Emerging of Heterostructure Materials in Energy Storage: A Review

With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 33; číslo 27; s. e2100855 - n/a
Hlavní autoři: Li, Yu, Zhang, Jiawei, Chen, Qingguo, Xia, Xinhui, Chen, Minghua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.07.2021
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built‐in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), lithium‐sulfur batteries (Li‐S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage. Constructing heterostructures is an effective way to enhance the electrochemical performance of active materials due to the unique heterointerface structure and some unrevealed synergistic effects. An overview of the recent advancements in heterostructured materials in terms of enhanced mechanism, synthesis techniques, and electrochemical performance is provided. Future development trends for design of heterostructured electrodes are analyzed.
AbstractList With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built‐in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), lithium‐sulfur batteries (Li‐S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.
With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano‐scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built‐in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), lithium‐sulfur batteries (Li‐S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage. Constructing heterostructures is an effective way to enhance the electrochemical performance of active materials due to the unique heterointerface structure and some unrevealed synergistic effects. An overview of the recent advancements in heterostructured materials in terms of enhanced mechanism, synthesis techniques, and electrochemical performance is provided. Future development trends for design of heterostructured electrodes are analyzed.
With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.
Author Zhang, Jiawei
Xia, Xinhui
Li, Yu
Chen, Qingguo
Chen, Minghua
Author_xml – sequence: 1
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: Harbin University of Science and Technology
– sequence: 2
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: Nanyang Technological University
– sequence: 3
  givenname: Qingguo
  surname: Chen
  fullname: Chen, Qingguo
  organization: Harbin University of Science and Technology
– sequence: 4
  givenname: Xinhui
  surname: Xia
  fullname: Xia, Xinhui
  organization: Zhejiang University
– sequence: 5
  givenname: Minghua
  orcidid: 0000-0001-6014-328X
  surname: Chen
  fullname: Chen, Minghua
  email: mhchen@hrbust.edu.cn
  organization: Harbin University of Science and Technology
BookMark eNqFkM9LwzAUx4NMcE6vngtevHQmadI23sqcTtgQ_HEOafYyMtpmpq1j_70ZE4WBeHp84fN5vPc9R4PGNYDQFcFjgjG9VctajSmmIeScn6Ah4ZTEDAs-QEMsEh6LlOVn6Lxt1xhjkeJ0iIppDX5lm1XkTDSDDrxrO9_rrvcQLVTIVlVtZJto2gRwF712zqsV3EVF9AKfFrYX6NQEBC6_5wi9P0zfJrN4_vz4NCnmsWYk5TFkJi0ZAUVIRhMt8jLBpTY0U4rREoMxWBiRLUU4Ps0yUpZCUUyYVumSU4BkhG4OezfeffTQdrK2rYaqUg24vpWUJ5QyygUL6PURuna9b8J1gWK5CGhOA8UOlA4_tx6M1LZTnXVN55WtJMFy36vc9yp_eg3a-EjbeFsrv_tbEAdhayvY_UPL4n5R_Lpf8OOLtA
CitedBy_id crossref_primary_10_1039_D3QI00308F
crossref_primary_10_1016_j_cej_2022_141181
crossref_primary_10_1016_j_jechem_2023_01_038
crossref_primary_10_1557_s43579_023_00412_8
crossref_primary_10_1002_cnma_202500102
crossref_primary_10_1063_5_0224095
crossref_primary_10_1016_j_cej_2021_134137
crossref_primary_10_1016_j_jpcs_2025_112959
crossref_primary_10_3390_ma17133075
crossref_primary_10_1007_s12274_022_4943_9
crossref_primary_10_1039_D5GC01687H
crossref_primary_10_1002_smll_202309422
crossref_primary_10_1016_j_est_2025_118394
crossref_primary_10_1002_aenm_202405378
crossref_primary_10_1007_s12274_022_5066_z
crossref_primary_10_1016_j_cej_2022_135990
crossref_primary_10_1039_D5CC01589H
crossref_primary_10_1016_j_cej_2022_134661
crossref_primary_10_1016_j_cej_2024_149591
crossref_primary_10_1002_admt_202501420
crossref_primary_10_1002_smtd_202200658
crossref_primary_10_1002_ange_202405648
crossref_primary_10_1016_j_mtchem_2025_102637
crossref_primary_10_1088_1361_6463_acec85
crossref_primary_10_1002_smtd_202300350
crossref_primary_10_1016_j_est_2024_113301
crossref_primary_10_1021_acs_chemrev_5c00025
crossref_primary_10_1016_j_apcatb_2024_124506
crossref_primary_10_1016_j_fuel_2023_129946
crossref_primary_10_1016_j_apsusc_2023_157738
crossref_primary_10_1002_aenm_202303389
crossref_primary_10_1039_D5RA01184A
crossref_primary_10_1016_j_cej_2023_142764
crossref_primary_10_1002_adfm_202421379
crossref_primary_10_1016_j_chemphys_2025_112835
crossref_primary_10_1002_ange_202216290
crossref_primary_10_1007_s11581_022_04805_y
crossref_primary_10_1016_j_est_2024_114885
crossref_primary_10_1002_smtd_202301571
crossref_primary_10_1016_j_est_2024_113553
crossref_primary_10_1088_1361_648X_ada242
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_1016_j_cej_2024_152732
crossref_primary_10_1002_anie_202419850
crossref_primary_10_1002_smll_202305288
crossref_primary_10_1002_eem2_12866
crossref_primary_10_1002_cey2_703
crossref_primary_10_1002_smll_202300950
crossref_primary_10_1002_smll_202309647
crossref_primary_10_1016_j_est_2022_105302
crossref_primary_10_1002_adfm_202425947
crossref_primary_10_1016_j_jcis_2023_06_166
crossref_primary_10_1002_aenm_202202577
crossref_primary_10_1002_anie_202405648
crossref_primary_10_1039_D2QM01366E
crossref_primary_10_1002_ange_202419850
crossref_primary_10_1016_j_mattod_2022_05_017
crossref_primary_10_1002_smll_202311421
crossref_primary_10_3390_nano12152668
crossref_primary_10_1002_smll_202206742
crossref_primary_10_1016_j_inoche_2025_115479
crossref_primary_10_1016_j_cej_2023_143834
crossref_primary_10_1016_j_est_2024_112889
crossref_primary_10_1016_j_cej_2022_135790
crossref_primary_10_1002_smll_202300534
crossref_primary_10_1016_j_apsusc_2024_159290
crossref_primary_10_1002_adom_202401685
crossref_primary_10_1016_j_inoche_2025_115359
crossref_primary_10_1021_acsnano_4c18215
crossref_primary_10_1007_s11426_023_1611_7
crossref_primary_10_1016_S1003_6326_24_66724_5
crossref_primary_10_1016_j_ensm_2025_104562
crossref_primary_10_1016_j_cej_2025_161934
crossref_primary_10_1039_D4QM00675E
crossref_primary_10_7498_aps_74_20250410
crossref_primary_10_1016_j_mtener_2022_100993
crossref_primary_10_1002_smll_202107868
crossref_primary_10_1002_smll_202203140
crossref_primary_10_1016_j_est_2022_105525
crossref_primary_10_1002_adfm_202423990
crossref_primary_10_1007_s40820_024_01363_y
crossref_primary_10_1016_j_jcis_2021_12_021
crossref_primary_10_1007_s10948_025_07023_5
crossref_primary_10_1016_j_jcis_2024_01_115
crossref_primary_10_1002_cphc_202300858
crossref_primary_10_1016_j_jcis_2023_06_192
crossref_primary_10_1002_adom_202300124
crossref_primary_10_1016_j_cej_2022_137998
crossref_primary_10_1021_acsanm_5c01052
crossref_primary_10_1002_celc_202300573
crossref_primary_10_1016_j_ces_2023_119437
crossref_primary_10_1007_s42114_025_01410_1
crossref_primary_10_1002_adfm_202315012
crossref_primary_10_1016_j_cej_2023_144698
crossref_primary_10_1002_smll_202500359
crossref_primary_10_1016_j_est_2024_111863
crossref_primary_10_1016_j_jechem_2022_08_022
crossref_primary_10_1002_smll_202301436
crossref_primary_10_1002_adfm_202310117
crossref_primary_10_1016_j_ces_2022_118215
crossref_primary_10_1016_j_jcis_2022_03_030
crossref_primary_10_1016_j_jallcom_2025_179422
crossref_primary_10_1007_s43938_024_00045_w
crossref_primary_10_1016_j_jiec_2024_02_042
crossref_primary_10_1002_adma_202305149
crossref_primary_10_1016_j_jallcom_2024_178281
crossref_primary_10_3390_nano12234341
crossref_primary_10_1021_acsami_2c01159
crossref_primary_10_1088_1361_6528_ad12e7
crossref_primary_10_1002_aenm_202200403
crossref_primary_10_3390_coatings13091588
crossref_primary_10_1016_j_materresbull_2025_113488
crossref_primary_10_1016_j_jpowsour_2021_230861
crossref_primary_10_1016_j_cej_2024_154658
crossref_primary_10_1002_batt_202200264
crossref_primary_10_1093_nsr_nwae238
crossref_primary_10_1016_j_est_2022_105961
crossref_primary_10_1002_adfm_202505201
crossref_primary_10_1007_s12598_024_03049_1
crossref_primary_10_1016_j_jcis_2024_04_182
crossref_primary_10_1002_adma_202419927
crossref_primary_10_1016_j_electacta_2025_146334
crossref_primary_10_1088_1361_6528_ac4064
crossref_primary_10_3390_batteries10100339
crossref_primary_10_1039_D2SC04012C
crossref_primary_10_1016_j_cej_2022_141005
crossref_primary_10_1038_s41467_023_37932_9
crossref_primary_10_3390_bioengineering10030307
crossref_primary_10_1016_j_cej_2022_141243
crossref_primary_10_1002_adma_202408918
crossref_primary_10_1002_batt_202200275
crossref_primary_10_1039_D5CP01495F
crossref_primary_10_1002_adfm_202213578
crossref_primary_10_1016_j_cej_2023_145992
crossref_primary_10_1039_D1NR07209A
crossref_primary_10_1007_s11581_024_05380_0
crossref_primary_10_1016_j_bios_2022_114554
crossref_primary_10_1039_D5EE00615E
crossref_primary_10_1016_j_apsusc_2022_156080
crossref_primary_10_1016_j_est_2024_114924
crossref_primary_10_3390_nano12213762
crossref_primary_10_1002_smll_202400093
crossref_primary_10_1016_j_cej_2024_149171
crossref_primary_10_3390_nano14110935
crossref_primary_10_1155_2023_6211780
crossref_primary_10_1016_j_jallcom_2023_170281
crossref_primary_10_3389_fchem_2022_1111435
crossref_primary_10_1007_s11581_022_04520_8
crossref_primary_10_1002_cssc_202402434
crossref_primary_10_1016_j_cej_2023_143562
crossref_primary_10_1002_eom2_12197
crossref_primary_10_1007_s40820_025_01813_1
crossref_primary_10_1016_j_jechem_2021_12_043
crossref_primary_10_1007_s12598_025_03484_8
crossref_primary_10_26599_NRE_2024_9120148
crossref_primary_10_1002_smsc_202400544
crossref_primary_10_1002_sus2_261
crossref_primary_10_1002_ange_202408667
crossref_primary_10_1021_jacs_4c07482
crossref_primary_10_1002_smll_202306928
crossref_primary_10_1016_j_cej_2024_152569
crossref_primary_10_1002_adma_202407922
crossref_primary_10_1002_advs_202302301
crossref_primary_10_1016_j_jallcom_2022_167644
crossref_primary_10_1002_adma_202509966
crossref_primary_10_1002_aenm_202203720
crossref_primary_10_1016_j_est_2023_109570
crossref_primary_10_1016_j_cej_2021_133355
crossref_primary_10_1002_smll_202206462
crossref_primary_10_1007_s42864_025_00327_y
crossref_primary_10_1007_s42823_024_00726_0
crossref_primary_10_1021_acsami_5c04503
crossref_primary_10_3390_nano13243084
crossref_primary_10_1002_admi_202200104
crossref_primary_10_1002_smll_202300256
crossref_primary_10_1002_smll_202303765
crossref_primary_10_1063_5_0279685
crossref_primary_10_1002_ente_202200409
crossref_primary_10_1016_j_nanoen_2023_109188
crossref_primary_10_1016_j_nxnano_2023_100005
crossref_primary_10_1039_D5CS00515A
crossref_primary_10_1002_adfm_202213009
crossref_primary_10_1016_j_jechem_2023_09_049
crossref_primary_10_1016_j_jelechem_2025_119271
crossref_primary_10_1002_aenm_202402930
crossref_primary_10_1002_chem_202303665
crossref_primary_10_1016_j_microc_2024_110522
crossref_primary_10_1007_s42864_025_00316_1
crossref_primary_10_1016_j_cej_2025_159216
crossref_primary_10_1063_5_0177759
crossref_primary_10_1016_j_jcis_2023_02_132
crossref_primary_10_1002_adfm_202204687
crossref_primary_10_1002_adfm_202508749
crossref_primary_10_1016_j_susmat_2022_e00479
crossref_primary_10_1016_S1872_5805_22_60616_4
crossref_primary_10_1002_smll_202205158
crossref_primary_10_1016_j_est_2025_117567
crossref_primary_10_1016_j_ccr_2022_214985
crossref_primary_10_1016_j_ssi_2022_116114
crossref_primary_10_1002_adfm_202406915
crossref_primary_10_1002_ange_202410734
crossref_primary_10_1039_D2QM01294D
crossref_primary_10_1016_j_mtcomm_2024_108689
crossref_primary_10_3390_cryst14070633
crossref_primary_10_1007_s42823_025_00858_x
crossref_primary_10_1021_acsami_5c03797
crossref_primary_10_1007_s12596_023_01444_y
crossref_primary_10_1016_j_apsusc_2024_160417
crossref_primary_10_1002_smll_202312167
crossref_primary_10_1016_j_optlastec_2023_110342
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_1002_aenm_202400498
crossref_primary_10_1002_aenm_202400493
crossref_primary_10_1016_j_jcis_2022_08_011
crossref_primary_10_1016_j_cej_2024_155353
crossref_primary_10_1002_smll_202407423
crossref_primary_10_1021_jacs_5c02480
crossref_primary_10_1002_aenm_202403757
crossref_primary_10_1002_est2_432
crossref_primary_10_1088_1361_6463_ad6a20
crossref_primary_10_1002_sstr_202300025
crossref_primary_10_1039_D3EE03282E
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1016_j_jechem_2022_11_049
crossref_primary_10_1016_j_apcatb_2024_124289
crossref_primary_10_1002_smll_202107370
crossref_primary_10_1039_D3QI00123G
crossref_primary_10_1002_adfm_202212785
crossref_primary_10_1016_j_cej_2022_138341
crossref_primary_10_1002_adts_202400854
crossref_primary_10_1016_j_apsusc_2022_155843
crossref_primary_10_1021_acsami_4c13188
crossref_primary_10_1002_smll_202302598
crossref_primary_10_1002_smtd_202300708
crossref_primary_10_1016_j_est_2023_109415
crossref_primary_10_1016_j_jcis_2023_11_050
crossref_primary_10_1016_j_ccr_2024_215725
crossref_primary_10_1016_j_commatsci_2023_112536
crossref_primary_10_1016_j_cej_2024_154123
crossref_primary_10_1016_j_jelechem_2023_117252
crossref_primary_10_1002_smll_202405495
crossref_primary_10_1002_adfm_202418307
crossref_primary_10_1002_smll_202411941
crossref_primary_10_1016_j_cej_2022_138115
crossref_primary_10_1002_adma_202204250
crossref_primary_10_1016_j_jechem_2022_11_020
crossref_primary_10_1039_D2SC04008E
crossref_primary_10_1002_smll_202300162
crossref_primary_10_1016_j_apsusc_2022_154864
crossref_primary_10_1002_aenm_202300978
crossref_primary_10_1016_j_jechem_2022_11_026
crossref_primary_10_1002_smtd_202500282
crossref_primary_10_1039_D2DT01951E
crossref_primary_10_1002_adfm_202211679
crossref_primary_10_1002_adfm_202214828
crossref_primary_10_1002_advs_202414616
crossref_primary_10_1016_j_cej_2024_152294
crossref_primary_10_1002_aenm_202502253
crossref_primary_10_1007_s40820_023_01299_9
crossref_primary_10_1080_10408436_2023_2273465
crossref_primary_10_1016_j_cej_2022_140564
crossref_primary_10_1002_advs_202309865
crossref_primary_10_3390_molecules28114334
crossref_primary_10_1002_advs_202204671
crossref_primary_10_1016_j_commatsci_2024_112996
crossref_primary_10_1002_inf2_12377
crossref_primary_10_1007_s11426_024_2277_2
crossref_primary_10_1016_j_jallcom_2025_181936
crossref_primary_10_1002_adfm_202310399
crossref_primary_10_1016_j_actamat_2024_120419
crossref_primary_10_1016_j_jcis_2022_11_064
crossref_primary_10_1016_j_apsusc_2024_159732
crossref_primary_10_1088_2053_1583_ad00ca
crossref_primary_10_1002_aenm_202402743
crossref_primary_10_26599_NRE_2025_9120179
crossref_primary_10_1039_D3SE00919J
crossref_primary_10_1002_smll_202411838
crossref_primary_10_1016_j_colsurfa_2024_133342
crossref_primary_10_1002_adma_202402644
crossref_primary_10_3390_molecules28041831
crossref_primary_10_1016_j_cej_2023_147986
crossref_primary_10_1016_j_jcis_2024_11_211
crossref_primary_10_1002_aenm_202301438
crossref_primary_10_1039_D4EE04566A
crossref_primary_10_1016_j_est_2025_116861
crossref_primary_10_1002_adfm_202414032
crossref_primary_10_1016_j_jallcom_2022_164981
crossref_primary_10_1007_s11581_024_05473_w
crossref_primary_10_1002_cey2_691
crossref_primary_10_1002_cey2_572
crossref_primary_10_1002_cey2_213
crossref_primary_10_3390_cryst12101381
crossref_primary_10_1016_j_cej_2023_144590
crossref_primary_10_1039_D5CP02237A
crossref_primary_10_3390_nano13212879
crossref_primary_10_1016_j_jelechem_2023_117219
crossref_primary_10_1002_adfm_202508107
crossref_primary_10_1002_adfm_202212689
crossref_primary_10_3390_polym15204159
crossref_primary_10_1063_5_0199239
crossref_primary_10_1002_cnl2_171
crossref_primary_10_1039_D5CP00156K
crossref_primary_10_1016_j_jcis_2022_07_126
crossref_primary_10_1002_smll_202206081
crossref_primary_10_1002_smll_202406030
crossref_primary_10_1039_D2NR01787C
crossref_primary_10_1007_s00170_023_12854_4
crossref_primary_10_1002_admi_202500308
crossref_primary_10_1002_smll_202304264
crossref_primary_10_1016_S1872_5805_24_60838_3
crossref_primary_10_1016_j_jallcom_2025_183486
crossref_primary_10_1002_anie_202216290
crossref_primary_10_1016_j_cej_2025_165275
crossref_primary_10_3390_molecules28041621
crossref_primary_10_1002_aenm_202403593
crossref_primary_10_1002_adma_202303520
crossref_primary_10_1002_smll_202202582
crossref_primary_10_1002_smll_202304132
crossref_primary_10_1002_smll_202304131
crossref_primary_10_1039_D5TA01405K
crossref_primary_10_1016_j_cej_2024_157002
crossref_primary_10_1016_j_cej_2024_157001
crossref_primary_10_1016_j_cej_2022_139714
crossref_primary_10_1016_j_cej_2022_140824
crossref_primary_10_1002_slct_202203107
crossref_primary_10_1016_j_cej_2023_141609
crossref_primary_10_1016_j_ssi_2022_116097
crossref_primary_10_1016_j_est_2024_112168
crossref_primary_10_1002_anie_202408667
crossref_primary_10_1016_j_mtener_2022_100982
crossref_primary_10_1002_adma_202402961
crossref_primary_10_1002_inf2_70053
crossref_primary_10_1002_cphc_202300761
crossref_primary_10_1039_D5RA05408G
crossref_primary_10_1088_1361_6528_ac61c9
crossref_primary_10_1016_j_jcis_2025_138052
crossref_primary_10_1063_5_0101429
crossref_primary_10_1016_j_ijhydene_2021_07_220
crossref_primary_10_1016_j_est_2024_115205
crossref_primary_10_1002_adfm_202411990
crossref_primary_10_1007_s12633_023_02417_3
crossref_primary_10_1002_smll_202502194
crossref_primary_10_1016_j_est_2024_113261
crossref_primary_10_1016_j_cej_2025_165492
crossref_primary_10_1039_D4CY01171F
crossref_primary_10_1039_D3RA02350H
crossref_primary_10_1016_j_jechem_2023_10_008
crossref_primary_10_1016_j_cej_2022_136222
crossref_primary_10_1002_aesr_202300115
crossref_primary_10_1002_aenm_202405674
crossref_primary_10_1016_j_matlet_2023_133824
crossref_primary_10_1002_adfm_202307835
crossref_primary_10_1002_smll_202303266
crossref_primary_10_1021_acs_inorgchem_5c00513
crossref_primary_10_1007_s11581_025_06106_6
crossref_primary_10_1016_j_mtener_2025_101998
crossref_primary_10_1007_s11581_023_04922_2
crossref_primary_10_1007_s12598_024_02704_x
crossref_primary_10_1039_D5NR00156K
crossref_primary_10_1002_idm2_12177
crossref_primary_10_1016_j_seppur_2022_121156
crossref_primary_10_1039_D3NR01836A
crossref_primary_10_1002_adma_202306701
crossref_primary_10_1002_aenm_202402110
crossref_primary_10_1002_ente_202100547
crossref_primary_10_1039_D5MH00867K
crossref_primary_10_1039_D3MH00420A
crossref_primary_10_1002_smll_202203630
crossref_primary_10_1016_j_cej_2025_167546
crossref_primary_10_1016_j_jechem_2023_04_035
crossref_primary_10_1016_j_jiec_2024_05_034
crossref_primary_10_1007_s12598_023_02486_8
crossref_primary_10_1002_anie_202410734
crossref_primary_10_1002_smll_202311703
crossref_primary_10_1002_aenm_202204014
crossref_primary_10_1021_acsnano_4c02289
crossref_primary_10_1002_adma_202501490
crossref_primary_10_1016_j_ijhydene_2025_04_387
crossref_primary_10_1016_j_jcis_2024_01_176
crossref_primary_10_1002_adsu_202500056
crossref_primary_10_1002_smll_202406090
crossref_primary_10_1002_smtd_202201025
crossref_primary_10_3390_catal14060388
crossref_primary_10_1002_adma_202200777
crossref_primary_10_1007_s12274_024_6693_3
crossref_primary_10_1002_adma_202305513
crossref_primary_10_1007_s40843_021_1783_0
crossref_primary_10_1002_adfm_202211505
crossref_primary_10_1016_j_ccr_2024_215880
crossref_primary_10_1007_s11581_024_05839_0
crossref_primary_10_1039_D4TC04933K
crossref_primary_10_1007_s40843_023_2599_9
crossref_primary_10_1039_D3NR06677K
crossref_primary_10_1016_j_seppur_2025_132834
crossref_primary_10_1016_j_mtcomm_2022_104034
crossref_primary_10_1002_adfm_202305624
crossref_primary_10_1016_j_apsusc_2022_154668
crossref_primary_10_1016_j_cej_2023_147100
crossref_primary_10_1002_adts_202300579
crossref_primary_10_1007_s40820_025_01886_y
crossref_primary_10_1016_j_cej_2023_146126
crossref_primary_10_1016_j_ssc_2022_115024
crossref_primary_10_1021_acsomega_5c04337
crossref_primary_10_1016_j_ccr_2023_215450
crossref_primary_10_1002_aenm_202204114
crossref_primary_10_1039_D4QI01704H
crossref_primary_10_1016_j_jpowsour_2022_231593
crossref_primary_10_1016_j_jcis_2024_01_075
crossref_primary_10_26599_CF_2025_9200041
crossref_primary_10_1002_adfm_202411941
Cites_doi 10.1016/j.nanoen.2016.10.019
10.1016/j.carbon.2016.08.028
10.1038/ncomms7647
10.1021/acsami.5b11492
10.1016/j.ensm.2019.03.010
10.1021/acs.jpclett.5b02513
10.1016/j.jpowsour.2019.05.045
10.1038/s41467-019-09400-w
10.1002/aenm.201902674
10.1002/advs.201800613
10.1016/j.apsusc.2018.06.071
10.1021/acsami.9b11419
10.1016/j.nanoen.2017.01.009
10.1016/j.ensm.2017.12.015
10.1039/C6TA03083A
10.1016/j.apsusc.2019.02.044
10.1021/acsnano.9b06267
10.1039/C4TA05568C
10.1016/j.carbon.2019.07.001
10.1166/sam.2013.1626
10.1016/j.mtnano.2020.100076
10.1039/C9TA10088A
10.1002/adma.201705516
10.1002/er.4963
10.1016/j.cej.2018.08.187
10.1039/C8TA09423C
10.1002/smll.201700758
10.1364/OE.27.019843
10.1007/s11426-020-9858-3
10.1002/aenm.202002424
10.1002/smll.201704065
10.1039/C2TA00057A
10.1038/nenergy.2017.89
10.1002/sstr.202000047
10.1016/j.jpowsour.2018.10.066
10.1021/acs.jpcc.9b06070
10.1021/acsnano.7b08161
10.1016/j.apmt.2020.100765
10.1007/s40820-019-0245-5
10.1016/j.jpowsour.2018.09.046
10.1016/j.apsusc.2018.04.254
10.1021/acs.jpcc.8b05076
10.1016/j.nanoen.2018.03.012
10.1021/acs.nanolett.8b01988
10.1002/smll.201800659
10.1016/j.cej.2018.09.131
10.1021/acs.nanolett.6b00057
10.1002/aenm.201900567
10.1039/C8TA11249E
10.1002/cey2.14
10.1021/acsami.7b07939
10.1016/j.jpowsour.2017.12.046
10.1016/j.surfcoat.2018.12.128
10.1002/aelm.201900953
10.1016/j.cej.2018.03.042
10.1002/anie.201810579
10.1021/acsenergylett.6b00164
10.1016/j.electacta.2019.135311
10.1038/s41598-019-55776-6
10.1016/j.cej.2019.01.185
10.1002/sstr.202000010
10.1002/celc.202001409
10.1016/j.ensm.2019.07.001
10.1039/C7CS00160F
10.1016/j.ces.2017.09.007
10.1016/j.nanoen.2017.07.012
10.1038/nnano.2012.71
10.1016/j.cej.2018.10.026
10.1002/aenm.202000927
10.1039/C6TA04398D
10.1021/acsnano.9b00816
10.1016/j.ensm.2019.08.018
10.1002/smll.201702181
10.1016/j.cej.2020.124060
10.1021/acsami.8b01613
10.1021/acsami.9b14912
10.1002/admi.201601187
10.1016/j.jssc.2020.121230
10.1039/C8NR00865E
10.1016/j.jechem.2019.08.013
10.1016/j.jpowsour.2015.11.073
10.1021/acs.jpcc.8b07062
10.1002/adma.201404140
10.1039/C6TA03211G
10.1016/j.jpowsour.2017.07.079
10.1016/j.carbon.2019.03.022
10.1002/adfm.201703390
10.1002/aenm.201601285
10.1002/aenm.201500118
10.1016/j.cej.2017.09.155
10.1039/C9TA02388G
10.1016/j.cej.2019.123675
10.1016/j.apsusc.2019.02.081
10.1039/C9TA07302G
10.1116/1.4982736
10.1039/C9NR07249G
10.1016/j.jpowsour.2017.04.020
10.1002/adfm.201606232
10.1002/admi.201901729
10.1021/acsami.8b07082
10.1016/j.apsusc.2018.09.038
10.1039/C9EN01265F
10.1088/1361-6528/aba7e1
10.1039/C9TA11451C
10.1007/s12274-017-1531-5
10.1039/C8TA10422K
10.1002/cey2.57
10.1016/j.carbon.2018.03.028
10.1016/j.est.2020.101446
10.1021/acsnano.7b00557
10.1021/acsnano.8b05534
10.1016/j.apsusc.2019.05.110
10.1016/j.nanoen.2015.12.010
10.1039/C9TA00275H
10.1002/ente.201900649
10.1021/acsami.6b03368
10.1021/nl402810d
10.1016/j.ensm.2018.06.028
10.1039/C9TA00975B
10.1039/C9TA03551F
10.1021/acs.nanolett.5b01257
10.1002/adfm.201807971
10.1016/j.jpowsour.2020.228239
10.1016/j.nanoen.2020.104468
10.1002/adma.201805754
10.1021/jp302265n
10.1002/smtd.201900828
10.1021/acsnano.7b06061
10.1021/acsaem.9b00904
10.1039/C7TA06849B
10.1016/j.cej.2017.07.129
10.1038/s41563-019-0366-8
10.1021/acsami.8b04540
10.1016/j.electacta.2018.03.198
10.1038/nmat4703
10.1002/adfm.201302122
10.1149/2.0721816jes
10.1021/acsaem.0c01855
10.1039/C8TA12497C
10.1039/C9CE01621J
10.1016/j.jallcom.2019.153364
10.1039/C8TA09740B
10.1016/j.ensm.2020.04.004
10.1002/chem.201806231
10.1002/adma.201501059
10.1038/s41467-020-16077-z
10.1016/j.nanoen.2019.04.044
10.1039/C8TA09528K
10.1016/j.cej.2018.03.166
10.1016/j.nanoen.2019.103991
10.1002/cey2.2
10.1016/j.nanoen.2017.06.009
10.1016/j.apsusc.2018.02.053
10.1039/C8TA10442E
10.1039/C8CC06924G
10.1039/C9TA09646A
10.1002/aenm.202000091
10.1002/aenm.201700403
10.1002/adma.201700214
10.1016/j.ensm.2019.05.039
10.1039/C6NR05584B
10.1002/adfm.201807377
10.1002/smll.201704517
10.1016/j.jpowsour.2017.01.014
10.1016/j.cej.2020.125778
10.1016/j.cej.2017.10.007
10.1016/j.nanoen.2019.03.060
10.1016/j.electacta.2019.04.092
10.1021/acsami.0c18285
10.1039/C9TA02212K
10.1002/smll.202001714
10.1007/s40820-019-0290-0
10.1021/acsnano.0c00020
10.1002/smll.201907670
10.1016/j.electacta.2020.135695
10.1021/acs.jpcc.9b02399
10.1016/j.nanoen.2018.03.061
10.1016/j.nanoen.2019.104037
10.1039/C9TA11965E
10.1016/j.cej.2018.06.181
10.1016/j.nanoen.2014.04.007
10.1016/j.jmst.2019.05.074
10.1007/s12274-015-0783-1
10.1016/j.jallcom.2019.05.366
10.1002/adfm.201404078
10.1016/j.materresbull.2020.110817
10.1002/ppsc.201800138
10.1016/j.electacta.2020.136270
10.1016/j.electacta.2018.08.071
10.1002/celc.201801166
10.1039/C8QI01081A
10.1002/adma.201603040
10.1016/j.jpowsour.2013.10.019
10.1002/anie.201510978
10.1016/j.cej.2019.122672
10.1021/acsnano.9b02231
10.1002/anie.201907516
10.1002/anie.201913174
10.1088/1361-6463/aa5aaf
10.1016/j.cej.2018.08.143
10.1002/smtd.201800328
10.1016/j.apcatb.2019.03.021
10.1016/j.cej.2018.08.208
10.1021/acsenergylett.7b01063
10.1002/smtd.201700296
10.1016/j.jpowsour.2019.227616
10.1002/smll.202001090
10.1002/smll.202003434
10.1016/j.jechem.2019.04.023
10.1002/adfm.201901925
10.1021/acsami.7b19448
10.1016/j.electacta.2016.07.155
10.1002/aenm.201902352
10.1016/j.cej.2019.123890
10.1016/j.jpowsour.2019.226904
10.1002/advs.201600243
10.1016/j.nanoen.2019.104190
10.1016/j.jcis.2020.04.039
10.1021/acsami.8b19501
10.1002/chem.201705855
10.1007/s12274-013-0292-z
10.1016/j.jpowsour.2019.01.036
10.1016/j.electacta.2018.12.075
10.1016/j.jpowsour.2015.12.094
10.1038/nnano.2015.194
10.1016/j.nanoen.2018.04.001
10.1016/j.ensm.2018.11.024
10.1002/adma.201804084
10.1016/j.nanoen.2016.02.019
10.1039/C9NJ01255A
10.1021/acs.jpcc.8b10550
10.1016/j.ceramint.2016.02.146
10.1002/aenm.201900219
10.1039/C8NJ05514A
10.1002/cey2.66
10.1038/ncomms8873
10.1002/anie.201710616
10.1016/j.cej.2019.123373
10.1002/adma.201902603
10.1039/C8TA11419F
10.1002/adfm.201803901
10.1039/C8CE00487K
10.1002/cey2.85
10.1021/acsnano.8b07172
10.1016/j.cej.2018.04.125
10.1016/j.carbon.2019.07.040
10.1016/j.cej.2019.123206
10.1016/j.cej.2019.123734
10.1016/j.nanoen.2017.09.027
10.1002/aenm.201702383
10.1016/0927-0248(92)90095-7
10.1021/acsaem.8b02201
10.1002/aenm.202000081
10.1002/adfm.201707578
10.1039/C4TA05059B
10.1016/j.apsusc.2019.144586
10.1002/adfm.201803291
10.1016/j.surfcoat.2018.12.075
10.1016/j.cej.2020.125672
10.1016/j.electacta.2020.137629
10.1021/acsnano.7b03321
10.1039/C4TA05747C
10.1002/advs.201700887
10.1021/acsami.7b00248
10.1039/C5TA04311E
10.1021/nl4027549
10.1002/adfm.201910302
10.1039/C9TA09902F
10.1039/D0QM01012J
10.1016/j.nanoen.2019.03.002
10.1016/j.cej.2019.03.168
10.1021/acsnano.5b00376
10.1016/j.ensm.2018.10.002
10.1002/anie.201209689
10.1111/jace.16778
10.1002/smll.201800640
10.1007/s40820-021-00595-6
10.1002/chem.201702387
10.1016/j.cej.2019.122486
10.1016/j.cej.2019.122189
10.1002/cey2.34
10.1002/advs.201700491
10.1016/j.cej.2018.09.142
10.1016/j.carbon.2019.07.021
10.1002/adfm.201808522
10.1016/j.jpowsour.2019.227696
10.1016/j.jechem.2017.10.022
10.1038/nmat4299
10.1016/j.jpowsour.2015.11.027
10.1039/C8TA10972A
10.1002/sstr.202000093
10.1016/j.nanoen.2015.05.013
10.1016/j.materresbull.2020.111186
10.1088/1361-6528/aafcef
10.1039/C6TA07842G
10.1016/j.nanoen.2014.02.012
10.1007/s40820-019-0312-y
10.1039/C8TA11578H
10.1016/j.jallcom.2018.12.176
10.1021/acsnano.9b00375
10.1039/C9TA03330K
10.1016/j.nanoen.2015.01.003
10.1021/nn901632g
10.1088/1361-6528/aaf76c
10.1021/nl5032293
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202100855
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202100855
ADMA202100855
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51502063; 51772272; 52073252; 51801180
– fundername: National youth talent support program of China
– fundername: Fundamental Research Foundation for Universities of Heilongjiang Province
  funderid: LGYC2018JQ006
– fundername: Project for guiding local Science and Technology Development by Central Government of China
  funderid: ZY18C04
– fundername: Science Funds for Young Innovative Talents of HUST
  funderid: 201505
– fundername: Natural Science Funds for Distinguished Young Scholar of Zhejiang Province
  funderid: LR20E020001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4165-e7f6b41ea11723c98b30bcf27aa42b0eff09f97d90856771bb9a2014ca6d52ee3
IEDL.DBID DRFUL
ISICitedReferencesCount 680
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653749700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:36:29 EDT 2025
Fri Jul 25 07:37:50 EDT 2025
Sat Nov 29 07:16:31 EST 2025
Tue Nov 18 22:31:02 EST 2025
Wed Jan 22 16:28:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4165-e7f6b41ea11723c98b30bcf27aa42b0eff09f97d90856771bb9a2014ca6d52ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6014-328X
PQID 2548925382
PQPubID 2045203
PageCount 37
ParticipantIDs proquest_miscellaneous_2532242594
proquest_journals_2548925382
crossref_citationtrail_10_1002_adma_202100855
crossref_primary_10_1002_adma_202100855
wiley_primary_10_1002_adma_202100855_ADMA202100855
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 441
2021; 64
2020; 20
2019; 11
2016; 306
2019; 10
2020; 285
2019; 13
2019; 12
2020; 16
2016; 30
2019; 19
2019; 18
2020; 14
2016; 304
2020; 13
2020; 12
2020; 11
2020; 10
2018; 451
2019; 20
2018; 333
2019; 23
2018; 456
2013; 52
2018; 334
2019; 25
2019; 27
2016; 42
2019; 29
2010; 4
2019; 153
2019; 31
2020; 383
2018; 347
2019; 30
2020; 384
2018; 343
2020; 381
2018; 345
2019; 36
2020; 380
2020; 820
2020; 387
2016; 16
2016; 4
2017; 50
2018; 352
2016; 1
2020; 31
2020; 30
2019; 43
2020; 392
2016; 20
2020; 24
2020; 22
1992; 27
2016; 213
2020; 399
2016; 8
2019; 298
2020; 29
2016; 22
2017; 41
2019; 409
2016; 109
2018; 402
2021; 368
2017; 46
2019; 59
2019; 58
2020; 126
2020; 59
2020; 55
2017; 353
2020; 8
55
2020; 7
2020; 6
2019; 60
2020; 4
2020; 3
2020; 2
2020; 1
2019; 61
2013; 13
2019; 66
2017; 39
2019; 65
2017; 38
2017; 32
2017; 35
2020; 44
2017; 363
2020; 43
2014; 7
2014; 6
2021; 8
2021; 5
2015; 6
2015; 5
2021; 3
2015; 3
2021; 2
2017; 27
2019; 309
2017; 23
2020; 346
2017; 29
2020; 103
2020; 465
2017; 330
2015; 9
2015; 8
2019; 782
2017; 16
2020
2017; 11
2017; 10
2020; 70
2017; 13
2019; 414
2017; 342
2018; 54
2018; 57
2018; 165
2013; 1
2018; 289
2014; 24
2013; 5
2013; 6
2018; 48
2018; 47
2014; 248
2018; 8
2018; 3
2018; 2
2018; 5
2020; 330
2020; 450
2014; 14
2020; 338
2018; 30
2020; 574
2019; 799
2019; 437
2019; 431
2018; 35
2019; 7
2018; 28
2019; 9
2019; 3
2019; 6
2019; 2
2019; 1
1994
2018; 20
2019; 463
2018; 27
2018; 24
2018; 18
2021; 137
2018; 12
2018; 11
2018; 10
2012; 116
2018; 15
2018; 14
2017; 5
2018; 122
2017; 7
2017; 2
2017; 4
2019; 487
2019; 366
2019; 360
2017; 9
2019; 123
2018; 133
2018; 378
2019; 357
2019; 358
2019; 479
2019; 355
2019; 356
2019; 359
2015; 12
2015; 15
2015; 14
2015; 10
2019; 148
2017; 174
2020; 505
2021; 14
2021; 13
2015; 25
2015; 27
2018; 272
2019; 378
2019; 250
2012; 7
1998; 32
2019; 370
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_277_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_292_1
Zhao D. (e_1_2_9_163_1) 2019; 12
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_314_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_265_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_288_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_280_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_278_1
e_1_2_9_270_1
e_1_2_9_293_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_315_1
Ding H. (e_1_2_9_289_1) 2020
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_266_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_281_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_279_1
Alferov Z. I. (e_1_2_9_2_1) 1998; 32
e_1_2_9_294_1
e_1_2_9_92_1
e_1_2_9_109_1
Huang M. (e_1_2_9_129_1)
e_1_2_9_271_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
Song W. (e_1_2_9_316_1) 2020; 13
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_267_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_282_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_257_1
Rabiei Baboukani A. (e_1_2_9_79_1)
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
Frensley W. R. (e_1_2_9_4_1) 1994
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_245_1
Zhang Q. (e_1_2_9_65_1) 2021; 14
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_268_1
e_1_2_9_260_1
e_1_2_9_283_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
Hao J. (e_1_2_9_55_1) 2020
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_318_1
e_1_2_9_258_1
e_1_2_9_90_1
e_1_2_9_273_1
e_1_2_9_296_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
He J. (e_1_2_9_195_1) 2019; 12
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_269_1
e_1_2_9_306_1
e_1_2_9_284_1
e_1_2_9_261_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_259_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_186_1
e_1_2_9_311_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_307_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_285_1
e_1_2_9_262_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
Li C. (e_1_2_9_310_1) 2018; 11
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_298_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_237_1
e_1_2_9_275_1
e_1_2_9_252_1
e_1_2_9_290_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_312_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_308_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_286_1
e_1_2_9_263_1
e_1_2_9_240_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_300_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_276_1
e_1_2_9_299_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_291_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_264_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
Zhou T. (e_1_2_9_200_1) 2017; 10
e_1_2_9_116_1
e_1_2_9_177_1
Song Y. (e_1_2_9_202_1) 2018; 11
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_301_1
e_1_2_9_192_1
References_xml – volume: 48
  start-page: 510
  year: 2018
  publication-title: Nano Energy
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 355
  start-page: 390
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 479
  year: 2015
  publication-title: Nano Energy
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 465
  year: 2020
  publication-title: J. Power Sources
– volume: 4
  start-page: 9403
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 344
  year: 2019
  publication-title: Energy Environ. Mater.
– volume: 7
  start-page: 1725
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 363
  start-page: 392
  year: 2017
  publication-title: J. Power Sources
– volume: 358
  start-page: 1253
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 8909
  year: 2016
  publication-title: Ceram. Int.
– volume: 463
  start-page: 986
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 611
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 61
  start-page: 96
  year: 2019
  publication-title: Nano Energy
– volume: 13
  start-page: 4977
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 782
  start-page: 38
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 123
  start-page: 3959
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 487
  start-page: 285
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 248
  start-page: 886
  year: 2014
  publication-title: J. Power Sources
– volume: 353
  start-page: 202
  year: 2017
  publication-title: J. Power Sources
– volume: 10
  start-page: 7343
  year: 2018
  publication-title: Nanoscale
– volume: 2
  start-page: 5219
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 133
  start-page: 162
  year: 2018
  publication-title: Carbon
– volume: 14
  start-page: 826
  year: 2015
  publication-title: Nat. Mater.
– volume: 148
  start-page: 525
  year: 2019
  publication-title: Carbon
– volume: 32
  start-page: 494
  year: 2017
  publication-title: Nano Energy
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 345
  start-page: 320
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 7691
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 333
  start-page: 111
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 5091
  year: 2018
  publication-title: CrystEngComm
– volume: 6
  start-page: 167
  year: 2013
  publication-title: Nano Res.
– volume: 479
  start-page: 225
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 132
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 4572
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 6647
  year: 2015
  publication-title: Nat. Commun.
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 126
  year: 2020
  publication-title: Mater. Res. Bull.
– publication-title: Small Struct.
– volume: 366
  start-page: 460
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 494
  year: 2018
  publication-title: Nano Energy
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 121
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 384
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 1688
  year: 2019
  publication-title: New J. Chem.
– volume: 7
  start-page: 2291
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 213
  start-page: 663
  year: 2016
  publication-title: Electrochim. Acta
– volume: 298
  start-page: 43
  year: 2019
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 101
  year: 2021
  publication-title: Carbon Energy
– volume: 18
  start-page: 541
  year: 2019
  publication-title: Nat. Mater.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 245
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 11
  year: 2020
  publication-title: Mater.Today Nano
– volume: 20
  start-page: 225
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 59
  start-page: 582
  year: 2019
  publication-title: Nano Energy
– volume: 22
  start-page: 1197
  year: 2020
  publication-title: CrystEngComm
– volume: 8
  start-page: 3450
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2233
  year: 2010
  publication-title: ACS Nano
– volume: 343
  start-page: 572
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 378
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 253
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: J. Energy Storage
– volume: 285
  year: 2020
  publication-title: J. Solid State Chem.
– volume: 59
  start-page: 3638
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 109
  start-page: 461
  year: 2016
  publication-title: Carbon
– volume: 3
  start-page: 1216
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 356
  start-page: 483
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 352
  start-page: 29
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 1
  year: 2016
  publication-title: Nano Energy
– year: 2020
  publication-title: Energy Environ. Mater.
– volume: 41
  start-page: 154
  year: 2017
  publication-title: Nano Energy
– volume: 6
  start-page: 117
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 3
  start-page: 1717
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 174
  start-page: 104
  year: 2017
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 1694
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 12
  start-page: 437
  year: 2015
  publication-title: Nano Energy
– volume: 24
  start-page: 1458
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 189
  year: 2016
  publication-title: Nano Energy
– volume: 441
  start-page: 232
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 450
  year: 2020
  publication-title: J. Power Sources
– volume: 16
  year: 2020
  publication-title: Small
– volume: 38
  start-page: 368
  year: 2017
  publication-title: Nano Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 153
  start-page: 217
  year: 2019
  publication-title: Carbon
– volume: 820
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 380
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 4633
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 227
  year: 2018
  publication-title: Nano Energy
– volume: 7
  start-page: 72
  year: 2014
  publication-title: Nano Energy
– volume: 11
  start-page: 3201
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 10
  start-page: 980
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 57
  start-page: 1846
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 392
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 335
  year: 1992
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2
  start-page: 54
  year: 2020
  publication-title: Carbon Energy
– volume: 103
  start-page: 1088
  year: 2020
  publication-title: J. Am. Ceram. Soc.
– volume: 36
  start-page: 64
  year: 2019
  publication-title: J. Energy Chem.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 5
  start-page: 1043
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 541
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 437
  year: 2019
  publication-title: J. Power Sources
– volume: 7
  start-page: 1160
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 107
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 55
  start-page: 3408
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 57
  year: 2019
  publication-title: Carbon Energy
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 433
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 56
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 1
  start-page: 173
  year: 2019
  publication-title: Carbon Energy
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 574
  start-page: 355
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 1764
  year: 2019
  publication-title: Nat. Commun.
– volume: 402
  start-page: 340
  year: 2018
  publication-title: J. Power Sources
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 55
  start-page: 167
  year: 2020
  publication-title: J. Mater. Sci. Technol.
– volume: 13
  start-page: 3666
  year: 2019
  publication-title: ACS Nano
– volume: 8
  start-page: 2763
  year: 2015
  publication-title: Nano Res.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 350
  year: 2020
  publication-title: Carbon Energy
– volume: 347
  start-page: 552
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 153
  start-page: 625
  year: 2019
  publication-title: Carbon
– volume: 35
  year: 2018
  publication-title: Part. Part. Syst. Charact.
– volume: 3
  start-page: 1258
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 409
  start-page: 112
  year: 2019
  publication-title: J. Power Sources
– volume: 14
  year: 2018
  publication-title: Small
– volume: 799
  start-page: 345
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 289
  start-page: 193
  year: 2018
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 2620
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 20
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 451
  start-page: 280
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 339
  year: 2015
  publication-title: Adv. Mater.
– volume: 11
  start-page: 6474
  year: 2017
  publication-title: ACS Nano
– volume: 60
  start-page: 332
  year: 2019
  publication-title: Nano Energy
– volume: 306
  start-page: 78
  year: 2016
  publication-title: J. Power Sources
– volume: 13
  start-page: 4876
  year: 2013
  publication-title: Nano Lett.
– volume: 378
  start-page: 248
  year: 2018
  publication-title: J. Power Sources
– volume: 24
  start-page: 3873
  year: 2018
  publication-title: Chem.‐Eur. J.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 456
  start-page: 104
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 13
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 14
  start-page: 3610
  year: 2020
  publication-title: ACS Nano
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 6964
  year: 2014
  publication-title: Nano Lett.
– volume: 27
  start-page: 3687
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 3953
  year: 2018
  publication-title: ChemElectroChem
– volume: 7
  start-page: 1315
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 465
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 368
  year: 2021
  publication-title: Electrochim. Acta
– volume: 431
  start-page: 93
  year: 2019
  publication-title: J. Power Sources
– volume: 153
  start-page: 62
  year: 2019
  publication-title: Carbon
– volume: 2
  start-page: 2169
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 13
  start-page: 5635
  year: 2019
  publication-title: ACS Nano
– volume: 14
  start-page: 965
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 24
  start-page: 208
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 3136
  year: 2017
  publication-title: Nano Res.
– volume: 10
  start-page: 7201
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 304
  start-page: 373
  year: 2016
  publication-title: J. Power Sources
– volume: 39
  start-page: 291
  year: 2017
  publication-title: Nano Energy
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 12
  start-page: 1592
  year: 2018
  publication-title: ACS Nano
– volume: 7
  start-page: 753
  year: 2020
  publication-title: Environ. Sci.: Nano
– volume: 505
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 414
  start-page: 540
  year: 2019
  publication-title: J. Power Sources
– volume: 64
  start-page: 238
  year: 2021
  publication-title: Sci. China: Chem.
– volume: 6
  start-page: 7873
  year: 2015
  publication-title: Nat. Commun.
– volume: 346
  year: 2020
  publication-title: Electrochim. Acta
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 7
  start-page: 5760
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1260
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 338
  year: 2020
  publication-title: Electrochim. Acta
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 356
  start-page: 1042
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 479
  start-page: 1098
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 779
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 374
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 15
  start-page: 4135
  year: 2015
  publication-title: Nano Lett.
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 2520
  year: 2020
  publication-title: Nat. Commun.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 18
  start-page: 5569
  year: 2018
  publication-title: Nano Lett.
– volume: 43
  start-page: 129
  year: 2020
  publication-title: J. Energy Chem.
– volume: 8
  start-page: 2372
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  year: 2021
  publication-title: Mater. Res. Bull.
– volume: 306
  start-page: 791
  year: 2016
  publication-title: J. Power Sources
– volume: 330
  start-page: 462
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 81
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 342
  start-page: 964
  year: 2017
  publication-title: J. Power Sources
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 44
  start-page: 518
  year: 2020
  publication-title: Int. J. Energy Res.
– volume: 23
  year: 2017
  publication-title: Chem.‐Eur. J.
– volume: 387
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 6
  start-page: 5002
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– year: 1994
– volume: 8
  start-page: 697
  year: 2021
  publication-title: ChemElectroChem
– volume: 27
  start-page: 591
  year: 2018
  publication-title: J. Energy Chem.
– volume: 7
  start-page: 1658
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 19
  year: 2014
  publication-title: Nano Energy
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 11
  start-page: 5055
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 424
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 309
  start-page: 234
  year: 2019
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 1393
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 5289
  year: 2013
  publication-title: Nano Lett.
– volume: 370
  start-page: 400
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 35
  year: 2017
  publication-title: J. Vac. Sci. Technol., B
– volume: 7
  start-page: 2106
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 5530
  year: 2017
  publication-title: ACS Nano
– volume: 357
  start-page: 220
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 8444
  year: 2019
  publication-title: New J. Chem.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3254
  year: 2015
  publication-title: ACS Nano
– volume: 7
  start-page: 9230
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 1055
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1667
  year: 2013
  publication-title: Sci. Adv. Mater.
– volume: 2
  start-page: 308
  year: 2020
  publication-title: Carbon Energy
– volume: 13
  start-page: 69
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 360
  start-page: 73
  year: 2019
  publication-title: Surf. Coat. Technol.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 25
  start-page: 5416
  year: 2019
  publication-title: Chem.‐Eur. J.
– volume: 23
  start-page: 35
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 6644
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1694
  year: 2017
  publication-title: Energy Environ. Mater.
– volume: 30
  start-page: 347
  year: 2016
  publication-title: Nano Energy
– volume: 12
  start-page: 241
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  start-page: 1
  year: 1998
  publication-title: Fiz. Tekh. Poluprovodn.
– volume: 359
  start-page: 384
  year: 2019
  publication-title: Surf. Coat. Technol.
– volume: 272
  start-page: 77
  year: 2018
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 2054
  year: 2016
  publication-title: Nano Lett.
– volume: 250
  start-page: 71
  year: 2019
  publication-title: Appl. Catal., B
– volume: 334
  start-page: 932
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 2422
  year: 2019
  publication-title: Energy Environ. Mater.
– volume: 31
  year: 2020
  publication-title: Nanotechnology
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– ident: e_1_2_9_85_1
  doi: 10.1016/j.nanoen.2016.10.019
– ident: e_1_2_9_96_1
  doi: 10.1016/j.carbon.2016.08.028
– ident: e_1_2_9_81_1
  doi: 10.1038/ncomms7647
– ident: e_1_2_9_108_1
  doi: 10.1021/acsami.5b11492
– ident: e_1_2_9_106_1
  doi: 10.1016/j.ensm.2019.03.010
– ident: e_1_2_9_86_1
  doi: 10.1021/acs.jpclett.5b02513
– ident: e_1_2_9_190_1
  doi: 10.1016/j.jpowsour.2019.05.045
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-019-09400-w
– ident: e_1_2_9_302_1
  doi: 10.1002/aenm.201902674
– ident: e_1_2_9_150_1
  doi: 10.1002/advs.201800613
– ident: e_1_2_9_273_1
  doi: 10.1016/j.apsusc.2018.06.071
– ident: e_1_2_9_221_1
  doi: 10.1021/acsami.9b11419
– ident: e_1_2_9_62_1
  doi: 10.1016/j.nanoen.2017.01.009
– ident: e_1_2_9_175_1
  doi: 10.1016/j.ensm.2017.12.015
– ident: e_1_2_9_99_1
  doi: 10.1039/C6TA03083A
– ident: e_1_2_9_91_1
  doi: 10.1016/j.apsusc.2019.02.044
– ident: e_1_2_9_212_1
  doi: 10.1021/acsnano.9b06267
– ident: e_1_2_9_254_1
  doi: 10.1039/C4TA05568C
– ident: e_1_2_9_50_1
  doi: 10.1016/j.carbon.2019.07.001
– ident: e_1_2_9_159_1
  doi: 10.1166/sam.2013.1626
– ident: e_1_2_9_317_1
  doi: 10.1016/j.mtnano.2020.100076
– ident: e_1_2_9_52_1
  doi: 10.1039/C9TA10088A
– volume: 13
  start-page: 4977
  year: 2020
  ident: e_1_2_9_316_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_49_1
  doi: 10.1002/adma.201705516
– ident: e_1_2_9_151_1
  doi: 10.1002/er.4963
– ident: e_1_2_9_117_1
  doi: 10.1016/j.cej.2018.08.187
– ident: e_1_2_9_90_1
  doi: 10.1039/C8TA09423C
– ident: e_1_2_9_84_1
  doi: 10.1002/smll.201700758
– ident: e_1_2_9_155_1
  doi: 10.1364/OE.27.019843
– ident: e_1_2_9_294_1
  doi: 10.1007/s11426-020-9858-3
– ident: e_1_2_9_27_1
  doi: 10.1002/aenm.202002424
– ident: e_1_2_9_115_1
  doi: 10.1002/smll.201704065
– ident: e_1_2_9_73_1
  doi: 10.1039/C2TA00057A
– ident: e_1_2_9_5_1
  doi: 10.1038/nenergy.2017.89
– ident: e_1_2_9_187_1
  doi: 10.1002/sstr.202000047
– ident: e_1_2_9_235_1
  doi: 10.1016/j.jpowsour.2018.10.066
– ident: e_1_2_9_283_1
  doi: 10.1021/acs.jpcc.9b06070
– ident: e_1_2_9_95_1
  doi: 10.1021/acsnano.7b08161
– ident: e_1_2_9_28_1
  doi: 10.1016/j.apmt.2020.100765
– ident: e_1_2_9_33_1
  doi: 10.1007/s40820-019-0245-5
– ident: e_1_2_9_144_1
  doi: 10.1016/j.jpowsour.2018.09.046
– ident: e_1_2_9_229_1
  doi: 10.1016/j.apsusc.2018.04.254
– ident: e_1_2_9_89_1
  doi: 10.1021/acs.jpcc.8b05076
– year: 2020
  ident: e_1_2_9_289_1
  publication-title: Natl. Sci. Rev.
– volume-title: VLSI Electronics Microstructure Science
  year: 1994
  ident: e_1_2_9_4_1
– ident: e_1_2_9_39_1
  doi: 10.1016/j.nanoen.2018.03.012
– ident: e_1_2_9_103_1
  doi: 10.1021/acs.nanolett.8b01988
– ident: e_1_2_9_17_1
  doi: 10.1002/smll.201800659
– ident: e_1_2_9_147_1
  doi: 10.1016/j.cej.2018.09.131
– ident: e_1_2_9_131_1
  doi: 10.1021/acs.nanolett.6b00057
– ident: e_1_2_9_51_1
  doi: 10.1002/aenm.201900567
– volume: 32
  start-page: 1
  year: 1998
  ident: e_1_2_9_2_1
  publication-title: Fiz. Tekh. Poluprovodn.
– ident: e_1_2_9_243_1
  doi: 10.1039/C8TA11249E
– ident: e_1_2_9_34_1
  doi: 10.1002/cey2.14
– ident: e_1_2_9_178_1
  doi: 10.1021/acsami.7b07939
– ident: e_1_2_9_233_1
  doi: 10.1016/j.jpowsour.2017.12.046
– ident: e_1_2_9_224_1
  doi: 10.1016/j.surfcoat.2018.12.128
– ident: e_1_2_9_256_1
  doi: 10.1002/aelm.201900953
– ident: e_1_2_9_232_1
  doi: 10.1016/j.cej.2018.03.042
– ident: e_1_2_9_213_1
  doi: 10.1002/anie.201810579
– ident: e_1_2_9_87_1
  doi: 10.1021/acsenergylett.6b00164
– ident: e_1_2_9_215_1
  doi: 10.1016/j.electacta.2019.135311
– ident: e_1_2_9_44_1
  doi: 10.1038/s41598-019-55776-6
– ident: e_1_2_9_184_1
  doi: 10.1016/j.cej.2019.01.185
– ident: e_1_2_9_1_1
  doi: 10.1002/sstr.202000010
– ident: e_1_2_9_18_1
  doi: 10.1002/celc.202001409
– ident: e_1_2_9_267_1
  doi: 10.1016/j.ensm.2019.07.001
– ident: e_1_2_9_9_1
  doi: 10.1039/C7CS00160F
– ident: e_1_2_9_165_1
  doi: 10.1016/j.ces.2017.09.007
– ident: e_1_2_9_208_1
  doi: 10.1016/j.nanoen.2017.07.012
– ident: e_1_2_9_227_1
  doi: 10.1038/nnano.2012.71
– ident: e_1_2_9_69_1
  doi: 10.1016/j.cej.2018.10.026
– ident: e_1_2_9_66_1
  doi: 10.1002/aenm.202000927
– ident: e_1_2_9_72_1
  doi: 10.1039/C6TA04398D
– ident: e_1_2_9_11_1
  doi: 10.1021/acsnano.9b00816
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ensm.2019.08.018
– ident: e_1_2_9_114_1
  doi: 10.1002/smll.201702181
– ident: e_1_2_9_307_1
  doi: 10.1016/j.cej.2020.124060
– ident: e_1_2_9_24_1
  doi: 10.1021/acsami.8b01613
– ident: e_1_2_9_38_1
  doi: 10.1021/acsami.9b14912
– volume: 11
  start-page: 3201
  year: 2018
  ident: e_1_2_9_310_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_107_1
  doi: 10.1002/admi.201601187
– ident: e_1_2_9_170_1
  doi: 10.1016/j.jssc.2020.121230
– ident: e_1_2_9_30_1
  doi: 10.1039/C8NR00865E
– volume: 14
  start-page: 965
  year: 2021
  ident: e_1_2_9_65_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jechem.2019.08.013
– ident: e_1_2_9_98_1
  doi: 10.1016/j.jpowsour.2015.11.073
– ident: e_1_2_9_92_1
  doi: 10.1021/acs.jpcc.8b07062
– ident: e_1_2_9_241_1
  doi: 10.1002/adma.201404140
– ident: e_1_2_9_207_1
  doi: 10.1039/C6TA03211G
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jpowsour.2017.07.079
– ident: e_1_2_9_79_1
  publication-title: Small Struct.
– ident: e_1_2_9_181_1
  doi: 10.1016/j.carbon.2019.03.022
– ident: e_1_2_9_45_1
  doi: 10.1002/adfm.201703390
– ident: e_1_2_9_105_1
  doi: 10.1002/aenm.201601285
– ident: e_1_2_9_185_1
  doi: 10.1002/aenm.201500118
– ident: e_1_2_9_274_1
  doi: 10.1016/j.cej.2017.09.155
– ident: e_1_2_9_153_1
  doi: 10.1039/C9TA02388G
– ident: e_1_2_9_291_1
  doi: 10.1016/j.cej.2019.123675
– ident: e_1_2_9_116_1
  doi: 10.1016/j.apsusc.2019.02.081
– ident: e_1_2_9_167_1
  doi: 10.1039/C9TA07302G
– ident: e_1_2_9_32_1
  doi: 10.1116/1.4982736
– ident: e_1_2_9_219_1
  doi: 10.1039/C9NR07249G
– ident: e_1_2_9_265_1
  doi: 10.1016/j.jpowsour.2017.04.020
– ident: e_1_2_9_225_1
  doi: 10.1002/adfm.201606232
– ident: e_1_2_9_251_1
  doi: 10.1002/admi.201901729
– ident: e_1_2_9_238_1
  doi: 10.1021/acsami.8b07082
– ident: e_1_2_9_54_1
  doi: 10.1016/j.apsusc.2018.09.038
– ident: e_1_2_9_156_1
  doi: 10.1039/C9EN01265F
– ident: e_1_2_9_40_1
  doi: 10.1088/1361-6528/aba7e1
– ident: e_1_2_9_204_1
  doi: 10.1039/C9TA11451C
– ident: e_1_2_9_3_1
  doi: 10.1007/s12274-017-1531-5
– ident: e_1_2_9_189_1
  doi: 10.1039/C8TA10422K
– ident: e_1_2_9_297_1
  doi: 10.1002/cey2.57
– ident: e_1_2_9_109_1
  doi: 10.1016/j.carbon.2018.03.028
– ident: e_1_2_9_286_1
  doi: 10.1016/j.est.2020.101446
– ident: e_1_2_9_134_1
  doi: 10.1021/acsnano.7b00557
– ident: e_1_2_9_206_1
  doi: 10.1021/acsnano.8b05534
– ident: e_1_2_9_16_1
  doi: 10.1016/j.apsusc.2019.05.110
– ident: e_1_2_9_180_1
  doi: 10.1016/j.nanoen.2015.12.010
– ident: e_1_2_9_122_1
  doi: 10.1039/C9TA00275H
– ident: e_1_2_9_312_1
  doi: 10.1002/ente.201900649
– ident: e_1_2_9_93_1
  doi: 10.1021/acsami.6b03368
– ident: e_1_2_9_21_1
  doi: 10.1021/nl402810d
– ident: e_1_2_9_298_1
  doi: 10.1016/j.ensm.2018.06.028
– ident: e_1_2_9_203_1
  doi: 10.1039/C9TA00975B
– ident: e_1_2_9_48_1
  doi: 10.1039/C9TA03551F
– ident: e_1_2_9_77_1
  doi: 10.1021/acs.nanolett.5b01257
– ident: e_1_2_9_152_1
  doi: 10.1002/adfm.201807971
– ident: e_1_2_9_264_1
  doi: 10.1016/j.jpowsour.2020.228239
– ident: e_1_2_9_169_1
  doi: 10.1016/j.nanoen.2020.104468
– ident: e_1_2_9_113_1
  doi: 10.1002/adma.201805754
– ident: e_1_2_9_80_1
  doi: 10.1021/jp302265n
– ident: e_1_2_9_293_1
  doi: 10.1002/smtd.201900828
– ident: e_1_2_9_210_1
  doi: 10.1021/acsnano.7b06061
– ident: e_1_2_9_248_1
  doi: 10.1021/acsaem.9b00904
– ident: e_1_2_9_100_1
  doi: 10.1039/C7TA06849B
– ident: e_1_2_9_281_1
  doi: 10.1016/j.cej.2017.07.129
– ident: e_1_2_9_26_1
  doi: 10.1038/s41563-019-0366-8
– ident: e_1_2_9_247_1
  doi: 10.1021/acsami.8b04540
– ident: e_1_2_9_282_1
  doi: 10.1016/j.electacta.2018.03.198
– ident: e_1_2_9_25_1
  doi: 10.1038/nmat4703
– ident: e_1_2_9_75_1
  doi: 10.1002/adfm.201302122
– ident: e_1_2_9_119_1
  doi: 10.1149/2.0721816jes
– ident: e_1_2_9_188_1
  doi: 10.1021/acsaem.0c01855
– ident: e_1_2_9_304_1
  doi: 10.1039/C8TA12497C
– ident: e_1_2_9_157_1
  doi: 10.1039/C9CE01621J
– ident: e_1_2_9_279_1
  doi: 10.1016/j.jallcom.2019.153364
– ident: e_1_2_9_126_1
  doi: 10.1039/C8TA09740B
– ident: e_1_2_9_171_1
  doi: 10.1016/j.ensm.2020.04.004
– ident: e_1_2_9_205_1
  doi: 10.1002/chem.201806231
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.201501059
– ident: e_1_2_9_139_1
  doi: 10.1038/s41467-020-16077-z
– ident: e_1_2_9_104_1
  doi: 10.1016/j.nanoen.2019.04.044
– ident: e_1_2_9_249_1
  doi: 10.1039/C8TA09528K
– ident: e_1_2_9_102_1
  doi: 10.1016/j.cej.2018.03.166
– ident: e_1_2_9_246_1
  doi: 10.1016/j.nanoen.2019.103991
– ident: e_1_2_9_71_1
  doi: 10.1002/cey2.2
– ident: e_1_2_9_242_1
  doi: 10.1016/j.nanoen.2017.06.009
– ident: e_1_2_9_121_1
  doi: 10.1016/j.apsusc.2018.02.053
– ident: e_1_2_9_237_1
  doi: 10.1039/C8TA10442E
– ident: e_1_2_9_216_1
  doi: 10.1039/C8CC06924G
– ident: e_1_2_9_53_1
  doi: 10.1039/C9TA09646A
– ident: e_1_2_9_201_1
  doi: 10.1002/aenm.202000091
– ident: e_1_2_9_318_1
  doi: 10.1002/aenm.201700403
– ident: e_1_2_9_129_1
  publication-title: Small Struct.
– ident: e_1_2_9_135_1
  doi: 10.1002/adma.201700214
– ident: e_1_2_9_306_1
  doi: 10.1016/j.ensm.2019.05.039
– ident: e_1_2_9_19_1
  doi: 10.1039/C6NR05584B
– ident: e_1_2_9_57_1
  doi: 10.1002/adfm.201807377
– ident: e_1_2_9_146_1
  doi: 10.1002/smll.201704517
– ident: e_1_2_9_223_1
  doi: 10.1016/j.jpowsour.2017.01.014
– ident: e_1_2_9_272_1
  doi: 10.1016/j.cej.2020.125778
– ident: e_1_2_9_162_1
  doi: 10.1016/j.cej.2017.10.007
– ident: e_1_2_9_220_1
  doi: 10.1016/j.nanoen.2019.03.060
– ident: e_1_2_9_305_1
  doi: 10.1016/j.electacta.2019.04.092
– ident: e_1_2_9_295_1
  doi: 10.1021/acsami.0c18285
– ident: e_1_2_9_308_1
  doi: 10.1039/C9TA02212K
– ident: e_1_2_9_70_1
  doi: 10.1002/smll.202001714
– ident: e_1_2_9_301_1
  doi: 10.1007/s40820-019-0290-0
– ident: e_1_2_9_173_1
  doi: 10.1021/acsnano.0c00020
– ident: e_1_2_9_288_1
  doi: 10.1002/smll.201907670
– ident: e_1_2_9_168_1
  doi: 10.1016/j.electacta.2020.135695
– ident: e_1_2_9_313_1
  doi: 10.1021/acs.jpcc.9b02399
– ident: e_1_2_9_309_1
  doi: 10.1016/j.nanoen.2018.03.061
– ident: e_1_2_9_140_1
  doi: 10.1016/j.nanoen.2019.104037
– ident: e_1_2_9_179_1
  doi: 10.1039/C9TA11965E
– ident: e_1_2_9_261_1
  doi: 10.1016/j.cej.2018.06.181
– ident: e_1_2_9_280_1
  doi: 10.1016/j.nanoen.2014.04.007
– ident: e_1_2_9_303_1
  doi: 10.1016/j.jmst.2019.05.074
– ident: e_1_2_9_31_1
  doi: 10.1007/s12274-015-0783-1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jallcom.2019.05.366
– ident: e_1_2_9_145_1
  doi: 10.1002/adfm.201404078
– ident: e_1_2_9_276_1
  doi: 10.1016/j.materresbull.2020.110817
– ident: e_1_2_9_177_1
  doi: 10.1002/ppsc.201800138
– ident: e_1_2_9_278_1
  doi: 10.1016/j.electacta.2020.136270
– ident: e_1_2_9_59_1
  doi: 10.1016/j.electacta.2018.08.071
– ident: e_1_2_9_125_1
  doi: 10.1002/celc.201801166
– ident: e_1_2_9_160_1
  doi: 10.1039/C8QI01081A
– ident: e_1_2_9_197_1
  doi: 10.1002/adma.201603040
– ident: e_1_2_9_97_1
  doi: 10.1016/j.jpowsour.2013.10.019
– ident: e_1_2_9_174_1
  doi: 10.1002/anie.201510978
– ident: e_1_2_9_214_1
  doi: 10.1016/j.cej.2019.122672
– ident: e_1_2_9_47_1
  doi: 10.1021/acsnano.9b02231
– ident: e_1_2_9_255_1
  doi: 10.1002/anie.201907516
– ident: e_1_2_9_287_1
  doi: 10.1002/anie.201913174
– ident: e_1_2_9_137_1
  doi: 10.1088/1361-6463/aa5aaf
– ident: e_1_2_9_209_1
  doi: 10.1016/j.cej.2018.08.143
– ident: e_1_2_9_138_1
  doi: 10.1002/smtd.201800328
– ident: e_1_2_9_158_1
  doi: 10.1016/j.apcatb.2019.03.021
– ident: e_1_2_9_120_1
  doi: 10.1016/j.cej.2018.08.208
– ident: e_1_2_9_285_1
  doi: 10.1021/acsenergylett.7b01063
– ident: e_1_2_9_78_1
  doi: 10.1002/smtd.201700296
– ident: e_1_2_9_262_1
  doi: 10.1016/j.jpowsour.2019.227616
– ident: e_1_2_9_290_1
  doi: 10.1002/smll.202001090
– ident: e_1_2_9_222_1
  doi: 10.1002/smll.202003434
– ident: e_1_2_9_191_1
  doi: 10.1016/j.jechem.2019.04.023
– ident: e_1_2_9_176_1
  doi: 10.1002/adfm.201901925
– ident: e_1_2_9_127_1
  doi: 10.1021/acsami.7b19448
– ident: e_1_2_9_263_1
  doi: 10.1016/j.electacta.2016.07.155
– ident: e_1_2_9_311_1
  doi: 10.1002/aenm.201902352
– ident: e_1_2_9_266_1
  doi: 10.1016/j.cej.2019.123890
– ident: e_1_2_9_42_1
  doi: 10.1016/j.jpowsour.2019.226904
– ident: e_1_2_9_132_1
  doi: 10.1002/advs.201600243
– ident: e_1_2_9_192_1
  doi: 10.1016/j.nanoen.2019.104190
– volume: 11
  start-page: 2620
  year: 2018
  ident: e_1_2_9_202_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_277_1
  doi: 10.1016/j.jcis.2020.04.039
– ident: e_1_2_9_218_1
  doi: 10.1021/acsami.8b19501
– ident: e_1_2_9_148_1
  doi: 10.1002/chem.201705855
– ident: e_1_2_9_41_1
  doi: 10.1007/s12274-013-0292-z
– ident: e_1_2_9_244_1
  doi: 10.1016/j.jpowsour.2019.01.036
– ident: e_1_2_9_217_1
  doi: 10.1016/j.electacta.2018.12.075
– ident: e_1_2_9_111_1
  doi: 10.1016/j.jpowsour.2015.12.094
– ident: e_1_2_9_136_1
  doi: 10.1038/nnano.2015.194
– ident: e_1_2_9_101_1
  doi: 10.1016/j.nanoen.2018.04.001
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ensm.2018.11.024
– ident: e_1_2_9_186_1
  doi: 10.1002/adma.201804084
– ident: e_1_2_9_275_1
  doi: 10.1016/j.nanoen.2016.02.019
– ident: e_1_2_9_268_1
  doi: 10.1039/C9NJ01255A
– ident: e_1_2_9_314_1
  doi: 10.1021/acs.jpcc.8b10550
– ident: e_1_2_9_253_1
  doi: 10.1016/j.ceramint.2016.02.146
– ident: e_1_2_9_199_1
  doi: 10.1002/aenm.201900219
– ident: e_1_2_9_284_1
  doi: 10.1039/C8NJ05514A
– ident: e_1_2_9_315_1
  doi: 10.1002/cey2.66
– ident: e_1_2_9_36_1
  doi: 10.1038/ncomms8873
– ident: e_1_2_9_123_1
  doi: 10.1002/anie.201710616
– ident: e_1_2_9_271_1
  doi: 10.1016/j.cej.2019.123373
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.201902603
– ident: e_1_2_9_164_1
  doi: 10.1039/C8TA11419F
– ident: e_1_2_9_239_1
  doi: 10.1002/adfm.201803901
– ident: e_1_2_9_35_1
  doi: 10.1039/C8CE00487K
– ident: e_1_2_9_7_1
  doi: 10.1002/cey2.85
– ident: e_1_2_9_142_1
  doi: 10.1021/acsnano.8b07172
– volume: 12
  start-page: 2422
  year: 2019
  ident: e_1_2_9_163_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cej.2018.04.125
– ident: e_1_2_9_183_1
  doi: 10.1016/j.carbon.2019.07.040
– ident: e_1_2_9_252_1
  doi: 10.1016/j.cej.2019.123206
– ident: e_1_2_9_211_1
  doi: 10.1016/j.cej.2019.123734
– ident: e_1_2_9_112_1
  doi: 10.1016/j.nanoen.2017.09.027
– ident: e_1_2_9_143_1
  doi: 10.1002/aenm.201702383
– ident: e_1_2_9_154_1
  doi: 10.1016/0927-0248(92)90095-7
– ident: e_1_2_9_250_1
  doi: 10.1021/acsaem.8b02201
– ident: e_1_2_9_300_1
  doi: 10.1002/aenm.202000081
– ident: e_1_2_9_196_1
  doi: 10.1002/adfm.201707578
– ident: e_1_2_9_260_1
  doi: 10.1039/C4TA05059B
– ident: e_1_2_9_193_1
  doi: 10.1016/j.apsusc.2019.144586
– ident: e_1_2_9_8_1
  doi: 10.1002/adfm.201803291
– volume: 10
  start-page: 1694
  year: 2017
  ident: e_1_2_9_200_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_61_1
  doi: 10.1016/j.surfcoat.2018.12.075
– ident: e_1_2_9_270_1
  doi: 10.1016/j.cej.2020.125672
– ident: e_1_2_9_56_1
  doi: 10.1016/j.electacta.2020.137629
– ident: e_1_2_9_63_1
  doi: 10.1021/acsnano.7b03321
– ident: e_1_2_9_230_1
  doi: 10.1039/C4TA05747C
– ident: e_1_2_9_228_1
  doi: 10.1002/advs.201700887
– ident: e_1_2_9_110_1
  doi: 10.1021/acsami.7b00248
– ident: e_1_2_9_258_1
  doi: 10.1039/C5TA04311E
– ident: e_1_2_9_76_1
  doi: 10.1021/nl4027549
– ident: e_1_2_9_245_1
  doi: 10.1002/adfm.201910302
– ident: e_1_2_9_226_1
  doi: 10.1039/C9TA09902F
– ident: e_1_2_9_10_1
  doi: 10.1039/D0QM01012J
– ident: e_1_2_9_292_1
  doi: 10.1016/j.nanoen.2019.03.002
– ident: e_1_2_9_231_1
  doi: 10.1016/j.cej.2019.03.168
– ident: e_1_2_9_130_1
  doi: 10.1021/acsnano.5b00376
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ensm.2018.10.002
– ident: e_1_2_9_128_1
  doi: 10.1002/anie.201209689
– ident: e_1_2_9_236_1
  doi: 10.1111/jace.16778
– ident: e_1_2_9_94_1
  doi: 10.1002/smll.201800640
– ident: e_1_2_9_296_1
  doi: 10.1007/s40820-021-00595-6
– ident: e_1_2_9_198_1
  doi: 10.1002/chem.201702387
– ident: e_1_2_9_234_1
  doi: 10.1016/j.cej.2019.122486
– ident: e_1_2_9_194_1
  doi: 10.1016/j.cej.2019.122189
– ident: e_1_2_9_6_1
  doi: 10.1002/cey2.34
– ident: e_1_2_9_20_1
  doi: 10.1002/advs.201700491
– ident: e_1_2_9_161_1
  doi: 10.1016/j.cej.2018.09.142
– ident: e_1_2_9_141_1
  doi: 10.1016/j.carbon.2019.07.021
– ident: e_1_2_9_67_1
  doi: 10.1002/adfm.201808522
– ident: e_1_2_9_133_1
  doi: 10.1016/j.jpowsour.2019.227696
– ident: e_1_2_9_259_1
  doi: 10.1016/j.jechem.2017.10.022
– ident: e_1_2_9_82_1
  doi: 10.1038/nmat4299
– ident: e_1_2_9_74_1
  doi: 10.1016/j.jpowsour.2015.11.027
– ident: e_1_2_9_88_1
  doi: 10.1039/C8TA10972A
– ident: e_1_2_9_240_1
  doi: 10.1002/sstr.202000093
– ident: e_1_2_9_172_1
  doi: 10.1016/j.nanoen.2015.05.013
– volume: 12
  start-page: 344
  year: 2019
  ident: e_1_2_9_195_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_64_1
  doi: 10.1016/j.materresbull.2020.111186
– ident: e_1_2_9_182_1
  doi: 10.1088/1361-6528/aafcef
– year: 2020
  ident: e_1_2_9_55_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_9_257_1
  doi: 10.1039/C6TA07842G
– ident: e_1_2_9_37_1
  doi: 10.1016/j.nanoen.2014.02.012
– ident: e_1_2_9_124_1
  doi: 10.1007/s40820-019-0312-y
– ident: e_1_2_9_58_1
  doi: 10.1039/C8TA11578H
– ident: e_1_2_9_269_1
  doi: 10.1016/j.jallcom.2018.12.176
– ident: e_1_2_9_149_1
  doi: 10.1021/acsnano.9b00375
– ident: e_1_2_9_299_1
  doi: 10.1039/C9TA03330K
– ident: e_1_2_9_118_1
  doi: 10.1016/j.nanoen.2015.01.003
– ident: e_1_2_9_68_1
  doi: 10.1021/nn901632g
– ident: e_1_2_9_166_1
  doi: 10.1088/1361-6528/aaf76c
– ident: e_1_2_9_83_1
  doi: 10.1021/nl5032293
SSID ssj0009606
Score 2.7391338
SecondaryResourceType review_article
Snippet With the ever‐increasing adaption of large‐scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors...
With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2100855
SubjectTerms built‐in electric fields
Electric devices
Electric fields
Energy storage
heterointerfaces
Heterostructures
Lithium sulfur batteries
Lithium-ion batteries
Materials science
Rechargeable batteries
Storage batteries
Storage systems
Supercapacitors
Synergistic effect
Title Emerging of Heterostructure Materials in Energy Storage: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100855
https://www.proquest.com/docview/2548925382
https://www.proquest.com/docview/2532242594
Volume 33
WOSCitedRecordID wos000653749700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9lBUET6HJZptkvQVt6cEW8QG9hZ3NBgqSirX-fmeTNG0PIugtIZNk2Z3nzuw3ANfKVy6ZRe1QqKwcQQaJREoHTuBniAK1hykWzSbC0Sgaj-Xjyin-Eh-i3nCzklHoayvgCmedJWioSgvcIO4VpVab0OTEvN0GNO-f-q8PS-DdoOivafN9jgxEtABudHln_Qvrhmnpba76rIXR6e_9f7j7sFs5nCwuOeQANkx-CDsrMIRHENudKdusiE0zNrD1MdMSVnb-YdhQfZZMyiY56xUnBdkzBeqkh25ZzMrcwjG89nsvdwOnaq3gaPLAuo4JswCFZ5RHDoyvZYS-izrjoVKCo2uyzJWZDFNJgw3C0EOUilwFoVWQdrkx_gk08mluToGJ1BcqQFTaNSJKMepyDFFJpNiR9EXWAmcxr4mucMdt-4u3pERM5omdmqSemhbc1PTvJeLGj5QXi2VKKsmbJRTwRpKTGuctuKofk8zYRIjKzXRuaUiNkbKSogW8WLRf_pTE98O4vjv7y0vnsG2vy0rfC2jQMppL2NJfn5PZRxs2w3HUrnj3G0RU7L0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9QHv8X5GUHwqdimWdv4VnRj4jbED_Ct5NIUBOlEN_9-L23XuQcRxMfSSxuS-87ldwBnylcumUXtUKisHEEGiURKB07gZ4gCtYcpFs0mwuEwen6Wd1U1ob0LU-JD1Ak3KxmFvrYCbhPSFzPUUJUWwEHcK2qtFqEpiJeIyZvX992n_gx5NygabNoDP0cGIpoiN7r8Yv4L85Zp5m5-d1oLq9Nd_4f5bsBa5XKyuOSRTVgw-RasfgMi3IbY5qZsuyI2yljPVsiMSmDZybthAzUu2ZS95KxT3BVkDxSqkya6ZDErTxd24KnbebzqOVVzBUeTD9Z2TJgFKDyjPHJhfC0j9F3UGQ-VEhxdk2WuzGSYSppsEIYeolTkLAitgrTNjfF3oZGPcrMHTKS-UAGi0q4RUYpRm2OISiJFj6QxshY404VNdIU8bhtgvCYlZjJP7NIk9dK04LymfysxN36kPJzuU1LJ3kdCIW8kOSly3oLT-jVJjT0KUbkZTSwNKTJSV1K0gBe79sufkvh6ENdP-38ZdALLvcdBP-nfDG8PYMX2rS9zOYfQoC01R7CkP8cvH-_HFQt_Ae2678E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdGDb3F9RhA8Fds02zbeiuuiqIv4AG8lkyawIF1xV3-_k7bb1YMI4rHttA3JPDOTbwCOVah8Movao1BZeYIMEomUjrwotIgCdYA5ls0m4n4_eX6Wd3U1oTsLU-FDNBtuTjJKfe0E3Lzm9nSKGqryEjiIB2Wt1SzMCddJpgVz3fve080UeTcqG2y6hJ8nI5FMkBt9fvr9C98t09Td_Oq0llant_IP412F5drlZGnFI2swY4p1WPoCRLgBqdubcu2K2NCyS1chM6yAZd_fDLtV44pN2aBgF-VZQfZAoTppojOWsiq7sAlPvYvH80uvbq7gafLBOp6JbYQiMCogFybUMsHQR215rJTg6BtrfWllnEsabBTHAaJU5CwIraK8w40Jt6BVDAuzDUzkoVARotK-EUmOSYdjjEoiRY-kMWwbvMnEZrpGHncNMF6yCjOZZ25qsmZq2nDS0L9WmBs_Uu5N1imrZW-UUcibSE6KnLfhqHlMUuNSIaoww3dHQ4qM1JUUbeDlqv3ypyzt3qbN1c5fXjqEhbtuL7u56l_vwqK7XZX97kGLVtTsw7z-GA9Gbwc1B38Cju7vQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+of+Heterostructure+Materials+in+Energy+Storage%3A+A+Review&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Yu&rft.au=Zhang%2C+Jiawei&rft.au=Chen%2C+Qingguo&rft.au=Xia%2C+Xinhui&rft.date=2021-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202100855&rft.externalDBID=10.1002%252Fadma.202100855&rft.externalDocID=ADMA202100855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon