e_1_2_9_164_1 doi: 10.1039/C8TA11419F – ident: e_1_2_9_239_1 doi: 10.1002/adfm.201803901 – ident: e_1_2_9_35_1 doi: 10.1039/C8CE00487K – ident: e_1_2_9_7_1 doi: 10.1002/cey2.85 – ident: e_1_2_9_142_1 doi: 10.1021/acsnano.8b07172 – volume: 12 start-page: 2422 year: 2019 ident: e_1_2_9_163_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_23_1 doi: 10.1016/j.cej.2018.04.125 – ident: e_1_2_9_183_1 doi: 10.1016/j.carbon.2019.07.040 – ident: e_1_2_9_252_1 doi: 10.1016/j.cej.2019.123206 – ident: e_1_2_9_211_1 doi: 10.1016/j.cej.2019.123734 – ident: e_1_2_9_112_1 doi: 10.1016/j.nanoen.2017.09.027 – ident: e_1_2_9_143_1 doi: 10.1002/aenm.201702383 – ident: e_1_2_9_154_1 doi: 10.1016/0927-0248(92)90095-7 – ident: e_1_2_9_250_1 doi: 10.1021/acsaem.8b02201 – ident: e_1_2_9_300_1 doi: 10.1002/aenm.202000081 – ident: e_1_2_9_196_1 doi: 10.1002/adfm.201707578 – ident: e_1_2_9_260_1 doi: 10.1039/C4TA05059B – ident: e_1_2_9_193_1 doi: 10.1016/j.apsusc.2019.144586 – ident: e_1_2_9_8_1 doi: 10.1002/adfm.201803291 – volume: 10 start-page: 1694 year: 2017 ident: e_1_2_9_200_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_61_1 doi: 10.1016/j.surfcoat.2018.12.075 – ident: e_1_2_9_270_1 doi: 10.1016/j.cej.2020.125672 – ident: e_1_2_9_56_1 doi: 10.1016/j.electacta.2020.137629 – ident: e_1_2_9_63_1 doi: 10.1021/acsnano.7b03321 – ident: e_1_2_9_230_1 doi: 10.1039/C4TA05747C – ident: e_1_2_9_228_1 doi: 10.1002/advs.201700887 – ident: e_1_2_9_110_1 doi: 10.1021/acsami.7b00248 – ident: e_1_2_9_258_1 doi: 10.1039/C5TA04311E – ident: e_1_2_9_76_1 doi: 10.1021/nl4027549 – ident: e_1_2_9_245_1 doi: 10.1002/adfm.201910302 – ident: e_1_2_9_226_1 doi: 10.1039/C9TA09902F – ident: e_1_2_9_10_1 doi: 10.1039/D0QM01012J – ident: e_1_2_9_292_1 doi: 10.1016/j.nanoen.2019.03.002 – ident: e_1_2_9_231_1 doi: 10.1016/j.cej.2019.03.168 – ident: e_1_2_9_130_1 doi: 10.1021/acsnano.5b00376 – ident: e_1_2_9_12_1 doi: 10.1016/j.ensm.2018.10.002 – ident: e_1_2_9_128_1 doi: 10.1002/anie.201209689 – ident: e_1_2_9_236_1 doi: 10.1111/jace.16778 – ident: e_1_2_9_94_1 doi: 10.1002/smll.201800640 – ident: e_1_2_9_296_1 doi: 10.1007/s40820-021-00595-6 – ident: e_1_2_9_198_1 doi: 10.1002/chem.201702387 – ident: e_1_2_9_234_1 doi: 10.1016/j.cej.2019.122486 – ident: e_1_2_9_194_1 doi: 10.1016/j.cej.2019.122189 – ident: e_1_2_9_6_1 doi: 10.1002/cey2.34 – ident: e_1_2_9_20_1 doi: 10.1002/advs.201700491 – ident: e_1_2_9_161_1 doi: 10.1016/j.cej.2018.09.142 – ident: e_1_2_9_141_1 doi: 10.1016/j.carbon.2019.07.021 – ident: e_1_2_9_67_1 doi: 10.1002/adfm.201808522 – ident: e_1_2_9_133_1 doi: 10.1016/j.jpowsour.2019.227696 – ident: e_1_2_9_259_1 doi: 10.1016/j.jechem.2017.10.022 – ident: e_1_2_9_82_1 doi: 10.1038/nmat4299 – ident: e_1_2_9_74_1 doi: 10.1016/j.jpowsour.2015.11.027 – ident: e_1_2_9_88_1 doi: 10.1039/C8TA10972A – ident: e_1_2_9_240_1 doi: 10.1002/sstr.202000093 – ident: e_1_2_9_172_1 doi: 10.1016/j.nanoen.2015.05.013 – volume: 12 start-page: 344 year: 2019 ident: e_1_2_9_195_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_64_1 doi: 10.1016/j.materresbull.2020.111186 – ident: e_1_2_9_182_1 doi: 10.1088/1361-6528/aafcef – year: 2020 ident: e_1_2_9_55_1 publication-title: Energy Environ. Mater. – ident: e_1_2_9_257_1 doi: 10.1039/C6TA07842G – ident: e_1_2_9_37_1 doi: 10.1016/j.nanoen.2014.02.012 – ident: e_1_2_9_124_1 doi: 10.1007/s40820-019-0312-y – ident: e_1_2_9_58_1 doi: 10.1039/C8TA11578H – ident: e_1_2_9_269_1 doi: 10.1016/j.jallcom.2018.12.176 – ident: e_1_2_9_149_1 doi: 10.1021/acsnano.9b00375 – ident: e_1_2_9_299_1 doi: 10.1039/C9TA03330K – ident: e_1_2_9_118_1 doi: 10.1016/j.nanoen.2015.01.003 – ident: e_1_2_9_68_1 doi: 10.1021/nn901632g – ident: e_1_2_9_166_1 doi: 10.1088/1361-6528/aaf76c – ident: e_1_2_9_83_1 doi: 10.1021/nl5032293 |
| SSID | ssj0009606 |
| Score | 2.7391338 |
| SecondaryResourceType | review_article |
| Snippet | With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors... With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2100855 |
| SubjectTerms | built‐in electric fields Electric devices Electric fields Energy storage heterointerfaces Heterostructures Lithium sulfur batteries Lithium-ion batteries Materials science Rechargeable batteries Storage batteries Storage systems Supercapacitors Synergistic effect |
| Title | Emerging of Heterostructure Materials in Energy Storage: A Review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100855 https://www.proquest.com/docview/2548925382 https://www.proquest.com/docview/2532242594 |
| Volume | 33 |
| WOSCitedRecordID | wos000653749700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4zYMe_Barc0QQPJU16We8Fd3YYRuiDnYrSZrAQFrZh3-_Sdt120EEvbU0bcP7ynt5L78HcI-dFPPAJzosSV3b4z6zWeALWygXuynFkZQFzuwwHI-j6ZS-bJ3iL_Eh6g03oxmFvTYKzviiuwENZWmBG0RwUWrVgBbRwus3ofX82p8MN8C7QdFf0-T7bBp40Rq40SHd3S_sLkwbb3PbZy0Wnf7x_6d7AkeVw4niUkJOYU9mZ3C4BUN4DrHZmTLNilCu0MDUx-QlrOxqLtGILUshRbMM9YqTguhNB-raDj2iGJW5hQuY9HvvTwO7aq1gC-2B-bYMVcA9LBnWDowraMRdhwtFQsY8wh2plEMVDVOqJxuEIeacMu0qeIIFqU-kdC-hmeWZvAIUqDSiXDmMpdxjSgdcAivKBYu4z7V-W2Cv6ZqICnfctL_4SErEZJIY0iQ1aSx4qMd_logbP45sr9mUVJq3SHTAG1GizTix4K5-rHXGJEJYJvOVGaPNmDZW1LOAFEz75U9J_DyK67vrv7x0Awfmuqz0bUNTs1Hewr74Ws4W8w40wmnUqWT3G6fn7To |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9QHv8X5GUHwqdikn_GtuI2J2xA_YG8lSRMYSCdO_fu9tF3nHkQQH9te25D7yN3l8juAC-pmVIYBw7Ak8xxfBsIRYaAcZTzqZZzGWhc4s_1oOIxHI35fVRPaszAlPkSdcLOaUdhrq-A2IX01Rw0VWQEcxGhRa7UMTR9lCYW82X7oPvfnyLth0WDTbvg5PPTjGXKjy64Wv7C4Ms3dze9Oa7HqdDf_YbxbsFG5nCQpZWQblnS-A-vfgAh3IbG5KduuiEwM6dkKmUkJLPvxpslAvJdiSsY56RRnBckjhupoia5JQsrdhT147naebnpO1VzBUeiDBY6OTCh9qgVFF8ZTPJaeK5VhkRA-k642xuWGRxnHwYZRRKXkAp0FX4kwC5jW3j408kmuD4CEJou5NK4QmfSFwZBLUcOlErEMJGp4C5zZxKaqQh63DTBe0hIzmaV2atJ6alpwWdO_lpgbP1Iez_iUVro3TTHkjTlDQ85acF4_Rq2xWyEi15MPS4OGDM0V91vACq798qc0aQ-S-urwLy-dwWrvadBP-7fDuyNYs_fLut9jaCBL9QmsqM_38fTttBLhL1Ry8EI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDbzE-VxA8BbOb53oL1lCxLcUHeAv7hIKkpVV_v7tJmupBBPGYZJIsMzuzMzuz3wBcYE9iHoXEhCXSdwMeMpdFoXCF9rEvKU6UKnFme_FgkLy80GFdTWjPwlT4EM2Gm9WM0l5bBVcTqa8WqKFMlsBBBJe1VsvQDmwnmRa0Ow_Zc2-BvBuVDTZtws-lUZDMkRs9cvX9C99XpoW7-dVpLVedbPMfxrsFG7XLidJqjmzDkip2YP0LEOEupHZvyrYrQmONurZCZlwBy75PFeqzt2qaolGBbsuzgujRhOrGEl2jFFXZhT14zm6fbrpu3VzBFcYHC10V64gHWDFsXBhf0IT7HheaxIwFhHtKa49qGktqBhvFMeacMuMsBIJFMiRK-fvQKsaFOgAUaZlQrj3GJA-YNiGXwJpywRIecqPhDrhzxuaiRh63DTBe8wozmeSWNXnDGgcuG_pJhbnxI-XxXE55rXuz3IS8CSXGkBMHzpvHRmtsKoQVavxuaYwhM-aKBg6QUmq__ClPO_20uTr8y0tnsDrsZHnvbnB_BGv2dlX2ewwtI1F1Aivi4200m57WM_gT9LDvvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+of+Heterostructure+Materials+in+Energy+Storage%3A+A+Review&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Yu&rft.au=Zhang%2C+Jiawei&rft.au=Chen%2C+Qingguo&rft.au=Xia%2C+Xinhui&rft.date=2021-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=27&rft_id=info:doi/10.1002%2Fadma.202100855&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202100855 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |