Iterative coupling of FEM and BEM in 3D transient elastodynamics

A domain decomposition approach is presented for the transient analysis of three-dimensional wave propagation problems. The subdomains are modelled using the FEM and/or the BEM, and the coupling of the subdomains is performed in an iterative manner, employing a sequential Neumann–Dirichlet interface...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements Vol. 29; no. 8; pp. 775 - 787
Main Authors: von Estorff, Otto, Hagen, Christian
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.08.2005
Elsevier
Subjects:
ISSN:0955-7997, 1873-197X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A domain decomposition approach is presented for the transient analysis of three-dimensional wave propagation problems. The subdomains are modelled using the FEM and/or the BEM, and the coupling of the subdomains is performed in an iterative manner, employing a sequential Neumann–Dirichlet interface relaxation algorithm which also allows for an independent choice of the time step length in each subdomain. The approach has been implemented for general 3D problems. In order to investigate the convergence behaviour of the proposed algorithm, using different combinations of FEM and BEM subdomains, a parametric study is performed with respect to the choice of the relaxation parameters. The validity of the proposed method is shown by means of two numerical examples, indicating the excellent accuracy and applicability of the new formulation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0955-7997
1873-197X
DOI:10.1016/j.enganabound.2005.04.004