A Knowledge-Based Two-Population Optimization Algorithm for Distributed Energy-Efficient Parallel Machines Scheduling

In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 52; číslo 6; s. 5051 - 5063
Hlavní autori: Pan, Zixiao, Lei, Deming, Wang, Ling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP.
AbstractList In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP.
In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP.In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP.
Author Pan, Zixiao
Lei, Deming
Wang, Ling
Author_xml – sequence: 1
  givenname: Zixiao
  orcidid: 0000-0001-5153-5564
  surname: Pan
  fullname: Pan, Zixiao
  email: pzx19@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Deming
  orcidid: 0000-0002-3388-950X
  surname: Lei
  fullname: Lei, Deming
  email: deminglei11@163.com
  organization: School of Automation, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Ling
  orcidid: 0000-0003-1226-2801
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33119528$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1UREvpD0BIaCUuXDb4Y732HtMQPkRRKxEOnCyvdzZx5djB9qoqvx6HpD30gC_jGT3vaPS-L9GJDx4Qek3wjBDcfVgtfl3OKKZ4xjBtuSDP0BklrawpFfzk8d-KU3SR0i0uT5ZRJ1-gU8YI6TiVZ2iaV998uHMwrKG-1AmGanUX6puwm5zONvjqepft1v45NHO3DtHmzbYaQ6w-2pSj7adcVEsPcX1fL8fRGgs-Vzc6aufAVd-12VgPqfphNjBMzvr1K_R81C7BxbGeo5-flqvFl_rq-vPXxfyqNg3huQbZ9wPD2IhysBwACz52fSOI1p1uewpSDo0UPTeMtWXYmpE3knDgGMa2N-wcvT_s3cXwe4KU1dYmA85pD2FKija8bXDHOCvouyfobZiiL9ep4qGQnBDRFOrtkZr6LQxqF-1Wx3v1YGgBxAEwMaQUYVTG5n_e5aitUwSrfXpqn57ap6eO6RUleaJ8WP4_zZuDxgLAI9_RpqGEs78VvKUJ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1080_00207543_2024_2356628
crossref_primary_10_1109_TCYB_2025_3538007
crossref_primary_10_1016_j_jmsy_2025_07_013
crossref_primary_10_1007_s11227_023_05706_1
crossref_primary_10_1109_TCYB_2025_3556512
crossref_primary_10_1093_jcde_qwae090
crossref_primary_10_1109_ACCESS_2025_3577044
crossref_primary_10_1007_s43069_025_00513_1
crossref_primary_10_1016_j_jmsy_2023_09_015
crossref_primary_10_1016_j_engappai_2025_111033
crossref_primary_10_1109_TEVC_2021_3106168
crossref_primary_10_1016_j_swevo_2023_101355
crossref_primary_10_1109_TCYB_2023_3336656
crossref_primary_10_1109_TSMC_2024_3449413
crossref_primary_10_1109_TSUSC_2024_3506822
crossref_primary_10_1016_j_asoc_2024_112290
crossref_primary_10_3233_JIFS_213473
crossref_primary_10_3390_sym14020204
crossref_primary_10_1007_s10586_025_05513_8
crossref_primary_10_1016_j_knosys_2023_110808
crossref_primary_10_1007_s40747_024_01677_9
crossref_primary_10_1016_j_cie_2025_111197
crossref_primary_10_1109_TSMC_2024_3458873
crossref_primary_10_1109_TSMC_2024_3407724
crossref_primary_10_1016_j_jmsy_2024_09_004
crossref_primary_10_1016_j_rcim_2024_102814
crossref_primary_10_1016_j_cie_2025_111517
crossref_primary_10_1016_j_engappai_2023_106228
crossref_primary_10_1038_s41598_025_10040_y
crossref_primary_10_1109_ACCESS_2023_3269293
crossref_primary_10_26599_TST_2023_9010015
crossref_primary_10_1016_j_swevo_2023_101418
crossref_primary_10_1016_j_asoc_2025_113769
crossref_primary_10_3233_JIFS_230076
crossref_primary_10_1088_2632_072X_adfff1
crossref_primary_10_1016_j_ins_2024_121397
crossref_primary_10_1049_cim2_70046
crossref_primary_10_1016_j_eswa_2025_128362
crossref_primary_10_1016_j_knosys_2023_111295
crossref_primary_10_1016_j_swevo_2024_101574
crossref_primary_10_1016_j_swevo_2025_102146
crossref_primary_10_1016_j_knosys_2024_112949
crossref_primary_10_1016_j_cie_2024_110743
crossref_primary_10_1016_j_future_2024_107494
crossref_primary_10_1016_j_engappai_2025_111187
crossref_primary_10_1109_TCYB_2022_3229666
crossref_primary_10_1016_j_swevo_2024_101841
crossref_primary_10_1016_j_swevo_2024_101600
crossref_primary_10_1038_s41598_025_02218_1
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1016_j_cie_2025_111338
crossref_primary_10_1016_j_swevo_2025_101861
crossref_primary_10_1177_00202940231180622
crossref_primary_10_1016_j_cie_2024_110635
crossref_primary_10_1016_j_engappai_2023_105877
crossref_primary_10_1016_j_knosys_2024_112636
crossref_primary_10_1109_TASE_2024_3396474
crossref_primary_10_1109_TCYB_2022_3192112
crossref_primary_10_1016_j_jmsy_2025_08_017
crossref_primary_10_1109_TEVC_2022_3219238
crossref_primary_10_1177_16878132231175000
crossref_primary_10_1016_j_eswa_2023_120944
crossref_primary_10_1016_j_swevo_2024_101719
crossref_primary_10_1016_j_eswa_2023_121910
crossref_primary_10_1109_TASE_2023_3289915
crossref_primary_10_3390_math12142288
crossref_primary_10_1016_j_cie_2024_110647
crossref_primary_10_1109_TSG_2024_3444276
crossref_primary_10_1038_s41598_024_61434_3
crossref_primary_10_1109_TETCI_2022_3145706
crossref_primary_10_1016_j_cie_2024_110484
crossref_primary_10_1080_17445302_2024_2400492
crossref_primary_10_1007_s10462_022_10247_9
crossref_primary_10_1016_j_swevo_2024_101829
crossref_primary_10_1080_0305215X_2024_2332795
crossref_primary_10_1109_TASE_2023_3303915
crossref_primary_10_1177_16878132241306261
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1093_jcde_qwaf016
crossref_primary_10_1016_j_engappai_2023_107030
crossref_primary_10_1093_jcde_qwaf014
crossref_primary_10_1007_s11227_025_06986_5
crossref_primary_10_1109_TEM_2025_3568826
crossref_primary_10_1109_TSMC_2025_3548120
crossref_primary_10_1016_j_ejor_2025_02_021
crossref_primary_10_1007_s00521_022_08012_8
crossref_primary_10_1016_j_jmsy_2024_10_019
crossref_primary_10_1080_00219592_2025_2516263
crossref_primary_10_1016_j_cor_2025_107044
crossref_primary_10_1016_j_eswa_2024_125690
crossref_primary_10_1016_j_swevo_2024_101771
crossref_primary_10_3390_pr11030755
crossref_primary_10_1080_17445302_2024_2391810
crossref_primary_10_1109_TSMC_2024_3520320
crossref_primary_10_3233_JCM_247286
crossref_primary_10_1109_TEVC_2023_3237336
crossref_primary_10_1016_j_cor_2025_107158
crossref_primary_10_1016_j_swevo_2024_101764
crossref_primary_10_1080_0305215X_2024_2372630
crossref_primary_10_1016_j_swevo_2022_101200
crossref_primary_10_1016_j_eswa_2024_124194
crossref_primary_10_1016_j_eswa_2023_121221
Cites_doi 10.1016/j.cor.2008.12.004
10.1007/s00170-018-3043-1
10.1016/j.swevo.2019.100557
10.1016/j.cie.2013.02.022
10.1080/0953728031000154264
10.1007/s10586-018-2867-7
10.1016/j.swevo.2020.100716
10.1007/s10922-018-9469-9
10.1016/j.cor.2017.06.019
10.1016/S0377-2217(99)00301-X
10.1007/s10845-014-0890-y
10.1016/S0925-5273(03)00113-0
10.1080/00207543.2011.648280
10.1016/j.cor.2013.11.017
10.1080/00207543.2013.848492
10.1016/j.swevo.2017.06.001
10.1109/SFCS.1995.492493
10.1109/TSMC.2017.2788879
10.1016/j.cor.2009.06.019
10.1287/opre.1060.0280
10.1016/j.amc.2014.09.010
10.1016/j.ins.2012.07.020
10.1016/j.cor.2003.08.002
10.1109/TCYB.2019.2939219
10.1016/j.knosys.2018.02.029
10.1016/j.swevo.2019.05.007
10.1109/TASE.2013.2274517
10.1016/j.asoc.2015.01.003
10.1016/j.jmsy.2015.11.006
10.1023/A:1008202821328
10.2307/1882150
10.1109/TSMC.2016.2616347
10.1109/4235.996017
10.1016/j.omega.2018.03.004
10.1016/j.jclepro.2018.05.056
10.1016/j.ces.2011.03.017
10.1007/s00170-015-7080-8
10.1016/j.asoc.2016.01.033
10.1109/TCYB.2019.2943606
10.1080/00207543.2015.1047981
10.1109/TCYB.2019.2933499
10.1080/0305215X.2014.928817
10.1109/TCYB.2017.2771213
10.1016/j.cie.2017.07.020
10.1016/j.asoc.2017.06.023
10.1016/j.swevo.2018.04.011
10.1016/j.jclepro.2017.04.018
10.1016/j.asoc.2017.10.015
10.1016/j.ergon.2004.02.003
10.1016/j.cie.2018.07.006
10.1109/TEVC.2010.2059031
10.1016/j.ejor.2007.06.028
10.1080/00207543.2019.1598596
10.1007/s00170-015-7657-2
10.1016/j.jestch.2019.11.002
10.1016/j.promfg.2020.01.350
10.1016/j.ejor.2011.01.011
10.1109/TCYB.2019.2927780
10.1109/TEVC.2004.826067
10.1016/j.asoc.2016.10.039
10.1080/0951192X.2015.1099074
10.1007/s00521-019-04091-2
10.1016/j.suscom.2017.03.002
10.1007/s00170-007-0945-8
10.1109/ACCESS.2019.2950110
10.1016/j.omega.2018.01.001
10.1109/TCYB.2017.2780274
10.1016/j.knosys.2012.04.001
10.1007/s00170-008-1683-2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3026571
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 5063
ExternalDocumentID 33119528
10_1109_TCYB_2020_3026571
9244215
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873328; 61573264
  funderid: 10.13039/501100001809
– fundername: National Science Fund for Distinguished Young Scholars of China
  grantid: 61525304
  funderid: 10.13039/501100014219
– fundername: Meituan-Dianping Group
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-e8bbd300c73318de075f9b471aa9a6b2e88d487b5c3361aa6cf54815e50ef6bc3
IEDL.DBID RIE
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819019200092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Nov 09 12:16:26 EST 2025
Mon Jun 30 05:20:41 EDT 2025
Thu Jan 02 22:53:46 EST 2025
Sat Nov 29 02:02:31 EST 2025
Tue Nov 18 20:45:16 EST 2025
Wed Aug 27 02:23:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e8bbd300c73318de075f9b471aa9a6b2e88d487b5c3361aa6cf54815e50ef6bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3388-950X
0000-0003-1226-2801
0000-0001-5153-5564
PMID 33119528
PQID 2677851174
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_9244215
pubmed_primary_33119528
proquest_miscellaneous_2456409353
proquest_journals_2677851174
crossref_citationtrail_10_1109_TCYB_2020_3026571
crossref_primary_10_1109_TCYB_2020_3026571
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Storn (ref48) 1997; 11
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
Zitzler (ref68) 2001
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref23
ref67
ref26
ref25
ref69
ref20
ref22
ref66
ref21
Davis (ref64)
ref28
Goldberg (ref63)
ref27
ref29
ref60
ref62
ref61
Knowles (ref65)
References_xml – ident: ref52
  doi: 10.1016/j.cor.2008.12.004
– ident: ref62
  doi: 10.1007/s00170-018-3043-1
– ident: ref24
  doi: 10.1016/j.swevo.2019.100557
– ident: ref53
  doi: 10.1016/j.cie.2013.02.022
– ident: ref4
  doi: 10.1080/0953728031000154264
– ident: ref6
  doi: 10.1007/s10586-018-2867-7
– ident: ref22
  doi: 10.1016/j.swevo.2020.100716
– ident: ref8
  doi: 10.1007/s10922-018-9469-9
– ident: ref69
  doi: 10.1016/j.cor.2017.06.019
– ident: ref10
  doi: 10.1016/S0377-2217(99)00301-X
– ident: ref11
  doi: 10.1007/s10845-014-0890-y
– ident: ref1
  doi: 10.1016/S0925-5273(03)00113-0
– ident: ref46
  doi: 10.1080/00207543.2011.648280
– ident: ref16
  doi: 10.1016/j.cor.2013.11.017
– ident: ref50
  doi: 10.1080/00207543.2013.848492
– ident: ref57
  doi: 10.1016/j.swevo.2017.06.001
– ident: ref36
  doi: 10.1109/SFCS.1995.492493
– ident: ref23
  doi: 10.1109/TSMC.2017.2788879
– ident: ref19
  doi: 10.1016/j.cor.2009.06.019
– ident: ref13
  doi: 10.1287/opre.1060.0280
– ident: ref54
  doi: 10.1016/j.amc.2014.09.010
– ident: ref15
  doi: 10.1016/j.ins.2012.07.020
– ident: ref2
  doi: 10.1016/j.cor.2003.08.002
– ident: ref55
  doi: 10.1109/TCYB.2019.2939219
– ident: ref43
  doi: 10.1016/j.knosys.2018.02.029
– start-page: 1
  year: 2001
  ident: ref68
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– start-page: 154
  volume-title: Proc. 1st Int. Conf. Genet. Algorithms Appl.
  ident: ref63
  article-title: Alleles, loci and the traveling salesman problem
– ident: ref66
  doi: 10.1016/j.swevo.2019.05.007
– ident: ref49
  doi: 10.1109/TASE.2013.2274517
– ident: ref17
  doi: 10.1016/j.asoc.2015.01.003
– ident: ref28
  doi: 10.1016/j.jmsy.2015.11.006
– volume: 11
  start-page: 341
  year: 1997
  ident: ref48
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: ref3
  doi: 10.2307/1882150
– ident: ref31
  doi: 10.1109/TSMC.2016.2616347
– start-page: 162
  volume-title: Proc. 9th Int. Joint Conf. Artif. Intell.
  ident: ref64
  article-title: Applying adaptive algorithms to epistatic domains
– ident: ref44
  doi: 10.1109/4235.996017
– ident: ref21
  doi: 10.1016/j.omega.2018.03.004
– ident: ref29
  doi: 10.1016/j.jclepro.2018.05.056
– ident: ref14
  doi: 10.1016/j.ces.2011.03.017
– ident: ref26
  doi: 10.1007/s00170-015-7080-8
– ident: ref47
  doi: 10.1016/j.asoc.2016.01.033
– ident: ref27
  doi: 10.1109/TCYB.2019.2943606
– ident: ref71
  doi: 10.1080/00207543.2015.1047981
– ident: ref72
  doi: 10.1109/TCYB.2019.2933499
– ident: ref42
  doi: 10.1080/0305215X.2014.928817
– ident: ref45
  doi: 10.1109/TCYB.2017.2771213
– ident: ref20
  doi: 10.1016/j.cie.2017.07.020
– ident: ref40
  doi: 10.1016/j.asoc.2017.06.023
– ident: ref41
  doi: 10.1016/j.swevo.2018.04.011
– start-page: 711
  volume-title: Proc. Congr. Evol. Comput.
  ident: ref65
  article-title: On metrics for comparing non-dominated sets
– ident: ref33
  doi: 10.1016/j.jclepro.2017.04.018
– ident: ref61
  doi: 10.1016/j.asoc.2017.10.015
– ident: ref9
  doi: 10.1016/j.ergon.2004.02.003
– ident: ref35
  doi: 10.1016/j.cie.2018.07.006
– ident: ref51
  doi: 10.1109/TEVC.2010.2059031
– ident: ref39
  doi: 10.1016/j.ejor.2007.06.028
– ident: ref12
  doi: 10.1080/00207543.2019.1598596
– ident: ref32
  doi: 10.1007/s00170-015-7657-2
– ident: ref37
  doi: 10.1016/j.jestch.2019.11.002
– ident: ref25
  doi: 10.1016/j.promfg.2020.01.350
– ident: ref34
  doi: 10.1016/j.ejor.2011.01.011
– ident: ref56
  doi: 10.1109/TCYB.2019.2927780
– ident: ref70
  doi: 10.1109/TEVC.2004.826067
– ident: ref60
  doi: 10.1016/j.asoc.2016.10.039
– ident: ref18
  doi: 10.1080/0951192X.2015.1099074
– ident: ref5
  doi: 10.1007/s00521-019-04091-2
– ident: ref38
  doi: 10.1016/j.suscom.2017.03.002
– ident: ref67
  doi: 10.1007/s00170-007-0945-8
– ident: ref7
  doi: 10.1109/ACCESS.2019.2950110
– ident: ref30
  doi: 10.1016/j.omega.2018.01.001
– ident: ref73
  doi: 10.1109/TCYB.2017.2780274
– ident: ref58
  doi: 10.1016/j.knosys.2012.04.001
– ident: ref59
  doi: 10.1007/s00170-008-1683-2
SSID ssj0000816898
Score 2.6150954
Snippet In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5051
SubjectTerms Algorithms
Distributed scheduling
Energy consumption
energy-efficient scheduling
Evolutionary computation
Genetic algorithms
Job shop scheduling
knowledge
Knowledge based systems
Optimization
Parallel machines
parallel machines scheduling
Population
Production facilities
Scheduling
Sorting algorithms
Statistical analysis
two-population
Title A Knowledge-Based Two-Population Optimization Algorithm for Distributed Energy-Efficient Parallel Machines Scheduling
URI https://ieeexplore.ieee.org/document/9244215
https://www.ncbi.nlm.nih.gov/pubmed/33119528
https://www.proquest.com/docview/2677851174
https://www.proquest.com/docview/2456409353
Volume 52
WOSCitedRecordID wos000819019200092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VigMXaAml25bKSBwA1dRZ7_OYlkRIQIlEkMJptX6lkZIsyqP8fWYcZ8WhVOJm7dpeSzPeedjzfQBvUmGEcbnmLkkUT9BCchSz49ZpZ5Q0Und9ofCX_OamGI_L4R5ctLUw1lp_-cx-oKY_yzeN3lCq7BJjhSSmivJHeZ5ta7XafIonkPDUtzE2OHoVeTjE7IrycnT98wqDwRhjVAw60pwIYqQkuDOiYf_LInmKlX97m97qDJ7933oP4GnwLllvqw6HsGcXz-Ew7N8VextApt91YNNjn3fpNH6Fpsyw0e-GD1s-L_YNfybzUKXJerNJs5yub-cMnVz2kdB2iSgLR_V98SDveygKXA4b1kviZ5mxr_6eJn72OyqGoRvvkxfwY9AfXX_igYKBa7Tsa24LpYwUQhO1Y2EsOhiuVGjQ6rqsMxXbojAY8qhUS5nhw0y7lOBfbCqsy5SWR7C_aBb2GJgrMxuLIsHRfgKVliYpC_QYjTa5FRGInRgqHfDJiSZjVvk4RZQVCbEiIVZBiBG8b4f82oJzPNS5QxJqOwbhRHC2k3UVtu-qiglWD13RPIngdfsaNx6dptQL22ywDwHx0DGyjODlVkfauXeqdXL_N0_hSUxVFD6Zcwb76-XGvoLH-m49XS3PUbvHxbnX7j-6_vRW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFD4hQKIvXERlALEmPqixUqZzfVxwCYZl3cQ1wafJ9AYkyw7ZC_x9zul2Jz6oiW_NTNtpck7nXNrzfQDvU2GEcbnmLkkUT9BCchSz49ZpZ5Q0Uh_7QuFe3u8XV1flYAU-t7Uw1lp_-cx-oaY_yzeNnlOq7AhjhSSmivI1Ys4K1VptRsVTSHjy2xgbHP2KPBxjHovyaHj66wTDwRijVAw70pwoYqQkwDMiYv_NJnmSlb_7m97unG3-34q3YCP4l6yzUIhtWLHjF7AddvCUfQgw0x93YN5hF8uEGj9BY2bY8LHhg5bRi33H38ldqNNkndF1M7md3dwxdHPZV8LbJaosHNX15YO868EocDlsUE-IoWXELv1NTfzsD1QNQ3fer1_Cz7Pu8PScBxIGrtG2z7gtlDJSCE3kjoWx6GK4UqFJq-uyzlRsi8Jg0KNSLWWGDzPtUgKAsamwLlNavoLVcTO2u8BcmdlYFAmO9hOotDRJWaDPaLTJrYhALMVQ6YBQTkQZo8pHKqKsSIgVCbEKQozgUzvkfgHP8a_OOyShtmMQTgQHS1lXYQNPq5iA9dAZzZMI3rWvcevReUo9ts0c-xAUDx0kywheL3SknXupWnt__uZbeHY-vOxVvW_9i314HlNNhU_tHMDqbDK3b2BdP8xup5NDr-NP2FH2tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Knowledge-Based+Two-Population+Optimization+Algorithm+for+Distributed+Energy-Efficient+Parallel+Machines+Scheduling&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Pan%2C+Zixiao&rft.au=Lei%2C+Deming&rft.au=Wang%2C+Ling&rft.date=2022-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=6&rft.spage=5051&rft.epage=5063&rft_id=info:doi/10.1109%2FTCYB.2020.3026571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3026571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon