A Knowledge-Based Two-Population Optimization Algorithm for Distributed Energy-Efficient Parallel Machines Scheduling
In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-e...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 52; číslo 6; s. 5051 - 5063 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP. |
|---|---|
| AbstractList | In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP. In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP.In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP. |
| Author | Pan, Zixiao Lei, Deming Wang, Ling |
| Author_xml | – sequence: 1 givenname: Zixiao orcidid: 0000-0001-5153-5564 surname: Pan fullname: Pan, Zixiao email: pzx19@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Deming orcidid: 0000-0002-3388-950X surname: Lei fullname: Lei, Deming email: deminglei11@163.com organization: School of Automation, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Ling orcidid: 0000-0003-1226-2801 surname: Wang fullname: Wang, Ling email: wangling@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33119528$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1UREvpD0BIaCUuXDb4Y732HtMQPkRRKxEOnCyvdzZx5djB9qoqvx6HpD30gC_jGT3vaPS-L9GJDx4Qek3wjBDcfVgtfl3OKKZ4xjBtuSDP0BklrawpFfzk8d-KU3SR0i0uT5ZRJ1-gU8YI6TiVZ2iaV998uHMwrKG-1AmGanUX6puwm5zONvjqepft1v45NHO3DtHmzbYaQ6w-2pSj7adcVEsPcX1fL8fRGgs-Vzc6aufAVd-12VgPqfphNjBMzvr1K_R81C7BxbGeo5-flqvFl_rq-vPXxfyqNg3huQbZ9wPD2IhysBwACz52fSOI1p1uewpSDo0UPTeMtWXYmpE3knDgGMa2N-wcvT_s3cXwe4KU1dYmA85pD2FKija8bXDHOCvouyfobZiiL9ep4qGQnBDRFOrtkZr6LQxqF-1Wx3v1YGgBxAEwMaQUYVTG5n_e5aitUwSrfXpqn57ap6eO6RUleaJ8WP4_zZuDxgLAI9_RpqGEs78VvKUJ |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1080_00207543_2024_2356628 crossref_primary_10_1109_TCYB_2025_3538007 crossref_primary_10_1016_j_jmsy_2025_07_013 crossref_primary_10_1007_s11227_023_05706_1 crossref_primary_10_1109_TCYB_2025_3556512 crossref_primary_10_1093_jcde_qwae090 crossref_primary_10_1109_ACCESS_2025_3577044 crossref_primary_10_1007_s43069_025_00513_1 crossref_primary_10_1016_j_jmsy_2023_09_015 crossref_primary_10_1016_j_engappai_2025_111033 crossref_primary_10_1109_TEVC_2021_3106168 crossref_primary_10_1016_j_swevo_2023_101355 crossref_primary_10_1109_TCYB_2023_3336656 crossref_primary_10_1109_TSMC_2024_3449413 crossref_primary_10_1109_TSUSC_2024_3506822 crossref_primary_10_1016_j_asoc_2024_112290 crossref_primary_10_3233_JIFS_213473 crossref_primary_10_3390_sym14020204 crossref_primary_10_1007_s10586_025_05513_8 crossref_primary_10_1016_j_knosys_2023_110808 crossref_primary_10_1007_s40747_024_01677_9 crossref_primary_10_1016_j_cie_2025_111197 crossref_primary_10_1109_TSMC_2024_3458873 crossref_primary_10_1109_TSMC_2024_3407724 crossref_primary_10_1016_j_jmsy_2024_09_004 crossref_primary_10_1016_j_rcim_2024_102814 crossref_primary_10_1016_j_cie_2025_111517 crossref_primary_10_1016_j_engappai_2023_106228 crossref_primary_10_1038_s41598_025_10040_y crossref_primary_10_1109_ACCESS_2023_3269293 crossref_primary_10_26599_TST_2023_9010015 crossref_primary_10_1016_j_swevo_2023_101418 crossref_primary_10_1016_j_asoc_2025_113769 crossref_primary_10_3233_JIFS_230076 crossref_primary_10_1088_2632_072X_adfff1 crossref_primary_10_1016_j_ins_2024_121397 crossref_primary_10_1049_cim2_70046 crossref_primary_10_1016_j_eswa_2025_128362 crossref_primary_10_1016_j_knosys_2023_111295 crossref_primary_10_1016_j_swevo_2024_101574 crossref_primary_10_1016_j_swevo_2025_102146 crossref_primary_10_1016_j_knosys_2024_112949 crossref_primary_10_1016_j_cie_2024_110743 crossref_primary_10_1016_j_future_2024_107494 crossref_primary_10_1016_j_engappai_2025_111187 crossref_primary_10_1109_TCYB_2022_3229666 crossref_primary_10_1016_j_swevo_2024_101841 crossref_primary_10_1016_j_swevo_2024_101600 crossref_primary_10_1038_s41598_025_02218_1 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_1016_j_cie_2025_111338 crossref_primary_10_1016_j_swevo_2025_101861 crossref_primary_10_1177_00202940231180622 crossref_primary_10_1016_j_cie_2024_110635 crossref_primary_10_1016_j_engappai_2023_105877 crossref_primary_10_1016_j_knosys_2024_112636 crossref_primary_10_1109_TASE_2024_3396474 crossref_primary_10_1109_TCYB_2022_3192112 crossref_primary_10_1016_j_jmsy_2025_08_017 crossref_primary_10_1109_TEVC_2022_3219238 crossref_primary_10_1177_16878132231175000 crossref_primary_10_1016_j_eswa_2023_120944 crossref_primary_10_1016_j_swevo_2024_101719 crossref_primary_10_1016_j_eswa_2023_121910 crossref_primary_10_1109_TASE_2023_3289915 crossref_primary_10_3390_math12142288 crossref_primary_10_1016_j_cie_2024_110647 crossref_primary_10_1109_TSG_2024_3444276 crossref_primary_10_1038_s41598_024_61434_3 crossref_primary_10_1109_TETCI_2022_3145706 crossref_primary_10_1016_j_cie_2024_110484 crossref_primary_10_1080_17445302_2024_2400492 crossref_primary_10_1007_s10462_022_10247_9 crossref_primary_10_1016_j_swevo_2024_101829 crossref_primary_10_1080_0305215X_2024_2332795 crossref_primary_10_1109_TASE_2023_3303915 crossref_primary_10_1177_16878132241306261 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1093_jcde_qwaf016 crossref_primary_10_1016_j_engappai_2023_107030 crossref_primary_10_1093_jcde_qwaf014 crossref_primary_10_1007_s11227_025_06986_5 crossref_primary_10_1109_TEM_2025_3568826 crossref_primary_10_1109_TSMC_2025_3548120 crossref_primary_10_1016_j_ejor_2025_02_021 crossref_primary_10_1007_s00521_022_08012_8 crossref_primary_10_1016_j_jmsy_2024_10_019 crossref_primary_10_1080_00219592_2025_2516263 crossref_primary_10_1016_j_cor_2025_107044 crossref_primary_10_1016_j_eswa_2024_125690 crossref_primary_10_1016_j_swevo_2024_101771 crossref_primary_10_3390_pr11030755 crossref_primary_10_1080_17445302_2024_2391810 crossref_primary_10_1109_TSMC_2024_3520320 crossref_primary_10_3233_JCM_247286 crossref_primary_10_1109_TEVC_2023_3237336 crossref_primary_10_1016_j_cor_2025_107158 crossref_primary_10_1016_j_swevo_2024_101764 crossref_primary_10_1080_0305215X_2024_2372630 crossref_primary_10_1016_j_swevo_2022_101200 crossref_primary_10_1016_j_eswa_2024_124194 crossref_primary_10_1016_j_eswa_2023_121221 |
| Cites_doi | 10.1016/j.cor.2008.12.004 10.1007/s00170-018-3043-1 10.1016/j.swevo.2019.100557 10.1016/j.cie.2013.02.022 10.1080/0953728031000154264 10.1007/s10586-018-2867-7 10.1016/j.swevo.2020.100716 10.1007/s10922-018-9469-9 10.1016/j.cor.2017.06.019 10.1016/S0377-2217(99)00301-X 10.1007/s10845-014-0890-y 10.1016/S0925-5273(03)00113-0 10.1080/00207543.2011.648280 10.1016/j.cor.2013.11.017 10.1080/00207543.2013.848492 10.1016/j.swevo.2017.06.001 10.1109/SFCS.1995.492493 10.1109/TSMC.2017.2788879 10.1016/j.cor.2009.06.019 10.1287/opre.1060.0280 10.1016/j.amc.2014.09.010 10.1016/j.ins.2012.07.020 10.1016/j.cor.2003.08.002 10.1109/TCYB.2019.2939219 10.1016/j.knosys.2018.02.029 10.1016/j.swevo.2019.05.007 10.1109/TASE.2013.2274517 10.1016/j.asoc.2015.01.003 10.1016/j.jmsy.2015.11.006 10.1023/A:1008202821328 10.2307/1882150 10.1109/TSMC.2016.2616347 10.1109/4235.996017 10.1016/j.omega.2018.03.004 10.1016/j.jclepro.2018.05.056 10.1016/j.ces.2011.03.017 10.1007/s00170-015-7080-8 10.1016/j.asoc.2016.01.033 10.1109/TCYB.2019.2943606 10.1080/00207543.2015.1047981 10.1109/TCYB.2019.2933499 10.1080/0305215X.2014.928817 10.1109/TCYB.2017.2771213 10.1016/j.cie.2017.07.020 10.1016/j.asoc.2017.06.023 10.1016/j.swevo.2018.04.011 10.1016/j.jclepro.2017.04.018 10.1016/j.asoc.2017.10.015 10.1016/j.ergon.2004.02.003 10.1016/j.cie.2018.07.006 10.1109/TEVC.2010.2059031 10.1016/j.ejor.2007.06.028 10.1080/00207543.2019.1598596 10.1007/s00170-015-7657-2 10.1016/j.jestch.2019.11.002 10.1016/j.promfg.2020.01.350 10.1016/j.ejor.2011.01.011 10.1109/TCYB.2019.2927780 10.1109/TEVC.2004.826067 10.1016/j.asoc.2016.10.039 10.1080/0951192X.2015.1099074 10.1007/s00521-019-04091-2 10.1016/j.suscom.2017.03.002 10.1007/s00170-007-0945-8 10.1109/ACCESS.2019.2950110 10.1016/j.omega.2018.01.001 10.1109/TCYB.2017.2780274 10.1016/j.knosys.2012.04.001 10.1007/s00170-008-1683-2 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3026571 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 5063 |
| ExternalDocumentID | 33119528 10_1109_TCYB_2020_3026571 9244215 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873328; 61573264 funderid: 10.13039/501100001809 – fundername: National Science Fund for Distinguished Young Scholars of China grantid: 61525304 funderid: 10.13039/501100014219 – fundername: Meituan-Dianping Group |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c415t-e8bbd300c73318de075f9b471aa9a6b2e88d487b5c3361aa6cf54815e50ef6bc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 141 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819019200092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Nov 09 12:16:26 EST 2025 Mon Jun 30 05:20:41 EDT 2025 Thu Jan 02 22:53:46 EST 2025 Sat Nov 29 02:02:31 EST 2025 Tue Nov 18 20:45:16 EST 2025 Wed Aug 27 02:23:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-e8bbd300c73318de075f9b471aa9a6b2e88d487b5c3361aa6cf54815e50ef6bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3388-950X 0000-0003-1226-2801 0000-0001-5153-5564 |
| PMID | 33119528 |
| PQID | 2677851174 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9244215 pubmed_primary_33119528 proquest_miscellaneous_2456409353 proquest_journals_2677851174 crossref_citationtrail_10_1109_TCYB_2020_3026571 crossref_primary_10_1109_TCYB_2020_3026571 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Storn (ref48) 1997; 11 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 Zitzler (ref68) 2001 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref23 ref67 ref26 ref25 ref69 ref20 ref22 ref66 ref21 Davis (ref64) ref28 Goldberg (ref63) ref27 ref29 ref60 ref62 ref61 Knowles (ref65) |
| References_xml | – ident: ref52 doi: 10.1016/j.cor.2008.12.004 – ident: ref62 doi: 10.1007/s00170-018-3043-1 – ident: ref24 doi: 10.1016/j.swevo.2019.100557 – ident: ref53 doi: 10.1016/j.cie.2013.02.022 – ident: ref4 doi: 10.1080/0953728031000154264 – ident: ref6 doi: 10.1007/s10586-018-2867-7 – ident: ref22 doi: 10.1016/j.swevo.2020.100716 – ident: ref8 doi: 10.1007/s10922-018-9469-9 – ident: ref69 doi: 10.1016/j.cor.2017.06.019 – ident: ref10 doi: 10.1016/S0377-2217(99)00301-X – ident: ref11 doi: 10.1007/s10845-014-0890-y – ident: ref1 doi: 10.1016/S0925-5273(03)00113-0 – ident: ref46 doi: 10.1080/00207543.2011.648280 – ident: ref16 doi: 10.1016/j.cor.2013.11.017 – ident: ref50 doi: 10.1080/00207543.2013.848492 – ident: ref57 doi: 10.1016/j.swevo.2017.06.001 – ident: ref36 doi: 10.1109/SFCS.1995.492493 – ident: ref23 doi: 10.1109/TSMC.2017.2788879 – ident: ref19 doi: 10.1016/j.cor.2009.06.019 – ident: ref13 doi: 10.1287/opre.1060.0280 – ident: ref54 doi: 10.1016/j.amc.2014.09.010 – ident: ref15 doi: 10.1016/j.ins.2012.07.020 – ident: ref2 doi: 10.1016/j.cor.2003.08.002 – ident: ref55 doi: 10.1109/TCYB.2019.2939219 – ident: ref43 doi: 10.1016/j.knosys.2018.02.029 – start-page: 1 year: 2001 ident: ref68 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – start-page: 154 volume-title: Proc. 1st Int. Conf. Genet. Algorithms Appl. ident: ref63 article-title: Alleles, loci and the traveling salesman problem – ident: ref66 doi: 10.1016/j.swevo.2019.05.007 – ident: ref49 doi: 10.1109/TASE.2013.2274517 – ident: ref17 doi: 10.1016/j.asoc.2015.01.003 – ident: ref28 doi: 10.1016/j.jmsy.2015.11.006 – volume: 11 start-page: 341 year: 1997 ident: ref48 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: ref3 doi: 10.2307/1882150 – ident: ref31 doi: 10.1109/TSMC.2016.2616347 – start-page: 162 volume-title: Proc. 9th Int. Joint Conf. Artif. Intell. ident: ref64 article-title: Applying adaptive algorithms to epistatic domains – ident: ref44 doi: 10.1109/4235.996017 – ident: ref21 doi: 10.1016/j.omega.2018.03.004 – ident: ref29 doi: 10.1016/j.jclepro.2018.05.056 – ident: ref14 doi: 10.1016/j.ces.2011.03.017 – ident: ref26 doi: 10.1007/s00170-015-7080-8 – ident: ref47 doi: 10.1016/j.asoc.2016.01.033 – ident: ref27 doi: 10.1109/TCYB.2019.2943606 – ident: ref71 doi: 10.1080/00207543.2015.1047981 – ident: ref72 doi: 10.1109/TCYB.2019.2933499 – ident: ref42 doi: 10.1080/0305215X.2014.928817 – ident: ref45 doi: 10.1109/TCYB.2017.2771213 – ident: ref20 doi: 10.1016/j.cie.2017.07.020 – ident: ref40 doi: 10.1016/j.asoc.2017.06.023 – ident: ref41 doi: 10.1016/j.swevo.2018.04.011 – start-page: 711 volume-title: Proc. Congr. Evol. Comput. ident: ref65 article-title: On metrics for comparing non-dominated sets – ident: ref33 doi: 10.1016/j.jclepro.2017.04.018 – ident: ref61 doi: 10.1016/j.asoc.2017.10.015 – ident: ref9 doi: 10.1016/j.ergon.2004.02.003 – ident: ref35 doi: 10.1016/j.cie.2018.07.006 – ident: ref51 doi: 10.1109/TEVC.2010.2059031 – ident: ref39 doi: 10.1016/j.ejor.2007.06.028 – ident: ref12 doi: 10.1080/00207543.2019.1598596 – ident: ref32 doi: 10.1007/s00170-015-7657-2 – ident: ref37 doi: 10.1016/j.jestch.2019.11.002 – ident: ref25 doi: 10.1016/j.promfg.2020.01.350 – ident: ref34 doi: 10.1016/j.ejor.2011.01.011 – ident: ref56 doi: 10.1109/TCYB.2019.2927780 – ident: ref70 doi: 10.1109/TEVC.2004.826067 – ident: ref60 doi: 10.1016/j.asoc.2016.10.039 – ident: ref18 doi: 10.1080/0951192X.2015.1099074 – ident: ref5 doi: 10.1007/s00521-019-04091-2 – ident: ref38 doi: 10.1016/j.suscom.2017.03.002 – ident: ref67 doi: 10.1007/s00170-007-0945-8 – ident: ref7 doi: 10.1109/ACCESS.2019.2950110 – ident: ref30 doi: 10.1016/j.omega.2018.01.001 – ident: ref73 doi: 10.1109/TCYB.2017.2780274 – ident: ref58 doi: 10.1016/j.knosys.2012.04.001 – ident: ref59 doi: 10.1007/s00170-008-1683-2 |
| SSID | ssj0000816898 |
| Score | 2.6150954 |
| Snippet | In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5051 |
| SubjectTerms | Algorithms Distributed scheduling Energy consumption energy-efficient scheduling Evolutionary computation Genetic algorithms Job shop scheduling knowledge Knowledge based systems Optimization Parallel machines parallel machines scheduling Population Production facilities Scheduling Sorting algorithms Statistical analysis two-population |
| Title | A Knowledge-Based Two-Population Optimization Algorithm for Distributed Energy-Efficient Parallel Machines Scheduling |
| URI | https://ieeexplore.ieee.org/document/9244215 https://www.ncbi.nlm.nih.gov/pubmed/33119528 https://www.proquest.com/docview/2677851174 https://www.proquest.com/docview/2456409353 |
| Volume | 52 |
| WOSCitedRecordID | wos000819019200092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VigMXaAml25bKSBwA1dRZ7_OYlkRIQIlEkMJptX6lkZIsyqP8fWYcZ8WhVOJm7dpeSzPeedjzfQBvUmGEcbnmLkkUT9BCchSz49ZpZ5Q0Und9ofCX_OamGI_L4R5ctLUw1lp_-cx-oKY_yzeN3lCq7BJjhSSmivJHeZ5ta7XafIonkPDUtzE2OHoVeTjE7IrycnT98wqDwRhjVAw60pwIYqQkuDOiYf_LInmKlX97m97qDJ7933oP4GnwLllvqw6HsGcXz-Ew7N8VextApt91YNNjn3fpNH6Fpsyw0e-GD1s-L_YNfybzUKXJerNJs5yub-cMnVz2kdB2iSgLR_V98SDveygKXA4b1kviZ5mxr_6eJn72OyqGoRvvkxfwY9AfXX_igYKBa7Tsa24LpYwUQhO1Y2EsOhiuVGjQ6rqsMxXbojAY8qhUS5nhw0y7lOBfbCqsy5SWR7C_aBb2GJgrMxuLIsHRfgKVliYpC_QYjTa5FRGInRgqHfDJiSZjVvk4RZQVCbEiIVZBiBG8b4f82oJzPNS5QxJqOwbhRHC2k3UVtu-qiglWD13RPIngdfsaNx6dptQL22ywDwHx0DGyjODlVkfauXeqdXL_N0_hSUxVFD6Zcwb76-XGvoLH-m49XS3PUbvHxbnX7j-6_vRW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFD4hQKIvXERlALEmPqixUqZzfVxwCYZl3cQ1wafJ9AYkyw7ZC_x9zul2Jz6oiW_NTNtpck7nXNrzfQDvU2GEcbnmLkkUT9BCchSz49ZpZ5Q0Uh_7QuFe3u8XV1flYAU-t7Uw1lp_-cx-oaY_yzeNnlOq7AhjhSSmivI1Ys4K1VptRsVTSHjy2xgbHP2KPBxjHovyaHj66wTDwRijVAw70pwoYqQkwDMiYv_NJnmSlb_7m97unG3-34q3YCP4l6yzUIhtWLHjF7AddvCUfQgw0x93YN5hF8uEGj9BY2bY8LHhg5bRi33H38ldqNNkndF1M7md3dwxdHPZV8LbJaosHNX15YO868EocDlsUE-IoWXELv1NTfzsD1QNQ3fer1_Cz7Pu8PScBxIGrtG2z7gtlDJSCE3kjoWx6GK4UqFJq-uyzlRsi8Jg0KNSLWWGDzPtUgKAsamwLlNavoLVcTO2u8BcmdlYFAmO9hOotDRJWaDPaLTJrYhALMVQ6YBQTkQZo8pHKqKsSIgVCbEKQozgUzvkfgHP8a_OOyShtmMQTgQHS1lXYQNPq5iA9dAZzZMI3rWvcevReUo9ts0c-xAUDx0kywheL3SknXupWnt__uZbeHY-vOxVvW_9i314HlNNhU_tHMDqbDK3b2BdP8xup5NDr-NP2FH2tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Knowledge-Based+Two-Population+Optimization+Algorithm+for+Distributed+Energy-Efficient+Parallel+Machines+Scheduling&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Pan%2C+Zixiao&rft.au=Lei%2C+Deming&rft.au=Wang%2C+Ling&rft.date=2022-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=6&rft.spage=5051&rft.epage=5063&rft_id=info:doi/10.1109%2FTCYB.2020.3026571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3026571 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |