Solution‐Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect

Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 32; číslo 40; s. e2004072 - n/a
Hlavní autoři: Ikeda, Naoya, Oda, Susumu, Matsumoto, Ryuji, Yoshioka, Mayu, Fukushima, Daisuke, Yoshiura, Kazuki, Yasuda, Nobuhiro, Hatakeyama, Takuji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.10.2020
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1, and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. A thermally activated delayed fluorescence material featuring a multiple resonance effect of boron, nitrogen, and oxygen atoms (OAB‐ABP‐1) is synthesized by one‐shot double borylation. A solution‐processed organic light‐emitting diode (OLED) device using OAB‐ABP‐1 exhibits pure green electroluminescence with a small full‐width at half‐maximum, and a high external quantum efficiency with minimum efficiency roll‐off.
AbstractList Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution-processing, which is an economical approach toward the mass production of OLED displays. Here, a solution-processable MR-TADF material (OAB-ABP-1), with an extended π-skeleton and bulky substituents, is designed. OAB-ABP-1 is synthesized from commercially available starting materials via a four-step process involving one-shot double borylation. OAB-ABP-1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB-ABP-1 are synthesized for use as interlayer and emissive layer materials. A solution-processed OLED device is fabricated using OAB-ABP-1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full-width at half-maximum and a high external quantum efficiency with minimum efficiency roll-off.Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution-processing, which is an economical approach toward the mass production of OLED displays. Here, a solution-processable MR-TADF material (OAB-ABP-1), with an extended π-skeleton and bulky substituents, is designed. OAB-ABP-1 is synthesized from commercially available starting materials via a four-step process involving one-shot double borylation. OAB-ABP-1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB-ABP-1 are synthesized for use as interlayer and emissive layer materials. A solution-processed OLED device is fabricated using OAB-ABP-1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full-width at half-maximum and a high external quantum efficiency with minimum efficiency roll-off.
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1, and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. A thermally activated delayed fluorescence material featuring a multiple resonance effect of boron, nitrogen, and oxygen atoms (OAB‐ABP‐1) is synthesized by one‐shot double borylation. A solution‐processed organic light‐emitting diode (OLED) device using OAB‐ABP‐1 exhibits pure green electroluminescence with a small full‐width at half‐maximum, and a high external quantum efficiency with minimum efficiency roll‐off.
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1, and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off.
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S 1 and T 1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off.
Author Fukushima, Daisuke
Hatakeyama, Takuji
Yoshioka, Mayu
Yoshiura, Kazuki
Oda, Susumu
Ikeda, Naoya
Matsumoto, Ryuji
Yasuda, Nobuhiro
Author_xml – sequence: 1
  givenname: Naoya
  surname: Ikeda
  fullname: Ikeda, Naoya
  organization: Kwansei Gakuin University
– sequence: 2
  givenname: Susumu
  orcidid: 0000-0003-1088-1932
  surname: Oda
  fullname: Oda, Susumu
  organization: Kwansei Gakuin University
– sequence: 3
  givenname: Ryuji
  surname: Matsumoto
  fullname: Matsumoto, Ryuji
  organization: Sumitomo Chemical Co., Ltd
– sequence: 4
  givenname: Mayu
  surname: Yoshioka
  fullname: Yoshioka, Mayu
  organization: Sumitomo Chemical Co., Ltd
– sequence: 5
  givenname: Daisuke
  surname: Fukushima
  fullname: Fukushima, Daisuke
  organization: Sumitomo Chemical Co., Ltd
– sequence: 6
  givenname: Kazuki
  surname: Yoshiura
  fullname: Yoshiura, Kazuki
  organization: Kwansei Gakuin University
– sequence: 7
  givenname: Nobuhiro
  surname: Yasuda
  fullname: Yasuda, Nobuhiro
  organization: Japan Synchrotron Radiation Research Institute (JASRI)
– sequence: 8
  givenname: Takuji
  orcidid: 0000-0002-7483-9525
  surname: Hatakeyama
  fullname: Hatakeyama, Takuji
  email: hatake@kwansei.ac.jp
  organization: Kwansei Gakuin University
BookMark eNqFkT1vFDEQhi0UJC6BltoSDc0e_lqfXR75AikRUQj1yvbNKo6868P2Bm3HT-A38kvw5VCQIqFUU8zzzIzmPUQHYxwBobeULCkh7IPZDGbJCCNEkBV7gRa0ZbQRRLcHaEE0bxsthXqFDnO-I4RoSeQCzV9jmIqP4--fv65SdJCzsQHw1ZQAnyeAEd_cQhpMCDNeu-LvTYENPoFg5lrPwhQTZAejA3w6-FIg4Y8m11YccbkFfDmF4rd14jXkOJoHru_BldfoZW9Chjd_6xH6dnZ6c_ypufhy_vl4fdE4QSVrqCVss5JSWCeVs8ySXgrJ-UrRXgshrdsYyxWsLNG9Y7wllmvXamfrEqd6foTe7-duU_w-QS7d4OvBIZgR4pQ7JrjSmirGK_ruCXoXpzTW6yollKKMC1Upsadcijkn6Dvni9n9sCTjQ0dJt8uj2-XRPeZRteUTbZv8YNL8f0HvhR8-wPwM3a1PLtf_3D9MfqHo
CitedBy_id crossref_primary_10_1002_ange_202204652
crossref_primary_10_1016_j_cej_2025_164225
crossref_primary_10_1039_D5SC03560K
crossref_primary_10_1002_anie_202105032
crossref_primary_10_1002_adma_202201442
crossref_primary_10_1246_cl_200915
crossref_primary_10_1016_j_cej_2024_155350
crossref_primary_10_1002_adma_202105080
crossref_primary_10_1002_ange_202104361
crossref_primary_10_1002_ange_202217045
crossref_primary_10_1002_adom_202403556
crossref_primary_10_1002_anie_202418770
crossref_primary_10_1002_ange_202412720
crossref_primary_10_1002_adom_202301084
crossref_primary_10_1016_j_dyepig_2023_111371
crossref_primary_10_1002_ange_202113075
crossref_primary_10_1002_anie_202201886
crossref_primary_10_1002_anie_202110050
crossref_primary_10_1002_ange_202504723
crossref_primary_10_1039_D4SC02357A
crossref_primary_10_1002_ange_202108283
crossref_primary_10_1002_anie_202205684
crossref_primary_10_1002_adma_202110547
crossref_primary_10_1038_s41377_024_01490_6
crossref_primary_10_1002_ange_202116927
crossref_primary_10_1002_ange_202209539
crossref_primary_10_1038_s41467_023_38086_4
crossref_primary_10_1002_ange_202211172
crossref_primary_10_1246_bcsj_20210403
crossref_primary_10_1002_adom_202403421
crossref_primary_10_1039_D5SC01751C
crossref_primary_10_1002_adpr_202200201
crossref_primary_10_1002_adom_202100516
crossref_primary_10_1002_anie_202415113
crossref_primary_10_1002_adom_202100752
crossref_primary_10_1002_qua_27454
crossref_primary_10_1002_adma_202403061
crossref_primary_10_1002_adom_202302987
crossref_primary_10_1002_anie_202209343
crossref_primary_10_1021_acs_chemrev_5c00021
crossref_primary_10_1002_anie_202212861
crossref_primary_10_1002_ange_202215522
crossref_primary_10_1002_adma_202415289
crossref_primary_10_1016_j_orgel_2022_106668
crossref_primary_10_1002_adma_202100652
crossref_primary_10_1021_jacs_2c10946
crossref_primary_10_1021_jacs_3c02873
crossref_primary_10_1002_ange_202312451
crossref_primary_10_1039_D2QM01304E
crossref_primary_10_3390_molecules28010134
crossref_primary_10_1016_j_cej_2021_134381
crossref_primary_10_1002_adts_202200056
crossref_primary_10_1002_anie_202207293
crossref_primary_10_1016_j_cej_2024_158958
crossref_primary_10_1002_adom_202400490
crossref_primary_10_1016_j_cej_2024_152857
crossref_primary_10_1002_adfm_202204352
crossref_primary_10_1002_adma_202107951
crossref_primary_10_1039_D1SC02042K
crossref_primary_10_1002_adfm_202310042
crossref_primary_10_1016_j_cej_2025_167258
crossref_primary_10_1007_s11426_022_1447_4
crossref_primary_10_3390_molecules27228099
crossref_primary_10_1002_ange_202209984
crossref_primary_10_1002_anie_202116927
crossref_primary_10_1016_j_cej_2022_138498
crossref_primary_10_1016_j_cej_2023_147409
crossref_primary_10_1002_cjoc_202000619
crossref_primary_10_1002_ange_202201588
crossref_primary_10_1007_s10118_023_2977_4
crossref_primary_10_1039_D2CC03347J
crossref_primary_10_1016_j_cej_2021_131691
crossref_primary_10_1002_ange_202016265
crossref_primary_10_1002_adom_202100180
crossref_primary_10_1002_ange_202301988
crossref_primary_10_6023_A23040186
crossref_primary_10_1038_s41467_024_46619_8
crossref_primary_10_1039_D2MH00511E
crossref_primary_10_1038_s42004_022_00668_6
crossref_primary_10_1002_ange_202415113
crossref_primary_10_1002_smll_202411961
crossref_primary_10_1016_j_orgel_2023_106973
crossref_primary_10_1021_jacs_2c03550
crossref_primary_10_1039_D1MH00028D
crossref_primary_10_1038_s42004_022_00766_5
crossref_primary_10_1002_bio_4624
crossref_primary_10_1002_adma_202205166
crossref_primary_10_1002_ange_202103187
crossref_primary_10_1016_j_cej_2021_133078
crossref_primary_10_1002_ange_202306768
crossref_primary_10_1002_advs_202205070
crossref_primary_10_1002_anie_202414383
crossref_primary_10_1002_ange_202304104
crossref_primary_10_1039_D3SC00246B
crossref_primary_10_1002_anie_202412720
crossref_primary_10_1007_s11426_022_1469_2
crossref_primary_10_1002_anie_202216473
crossref_primary_10_1039_D3ME00127J
crossref_primary_10_1016_j_dyepig_2025_113019
crossref_primary_10_1039_D3QM00100H
crossref_primary_10_1039_D5TC01938A
crossref_primary_10_1002_adom_202301217
crossref_primary_10_1002_ange_202105032
crossref_primary_10_1002_ange_202510891
crossref_primary_10_1039_D5TC01861G
crossref_primary_10_1002_anie_202103187
crossref_primary_10_1002_ange_202313084
crossref_primary_10_1002_adom_202200952
crossref_primary_10_1002_ange_202306413
crossref_primary_10_1002_marc_202200079
crossref_primary_10_1002_adom_202401671
crossref_primary_10_1021_acs_chemmater_5c01400
crossref_primary_10_1002_adma_202106954
crossref_primary_10_1002_ange_202414383
crossref_primary_10_1016_j_orgel_2021_106275
crossref_primary_10_1002_anie_202203844
crossref_primary_10_1002_anie_202200337
crossref_primary_10_1016_j_cej_2023_147977
crossref_primary_10_1039_D3QM00498H
crossref_primary_10_1016_j_cej_2022_137517
crossref_primary_10_1002_adom_202001845
crossref_primary_10_1002_anie_202510891
crossref_primary_10_1002_smm2_1060
crossref_primary_10_1002_adma_202416224
crossref_primary_10_1039_D5SC05501F
crossref_primary_10_1002_adom_202402875
crossref_primary_10_1002_adma_202305125
crossref_primary_10_3390_ijms23094949
crossref_primary_10_3390_molecules28020811
crossref_primary_10_1002_ange_202110050
crossref_primary_10_1002_anie_202306413
crossref_primary_10_1002_adma_202005630
crossref_primary_10_1002_ange_202200337
crossref_primary_10_1002_adfm_202213461
crossref_primary_10_1002_ange_202203844
crossref_primary_10_1039_D1MH01383A
crossref_primary_10_1002_ange_202216473
crossref_primary_10_1002_agt2_182
crossref_primary_10_1002_advs_202200707
crossref_primary_10_1002_anie_202306768
crossref_primary_10_1002_anie_202304104
crossref_primary_10_1002_adom_202203002
crossref_primary_10_1002_adom_202100825
crossref_primary_10_1016_j_dyepig_2025_113147
crossref_primary_10_1002_adma_202412761
crossref_primary_10_1002_ange_202017328
crossref_primary_10_1016_j_dyepig_2024_112596
crossref_primary_10_1002_adom_202202950
crossref_primary_10_59717_j_xinn_mater_2023_100041
crossref_primary_10_1002_anie_202211172
crossref_primary_10_1002_anie_202016265
crossref_primary_10_1002_anie_202313084
crossref_primary_10_1038_s41377_021_00559_w
crossref_primary_10_1002_anie_202106642
crossref_primary_10_1016_j_cej_2024_155864
crossref_primary_10_1002_anie_202301988
crossref_primary_10_1007_s40242_023_3167_1
crossref_primary_10_1016_j_jallcom_2021_161319
crossref_primary_10_1002_ange_202117181
crossref_primary_10_1002_adom_202500848
crossref_primary_10_1002_anie_202215522
crossref_primary_10_1016_j_cej_2021_129185
crossref_primary_10_1016_j_reactfunctpolym_2021_104898
crossref_primary_10_1016_j_cej_2024_148781
crossref_primary_10_1002_anie_202113075
crossref_primary_10_1002_ange_202205684
crossref_primary_10_1002_adom_202202267
crossref_primary_10_1002_sdtp_16255
crossref_primary_10_1021_jacs_1c11659
crossref_primary_10_1039_D5TC02897C
crossref_primary_10_1002_anie_202104361
crossref_primary_10_1039_D3RE00410D
crossref_primary_10_1002_anie_202108283
crossref_primary_10_1002_ange_202201886
crossref_primary_10_1002_anie_202209984
crossref_primary_10_1016_j_dyepig_2021_109474
crossref_primary_10_1002_adom_202300298
crossref_primary_10_1002_flm2_70002
crossref_primary_10_1039_D1PY01700D
crossref_primary_10_1039_D5TC01813G
crossref_primary_10_1002_adma_202211871
crossref_primary_10_1038_s41566_022_01106_8
crossref_primary_10_1016_j_cej_2021_131169
crossref_primary_10_1016_j_cej_2025_165947
crossref_primary_10_1016_j_dyepig_2023_111858
crossref_primary_10_1002_smll_202106462
crossref_primary_10_1002_anie_202201588
crossref_primary_10_1002_cphc_202500201
crossref_primary_10_1016_j_dyepig_2021_109224
crossref_primary_10_1002_adom_202101343
crossref_primary_10_1002_ange_202418770
crossref_primary_10_1002_adom_202200504
crossref_primary_10_1002_chem_202201006
crossref_primary_10_1002_adom_202201714
crossref_primary_10_1088_2058_8585_acf326
crossref_primary_10_1002_sdtp_15662
crossref_primary_10_6023_A23020051
crossref_primary_10_1016_j_cjche_2023_02_017
crossref_primary_10_1002_adom_202402939
crossref_primary_10_1002_adom_202102513
crossref_primary_10_1002_anie_202415856
crossref_primary_10_1002_adma_202301018
crossref_primary_10_1002_adom_202101789
crossref_primary_10_1002_anie_202017328
crossref_primary_10_1002_anie_202504723
crossref_primary_10_1002_macp_202200023
crossref_primary_10_1002_anie_202312451
crossref_primary_10_1002_ange_202207293
crossref_primary_10_1002_ange_202109335
crossref_primary_10_1002_adfm_202201032
crossref_primary_10_1002_adma_202310417
crossref_primary_10_1002_anie_202117181
crossref_primary_10_1016_j_cej_2023_147123
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1016_j_cplett_2022_140257
crossref_primary_10_1039_D5QO00146C
crossref_primary_10_1002_adfm_202306170
crossref_primary_10_1002_adma_202201778
crossref_primary_10_1002_adfm_202102017
crossref_primary_10_1002_smll_202107574
crossref_primary_10_1002_ange_202212861
crossref_primary_10_1246_bcsj_20200372
crossref_primary_10_1016_j_cej_2022_138545
crossref_primary_10_1002_ange_202209343
crossref_primary_10_1002_adom_202201898
crossref_primary_10_1002_adma_202109147
crossref_primary_10_1039_D5TA03374H
crossref_primary_10_1080_15980316_2024_2403982
crossref_primary_10_1002_anie_202217045
crossref_primary_10_1039_D1SC05692A
crossref_primary_10_1002_anie_202012891
crossref_primary_10_1002_anie_202209539
crossref_primary_10_1002_adom_202500140
crossref_primary_10_1038_s41427_021_00318_8
crossref_primary_10_1016_j_cej_2024_157676
crossref_primary_10_1039_D2SC01543A
crossref_primary_10_1002_adfm_202419679
crossref_primary_10_1002_adma_202400158
crossref_primary_10_1002_chem_202104214
crossref_primary_10_1002_ange_202106642
crossref_primary_10_1002_ange_202415856
crossref_primary_10_1039_D5TC01061F
crossref_primary_10_3390_ijms241512362
crossref_primary_10_1002_adom_202403459
crossref_primary_10_1002_adom_202101410
crossref_primary_10_1016_j_matt_2025_102188
crossref_primary_10_1002_chem_202404078
crossref_primary_10_1002_agt2_445
crossref_primary_10_1002_chem_202201605
crossref_primary_10_6023_A22110472
crossref_primary_10_1038_s41467_023_41440_1
crossref_primary_10_1002_adma_202300997
crossref_primary_10_1039_D4SC08708A
crossref_primary_10_1002_adma_202300510
crossref_primary_10_1002_anie_202204652
crossref_primary_10_1002_adma_202208378
crossref_primary_10_1002_ange_202012891
crossref_primary_10_1039_D4QM00720D
crossref_primary_10_1039_D3MH00881A
crossref_primary_10_1002_adma_202402905
crossref_primary_10_1002_anie_202109335
crossref_primary_10_1002_adom_202500702
crossref_primary_10_3390_ma18092040
crossref_primary_10_1002_adom_202403566
crossref_primary_10_1016_j_cej_2023_146484
Cites_doi 10.1002/anie.201912340
10.1021/ja310372f
10.1007/978-3-642-03432-9_5
10.1021/j100012a014
10.1002/adma.201501090
10.1002/adma.201503225
10.1021/jacs.6b12124
10.1063/1.2929846
10.1039/C6CS00368K
10.1002/adma.201402188
10.1021/acs.chemmater.6b05324
10.1038/s41566-019-0415-5
10.1002/anie.201506335
10.1002/adma.201906614
10.1039/C8TC06575F
10.1002/anie.201500203
10.1038/s41563-019-0465-6
10.1002/adfm.201802031
10.1016/j.chemphys.2018.06.011
10.1002/adma.201604223
10.1002/adom.201901627
10.1039/C9TC05950D
10.1002/adfm.201704927
10.1038/s41566-019-0476-5
10.1038/347539a0
10.1002/cphc.201600662
10.1039/c3tc32098g
10.1002/adma.201300753
10.1038/16393
10.1021/acs.orglett.9b00337
10.1021/acsami.8b19635
10.1002/adma.201401393
10.1002/anie.201707193
10.1063/1.98799
10.1021/jacs.7b10578
10.1038/ncomms9476
10.1038/nature11687
10.1038/s41467-019-08495-5
10.1039/C9TC04115J
10.1002/anie.201806323
10.1063/1.1992658
10.1002/adfm.200600651
10.1021/acs.orglett.9b04483
10.1002/adom.201900130
10.1002/adfm.201802558
10.1038/nmat4154
10.1002/anie.201508270
10.1002/anie.201600113
10.1002/adma.201505491
10.1021/jacs.6b01674
10.1002/adom.201801536
10.1002/anie.201911266
10.1038/s41467-020-15558-5
10.1021/ja510144h
10.1021/jacs.6b04092
10.1038/ncomms13680
10.1002/adfm.201901025
10.1039/C4CP01428F
10.1002/adma.201505026
10.1038/nphoton.2014.12
10.1002/adma.201605444
10.1021/acs.orglett.9b03342
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202004072
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202004072
ADMA202004072
Genre article
GrantInformation_xml – fundername: CREST
  funderid: JPMJCR18R3
– fundername: JASRI
  funderid: 2017A1132; 2017B1073; 2018A1114; 2018B1125; 2019A1142; 2019B1063
– fundername: Grant‐in‐Aid for Scientific Research
  funderid: JP18H02051
– fundername: Challenging Research
  funderid: 19K22191
– fundername: Fukuoka Naohiko Memorial Foundation
– fundername: Asahi Glass Foundation
– fundername: JSPS
– fundername: Grant‐in‐Aid for Early‐Career Scientists
  funderid: 20K15291
– fundername: JST
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4162-1b02d7664bc68cb2b0f64633781f9446bcdab38e7b09fc2350b39c59cbfecc8f3
IEDL.DBID DRFUL
ISICitedReferencesCount 292
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564015100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 23 09:56:02 EST 2025
Sun Nov 09 06:06:32 EST 2025
Tue Nov 18 20:55:32 EST 2025
Sat Nov 29 07:24:45 EST 2025
Wed Jan 22 16:32:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4162-1b02d7664bc68cb2b0f64633781f9446bcdab38e7b09fc2350b39c59cbfecc8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1088-1932
0000-0002-7483-9525
PQID 2448812348
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2438991823
proquest_journals_2448812348
crossref_citationtrail_10_1002_adma_202004072
crossref_primary_10_1002_adma_202004072
wiley_primary_10_1002_adma_202004072_ADMA202004072
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1990 1999; 347 397
2016 2016 2017 2019; 17 7 139 18
2012 2013 2014 2014 2015 2015 2016 2018 2018; 492 25 8 26 14 54 55 28 12
1987; 51
2014 2015; 136 6
2014 2015 2016 2016 2017 2017 2018 2019; 26 54 28 28 56 29 28 29
2019; 21
2018 2019 2020; 140 13 32
2019; 10
2018 2019 2019 2019 2019 2019 2020 2020 2020; 57 13 7 58 7 7 8 59 11
2015; 54
2005 2007 2014 2015; 87 17 2 27
2020; 22
2017 2017 2017 2018; 29 46 29 28
2019 2019 2020; 11 7 8
2016; 28
2012 2016 2016 2019; 134 138 138 21
1995 2008 2009 2014 2018; 99 128 97 16 515
Sato T. (e_1_2_4_8_3) 2009
e_1_2_4_18_8
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_3_5
e_1_2_4_7_1
e_1_2_4_3_4
e_1_2_4_3_7
e_1_2_4_9_1
e_1_2_4_3_6
e_1_2_4_9_3
e_1_2_4_3_8
e_1_2_4_9_2
e_1_2_4_9_5
e_1_2_4_9_4
e_1_2_4_9_7
e_1_2_4_9_6
e_1_2_4_10_1
e_1_2_4_9_9
e_1_2_4_10_2
e_1_2_4_9_8
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_14_1
e_1_2_4_14_2
e_1_2_4_16_1
Wu T.‐L. (e_1_2_4_3_9) 2018; 12
e_1_2_4_16_3
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_18_3
e_1_2_4_16_4
e_1_2_4_18_2
e_1_2_4_18_5
e_1_2_4_18_4
e_1_2_4_18_7
e_1_2_4_18_6
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_4_4
e_1_2_4_4_3
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_8_1
e_1_2_4_8_4
e_1_2_4_8_5
e_1_2_4_11_1
e_1_2_4_13_1
e_1_2_4_13_2
e_1_2_4_13_3
e_1_2_4_15_1
e_1_2_4_13_4
e_1_2_4_15_2
e_1_2_4_15_3
e_1_2_4_17_2
e_1_2_4_17_1
e_1_2_4_17_4
e_1_2_4_17_3
References_xml – volume: 136 6
  start-page: 8476
  year: 2014 2015
  publication-title: J. Am. Chem. Soc. Nat. Commun.
– volume: 29 46 29 28
  start-page: 1946 915
  year: 2017 2017 2017 2018
  publication-title: Chem. Mater. Chem. Soc. Rev. Adv. Mater. Adv. Funct. Mater.
– volume: 17 7 139 18
  start-page: 2956 4042 1084
  year: 2016 2016 2017 2019
  publication-title: ChemPhysChem Nat. Commun. J. Am. Chem. Soc. Nat. Mater.
– volume: 28
  start-page: 2777
  year: 2016
  publication-title: Adv. Mater.
– volume: 57 13 7 58 7 7 8 59 11
  start-page: 540 3082 2272 3156 1765
  year: 2018 2019 2019 2019 2019 2019 2020 2020 2020
  publication-title: Angew. Chem., Int. Ed. Nat. Photonics Adv. Opt. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. C J. Mater. Chem. C J. Mater. Chem. C Angew. Chem., Int. Ed. Nat. Commun.
– volume: 11 7 8
  year: 2019 2019 2020
  publication-title: ACS Appl. Mater. Interfaces Adv. Opt. Mater. Adv. Optical Mater.
– volume: 492 25 8 26 14 54 55 28 12
  start-page: 234 3707 326 5198 330 5739 23
  year: 2012 2013 2014 2014 2015 2015 2016 2018 2018
  publication-title: Nature Adv. Mater. Nat. Photonics Adv. Mater. Nat. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Funct. Mater. Nat. Photonics
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 347 397
  start-page: 539 121
  year: 1990 1999
  publication-title: Nature Nature
– volume: 21
  start-page: 9311
  year: 2019
  publication-title: Org. Lett.
– volume: 22
  start-page: 700
  year: 2020
  publication-title: Org. Lett.
– volume: 10
  start-page: 597
  year: 2019
  publication-title: Nat. Commun.
– volume: 134 138 138 21
  start-page: 5210 9021 1770
  year: 2012 2016 2016 2019
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Org. Lett.
– volume: 140 13 32
  start-page: 1195 678
  year: 2018 2019 2020
  publication-title: J. Am. Chem. Soc. Nat. Photonics Adv. Mater.
– volume: 26 54 28 28 56 29 28 29
  start-page: 6642 5677 181 4019
  year: 2014 2015 2016 2016 2017 2017 2018 2019
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 51
  start-page: 913
  year: 1987
  publication-title: Appl. Phys. Lett.
– volume: 87 17 2 27
  start-page: 191 1474 7236
  year: 2005 2007 2014 2015
  publication-title: Appl. Phys. Lett. Adv. Funct. Mater. J. Mater. Chem. C Adv. Mater.
– volume: 99 128 97 16 515
  start-page: 3951 99 728
  year: 1995 2008 2009 2014 2018
  end-page: 129
  publication-title: J. Phys. Chem. J. Chem. Phys. Phys. Chem. Chem. Phys. Chem. Phys.
– ident: e_1_2_4_9_8
  doi: 10.1002/anie.201912340
– ident: e_1_2_4_13_1
  doi: 10.1021/ja310372f
– start-page: 99
  volume-title: The Jahn‐Teller Effect: Fundamentals and Implications for Physics and Chemistry
  year: 2009
  ident: e_1_2_4_8_3
  doi: 10.1007/978-3-642-03432-9_5
– ident: e_1_2_4_8_1
  doi: 10.1021/j100012a014
– ident: e_1_2_4_17_4
  doi: 10.1002/adma.201501090
– ident: e_1_2_4_18_3
  doi: 10.1002/adma.201503225
– ident: e_1_2_4_16_3
  doi: 10.1021/jacs.6b12124
– ident: e_1_2_4_8_2
  doi: 10.1063/1.2929846
– ident: e_1_2_4_4_2
  doi: 10.1039/C6CS00368K
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201402188
– ident: e_1_2_4_4_1
  doi: 10.1021/acs.chemmater.6b05324
– ident: e_1_2_4_9_2
  doi: 10.1038/s41566-019-0415-5
– ident: e_1_2_4_5_1
  doi: 10.1002/anie.201506335
– ident: e_1_2_4_10_3
  doi: 10.1002/adma.201906614
– ident: e_1_2_4_9_5
  doi: 10.1039/C8TC06575F
– ident: e_1_2_4_18_2
  doi: 10.1002/anie.201500203
– ident: e_1_2_4_16_4
  doi: 10.1038/s41563-019-0465-6
– ident: e_1_2_4_3_8
  doi: 10.1002/adfm.201802031
– ident: e_1_2_4_8_5
  doi: 10.1016/j.chemphys.2018.06.011
– ident: e_1_2_4_18_6
  doi: 10.1002/adma.201604223
– ident: e_1_2_4_15_3
  doi: 10.1002/adom.201901627
– ident: e_1_2_4_9_7
  doi: 10.1039/C9TC05950D
– ident: e_1_2_4_18_7
  doi: 10.1002/adfm.201704927
– ident: e_1_2_4_10_2
  doi: 10.1038/s41566-019-0476-5
– ident: e_1_2_4_2_1
  doi: 10.1038/347539a0
– volume: 12
  start-page: 23
  year: 2018
  ident: e_1_2_4_3_9
  publication-title: Nat. Photonics
– ident: e_1_2_4_16_1
  doi: 10.1002/cphc.201600662
– ident: e_1_2_4_17_3
  doi: 10.1039/c3tc32098g
– ident: e_1_2_4_3_2
  doi: 10.1002/adma.201300753
– ident: e_1_2_4_2_2
  doi: 10.1038/16393
– ident: e_1_2_4_13_4
  doi: 10.1021/acs.orglett.9b00337
– ident: e_1_2_4_15_1
  doi: 10.1021/acsami.8b19635
– ident: e_1_2_4_3_4
  doi: 10.1002/adma.201401393
– ident: e_1_2_4_18_5
  doi: 10.1002/anie.201707193
– ident: e_1_2_4_1_1
  doi: 10.1063/1.98799
– ident: e_1_2_4_10_1
  doi: 10.1021/jacs.7b10578
– ident: e_1_2_4_14_2
  doi: 10.1038/ncomms9476
– ident: e_1_2_4_3_1
  doi: 10.1038/nature11687
– ident: e_1_2_4_11_1
  doi: 10.1038/s41467-019-08495-5
– ident: e_1_2_4_9_6
  doi: 10.1039/C9TC04115J
– ident: e_1_2_4_9_1
  doi: 10.1002/anie.201806323
– ident: e_1_2_4_17_1
  doi: 10.1063/1.1992658
– ident: e_1_2_4_17_2
  doi: 10.1002/adfm.200600651
– ident: e_1_2_4_12_1
  doi: 10.1021/acs.orglett.9b04483
– ident: e_1_2_4_9_3
  doi: 10.1002/adom.201900130
– ident: e_1_2_4_4_4
  doi: 10.1002/adfm.201802558
– ident: e_1_2_4_3_5
  doi: 10.1038/nmat4154
– ident: e_1_2_4_3_6
  doi: 10.1002/anie.201508270
– ident: e_1_2_4_3_7
  doi: 10.1002/anie.201600113
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201505491
– ident: e_1_2_4_13_2
  doi: 10.1021/jacs.6b01674
– ident: e_1_2_4_15_2
  doi: 10.1002/adom.201801536
– ident: e_1_2_4_9_4
  doi: 10.1002/anie.201911266
– ident: e_1_2_4_9_9
  doi: 10.1038/s41467-020-15558-5
– ident: e_1_2_4_14_1
  doi: 10.1021/ja510144h
– ident: e_1_2_4_13_3
  doi: 10.1021/jacs.6b04092
– ident: e_1_2_4_16_2
  doi: 10.1038/ncomms13680
– ident: e_1_2_4_18_8
  doi: 10.1002/adfm.201901025
– ident: e_1_2_4_8_4
  doi: 10.1039/C4CP01428F
– ident: e_1_2_4_18_4
  doi: 10.1002/adma.201505026
– ident: e_1_2_4_3_3
  doi: 10.1038/nphoton.2014.12
– ident: e_1_2_4_4_3
  doi: 10.1002/adma.201605444
– ident: e_1_2_4_7_1
  doi: 10.1021/acs.orglett.9b03342
SSID ssj0009606
Score 2.693883
Snippet Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs),...
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs),...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2004072
SubjectTerms Boron
Efficiency
Electroluminescence
Emitters
Energy gap
Fluorescence
Interlayers
Ionization potentials
Mass production
Materials science
Molecular orbitals
multiple resonance effect
Organic light emitting diodes
Oxygen atoms
Photoluminescence
Polymers
pure green
Quantum efficiency
Resonance
solution‐processable
Synthesis
thermally activated delayed fluorescence
Title Solution‐Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202004072
https://www.proquest.com/docview/2448812348
https://www.proquest.com/docview/2438991823
Volume 32
WOSCitedRecordID wos000564015100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTQ_poWledNvNokAhJ7O2JcvycdvN0kMSlpCUvRlLliDg2GEfhb31J_Q39pd0JHu9u4dQSC9-4LEsPCPpkzTzDcCXiCciN9bPT-GBIWT2EDcrL-ZaU-NnTDregh_X8e2tmE6TyVYUf80P0S642Zbh-mvbwDM5H2xIQ7Pc8QZZLfsxdsL7IRov68D-6G78cL0h3uUuv6bd7_MSzsSauNEPB7sl7A5MG7S5jVndoDM-_P_qfoD3DeAkw9pCjuCNLo_h3RYN4Qms1mtjf379bgIHbEAVmSxnmjjHHILWhD14UazIULmEaDonI11kKzyPi2U1c6xQSpOrp0cbH0S-4uiYk6okCDDJTeO1SOxmgWX4QDnnR3IKD-Or-2_fvSYlg6cQuYVeIP0wjzlnUnGhZCh9wxmnNBaBSXBmKVWeSSp0LP3EqJBGvqSJihIlsVAlDD2DTlmV-iMQaoyMAm0CHcUsMkGiUVOMR5mFoJFPu-Ct9ZGqhq_cps0o0pppOUztL03bX9qFy1b-uWbqeFGyt1Zv2rTYeYowRyDYoUx04aJ9jG3NbqBkpa6WVsayEeKMDCsXOmX_40vpcHQzbO8-vealz3Bgr2v_wR50FrOlPoe36uficT7rw148Ff3G5v8CbIYBcQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9KWtj20HZ_yrK1nQaDPZnaliXLj9nS0NIklNGOvhlLlqDgOiVtBnnbR9hn7CfZnew47cMYjL3Y2D7LRncn_SSdfgfwSchMlY7i_AweEoTMAeJmE6TSWu7CItGet-D7OJ1O1dVVdt5GE9JemIYfoptwI8_w7TU5OE1IH61ZQ4vSEweRmsMUW-HNBG1J9GBz-G10OV4z70qfYJMW_IJMJmrF3BjGR09LeNozreHmY9Dqe53Rzn_4313YbiEnGzQ28hI2bP0KXjwiInwNy9Xs2MPPX-3WAdpSxc4Xc8t8aA5De8I2vKqWbGB8SjRbsqGtiiWeR9ViNve8UMay45tr2iHEvmD_WLJZzRBiskkbt8houYA4PlDOR5K8gcvR8cXXk6BNyhAYxG5xEOkwLlMpE22kMjrWoZNY8TxVkctwbKlNWWiubKrDzJmYi1DzzIjMaCzUKMf3oFfPavsWGHdOi8i6yIo0ES7KLKoqkaIgECpC3odgpZDctIzllDijyhuu5TinKs27Ku3D507-tuHq-KPk_kq_eeuzdzkCHYVwhyeqDx-7x-httIRS1Ha2IBniI8QxGf5c7LX9ly_lg-Fk0F29-5eXPsCzk4vJOB-fTs_ew3O630QT7kPvfr6wB7Blftxf380PW9P_DcrGBHk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYhCaU9JOkf3TZJVQj0ZGJbP5aO225MQzbLUpKSm7FkCQKuN2yyhb31EfqMeZLOyF5vciiF0ouN7bEsPBrpkzTzDSFHQmpVefTzs3DgAJkjwM02yqRzzMclN4G34Ns4m0zU1ZWedt6EGAvT8kP0C25oGaG_RgN3N5U_XrOGllUgDkI1xxn0wltcaAm2uTX6ml-O18y7MiTYxA2_SEuuVsyNcXr8uITHI9Mabj4ErWHUyXf_Q333yE4HOemwbSPPyYZrXpBnD4gIX5LlanXs_uevLnQAQ6rodDF3NLjmUGhP0IfX9ZIObUiJ5io6cnW5hHNeL2bzwAtlHT35fo0RQvQTjI8VnTUUICY97_wWKW4XIMcHyAVPklfkMj-5-Pwl6pIyRBawWxolJk6rTEpurFTWpCb2kkvGMpV4DXNLY6vSMOUyE2tvUyZiw7QV2hoo1CrPXpPNZta4N4Qy741InE-cyLjwiXagKi5FiSBUxGxAopVCCtsxlmPijLpouZbTAn9p0f_SAfnYy9-0XB1_lNxf6bfobPa2AKCjAO4wrgbkQ_8YrA23UMrGzRYog3yEMCeDyqVB23_5UjEcnQ_7q7f_8tJ78mQ6yovx6eTsHXmKt1tnwn2yeTdfuAOybX_cXd_OD7uW_xtN7AP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution%E2%80%90Processable+Pure+Green+Thermally+Activated+Delayed+Fluorescence+Emitter+Based+on+the+Multiple+Resonance+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ikeda%2C+Naoya&rft.au=Oda%2C+Susumu&rft.au=Matsumoto%2C+Ryuji&rft.au=Yoshioka%2C+Mayu&rft.date=2020-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=40&rft_id=info:doi/10.1002%2Fadma.202004072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202004072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon