An Efficient Deep Learning Algorithm for Fire and Smoke Detection with Limited Data

Detecting smoke and fire from visual scenes is a demanding task, due to the high variance of the color and texture. A number of smoke and fire image classification approaches have been proposed to overcome this problem; however, most of them rely on either rule-based methods or on handcrafted featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Electrical and Computer Engineering Jg. 18; H. 4; S. 121 - 128
Hauptverfasser: NAMOZOV, A., CHO, Y. I.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Suceava Stefan cel Mare University of Suceava 01.11.2018
Schlagworte:
ISSN:1582-7445, 1844-7600
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Detecting smoke and fire from visual scenes is a demanding task, due to the high variance of the color and texture. A number of smoke and fire image classification approaches have been proposed to overcome this problem; however, most of them rely on either rule-based methods or on handcrafted features. We propose a novel deep convolutional neural network algorithm to achieve high-accuracy fire and smoke image detection. Instead of using traditional rectified linear units or tangent functions, we use adaptive piecewise linear units in the hidden layers of the network. We also have created a new small dataset of fire and smoke images to train and evaluate our model. To solve the overfitting problem caused by training the network on a limited dataset, we improve the number of available training images using traditional data augmentation techniques and generative adversarial networks. Experimental results show that the proposed approach achieves high accuracy and a high detection rate, as well as a very low rate of false alarms.Index Terms--smoke detectors, neural networks, image classification, image recognition, image generation.
AbstractList Detecting smoke and fire from visual scenes is a demanding task, due to the high variance of the color and texture. A number of smoke and fire image classification approaches have been proposed to overcome this problem; however, most of them rely on either rule-based methods or on handcrafted features. We propose a novel deep convolutional neural network algorithm to achieve high-accuracy fire and smoke image detection. Instead of using traditional rectified linear units or tangent functions, we use adaptive piecewise linear units in the hidden layers of the network. We also have created a new small dataset of fire and smoke images to train and evaluate our model. To solve the overfitting problem caused by training the network on a limited dataset, we improve the number of available training images using traditional data augmentation techniques and generative adversarial networks. Experimental results show that the proposed approach achieves high accuracy and a high detection rate, as well as a very low rate of false alarms.
Detecting smoke and fire from visual scenes is a demanding task, due to the high variance of the color and texture. A number of smoke and fire image classification approaches have been proposed to overcome this problem; however, most of them rely on either rule-based methods or on handcrafted features. We propose a novel deep convolutional neural network algorithm to achieve high-accuracy fire and smoke image detection. Instead of using traditional rectified linear units or tangent functions, we use adaptive piecewise linear units in the hidden layers of the network. We also have created a new small dataset of fire and smoke images to train and evaluate our model. To solve the overfitting problem caused by training the network on a limited dataset, we improve the number of available training images using traditional data augmentation techniques and generative adversarial networks. Experimental results show that the proposed approach achieves high accuracy and a high detection rate, as well as a very low rate of false alarms.Index Terms--smoke detectors, neural networks, image classification, image recognition, image generation.
Audience Academic
Author NAMOZOV, A.
CHO, Y. I.
Author_xml – sequence: 1
  givenname: A.
  surname: NAMOZOV
  fullname: NAMOZOV, A.
– sequence: 2
  givenname: Y. I.
  surname: CHO
  fullname: CHO, Y. I.
BookMark eNp1kc1vGyEQxVGUSknTnHNF6nkdPhc4rhynjWQph7RnhNnBIfWCyxJV_e_Lxu2lUsRh0Oj93sC8j-g85QQI3VCyEpz2t8NmvVkxQvWKCELlGbqkWohO9YSct7vUrFNCyAt0Pc9xR4RQTDPeX6KnIeFNCNFHSBXfARzxFlxJMe3xcNjnEuvzhEMu-D4WwC6N-GnKP6BJK_gac8K_mgRv4xQrjPjOVfcJfQjuMMP133qFvt9vvq2_dtvHLw_rYdt5QWXtQDjwggQqPAncCM605Aq4Jk66EBjrQRmqA6WjV6CZpKMJXqiwM4TuQPAr9HDyHbN7sccSJ1d-2-yifWvksreu1OgPYJUSvaY-hODHNlJrxdjOOGa0UVz1unl9PnkdS_75CnO1L_m1pPZ8ywTRsmeGL6rVSbV3zTSmkGtxvp0RpuhbJCG2_iCboaLKmAbIE-BLnucCwfpY3bK2BsaDpcQu-dklP7vkZ9_ya9ztf9y_771H_AF3iZtX
CitedBy_id crossref_primary_10_3390_f12060768
crossref_primary_10_1007_s42835_023_01490_3
crossref_primary_10_3390_s21237785
crossref_primary_10_1109_ACCESS_2020_3031683
crossref_primary_10_3390_rs14163979
crossref_primary_10_1007_s41060_025_00876_y
crossref_primary_10_3390_s25072044
crossref_primary_10_1109_TIP_2022_3232232
crossref_primary_10_1109_JSEN_2020_3044604
crossref_primary_10_4316_AECE_2020_02005
crossref_primary_10_1007_s11334_022_00521_y
crossref_primary_10_1186_s42408_024_00304_9
crossref_primary_10_3390_rs13193985
crossref_primary_10_1007_s10973_021_10903_2
crossref_primary_10_1109_ACCESS_2022_3151660
crossref_primary_10_3390_app12115336
crossref_primary_10_1016_j_jobe_2023_106403
crossref_primary_10_3390_en15228409
crossref_primary_10_1016_j_engappai_2023_106891
crossref_primary_10_1007_s10694_020_00986_y
crossref_primary_10_1016_j_iot_2024_101309
crossref_primary_10_1080_13658816_2024_2436482
crossref_primary_10_1109_TIM_2022_3227558
crossref_primary_10_1371_journal_pone_0322052
crossref_primary_10_1007_s00521_023_08750_3
crossref_primary_10_1007_s10973_022_11657_1
crossref_primary_10_1007_s11760_024_03384_x
crossref_primary_10_1016_j_jag_2022_103052
crossref_primary_10_1016_j_trc_2022_103668
crossref_primary_10_3390_computation10110197
crossref_primary_10_3390_info16070620
crossref_primary_10_1016_j_jocs_2022_101638
crossref_primary_10_1016_j_atech_2022_100166
crossref_primary_10_3390_rs15174136
crossref_primary_10_1007_s11042_021_11280_6
crossref_primary_10_3390_fire7110422
crossref_primary_10_3390_rs12223715
crossref_primary_10_1186_s42408_022_00165_0
crossref_primary_10_3390_atmos11111241
crossref_primary_10_1007_s11356_024_32023_8
crossref_primary_10_1016_j_eswa_2021_116114
crossref_primary_10_1007_s00521_024_10230_1
crossref_primary_10_1007_s11761_022_00336_6
crossref_primary_10_1016_j_isprsjprs_2022_01_013
crossref_primary_10_3390_app11157046
crossref_primary_10_3390_app12052404
crossref_primary_10_1007_s11042_021_11224_0
crossref_primary_10_1007_s00500_019_04602_2
Cites_doi 10.1140/epjc/s10052-011-1554-0
10.1145/3065386
10.1109/5.726791
10.1109/ACCESS.2017.2747399
10.1109/TCSVT.2015.2392531
10.1016/j.patrec.2005.06.015
10.4316/AECE.2015.01008
10.1016/j.ins.2016.08.040
ContentType Journal Article
Copyright COPYRIGHT 2018 Stefan cel Mare University of Suceava
Copyright Stefan cel Mare University of Suceava 2018
Copyright_xml – notice: COPYRIGHT 2018 Stefan cel Mare University of Suceava
– notice: Copyright Stefan cel Mare University of Suceava 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.4316/AECE.2018.04015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1844-7600
EndPage 128
ExternalDocumentID oai_doaj_org_article_774681cfffcd40f88722b9a298973768
A568371799
10_4316_AECE_2018_04015
GroupedDBID 23M
5GY
5VS
AAKPC
AAYXX
ABJCF
ADBBV
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BAIFH
BBTPI
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CITATION
E3Z
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
KQ8
M7S
OK1
PHGZM
PHGZT
PQGLB
PTHSS
PV9
RIG
RZL
TR2
ADMLS
7SC
7SP
8FD
8FE
8FG
DWQXO
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c415t-e4aec40f14c0f394328537e380a5aff226e7918f11dc7e8251d9fc47fb901be43
IEDL.DBID DOA
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451843400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1582-7445
IngestDate Fri Oct 03 12:40:28 EDT 2025
Fri Jul 25 11:42:41 EDT 2025
Sat Mar 08 18:33:34 EST 2025
Sat Nov 29 02:42:02 EST 2025
Tue Nov 18 21:51:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e4aec40f14c0f394328537e380a5aff226e7918f11dc7e8251d9fc47fb901be43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/774681cfffcd40f88722b9a298973768
PQID 2408562938
PQPubID 2049588
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_774681cfffcd40f88722b9a298973768
proquest_journals_2408562938
gale_infotracacademiconefile_A568371799
crossref_citationtrail_10_4316_AECE_2018_04015
crossref_primary_10_4316_AECE_2018_04015
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Suceava
PublicationPlace_xml – name: Suceava
PublicationTitle Advances in Electrical and Computer Engineering
PublicationYear 2018
Publisher Stefan cel Mare University of Suceava
Publisher_xml – name: Stefan cel Mare University of Suceava
References Szegedy (10.1109/CVPR.2015.7298594) 2015
Zhu (10.1109/ICCV.2017.244) 2017
Yuan (10.1016/j.ins.2016.08.040) 2016; 372
Isola (10.1109/CVPR.2017.632) 2017
Tao (10.1109/ICIICII.2016.0045) 2016
Lecun (10.1109/5.726791) 1998; 86
Chen (10.1109/IIH-MSP.2006.265033) 2006
Foggia (10.1109/TCSVT.2015.2392531) 2015; 25
He (10.1109/ICCV.2015.123) 2015
He (10.1109/CVPR.2016.90) 2016
Huang (10.1109/CVPR.2017.243) 2017
Krizhevsky (10.1145/3065386) 2017; 60
Yin (10.1109/ACCESS.2017.2747399) 2017; 5
Toreyin (10.1016/j.patrec.2005.06.015) 2006; 27
BUGARIC (10.4316/AECE.2015.01008) 2015; 15
Simard (10.1109/ICDAR.2003.1227801) 2003
Cowan (10.1140/epjc/s10052-011-1554-0) 2011; 71
References_xml – start-page: 770
  year: 2016
  ident: 10.1109/CVPR.2016.90
– volume: 71
  start-page: 60
  year: 2011
  ident: 10.1140/epjc/s10052-011-1554-0
  publication-title: The European Physical Journal C
  doi: 10.1140/epjc/s10052-011-1554-0
– start-page: 1
  year: 2015
  ident: 10.1109/CVPR.2015.7298594
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1145/3065386
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– start-page: 150
  year: 2016
  ident: 10.1109/ICIICII.2016.0045
– start-page: 1026
  year: 2015
  ident: 10.1109/ICCV.2015.123
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1109/5.726791
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– start-page: 427
  year: 2006
  ident: 10.1109/IIH-MSP.2006.265033
– start-page: 2261
  year: 2017
  ident: 10.1109/CVPR.2017.243
– start-page: 5967
  year: 2017
  ident: 10.1109/CVPR.2017.632
– volume: 5
  start-page: 18429
  year: 2017
  ident: 10.1109/ACCESS.2017.2747399
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2747399
– volume: 25
  start-page: 1545
  year: 2015
  ident: 10.1109/TCSVT.2015.2392531
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2015.2392531
– volume: 27
  start-page: 49
  year: 2006
  ident: 10.1016/j.patrec.2005.06.015
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.06.015
– volume: 15
  start-page: 55
  year: 2015
  ident: 10.4316/AECE.2015.01008
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2015.01008
– volume: 372
  start-page: 225
  year: 2016
  ident: 10.1016/j.ins.2016.08.040
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.08.040
– start-page: 2242
  year: 2017
  ident: 10.1109/ICCV.2017.244
– start-page: 958
  year: 2003
  ident: 10.1109/ICDAR.2003.1227801
SSID ssib044728236
ssib057620034
ssj0000395691
Score 2.444302
Snippet Detecting smoke and fire from visual scenes is a demanding task, due to the high variance of the color and texture. A number of smoke and fire image...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 121
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Datasets
Deep learning
False alarms
Image classification
Image detection
image generation
image recognition
Machine learning
Methods
Neural networks
Researchers
Sensors
Smoke
Smoke detectors
Training
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZayqEcoNBWXV7yAQkugTzsOD6hALvqoUKVFiRuluPYS1XILruB38-M4yxc4MIxiRPZ-SbzcGa-IeRA2JS72JhIcssiJrMqkg5zxGpe65pnqRG-UPiPuLwsbm7k37Dhtghplb1O9Iq6nhrcIz_xVFw5GKfidPYQYdco_LsaWmh8Jl-QJSHxqXvjXp4YE2nfzxuPwbXGVCy23IOJM4gOZEepio4mY7xj_8H68JNyeD7E3K_iGAQd2-a-Mlye3_8tLe5N02jjo4v6RtaDU0rLToo2ySfbbJG1V1SF38m4bOjQ002AlaIX1s5ooGad0PJuAg9tb-8peMB0BEqU6qam4_vpfwtDW5_t1VDc8qWhoIpe6Fb_INej4dX57yg0ZIgM2Pk2skxbw2KXMBO7TLIsBWMvbFbEmmvnwJOzQiaFS5IaIMai2Fo6w4SrwOuoLMt-kpVm2thfhOaxsM7mHMZzZioOcVsGprLIJRLa82JAjvu3rUxgK8emGXcKohaERyE8CuFRHp4BOVreMOuIOt4eeobwLYchw7Y_MZ1PVPhgFbjFeZEY55ypYcmgi9O0khoJ6wUoZZjgIYKvUA_AxIwO5QywPGTUUiXPIfZHvr0B2e3BV0FBLNQL8tvvX94hX3HmXfnjLllp5492j6yap_bfYr7v5f0Z6i7_Hg
  priority: 102
  providerName: ProQuest
Title An Efficient Deep Learning Algorithm for Fire and Smoke Detection with Limited Data
URI https://www.proquest.com/docview/2408562938
https://doaj.org/article/774681cfffcd40f88722b9a298973768
Volume 18
WOSCitedRecordID wos000451843400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044728236
  issn: 1582-7445
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: M7S
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VtAc4VG0BsS1d-VAJLoF82HF8DJBVD9Vq1QUJcbEcxwYEZNGS9tjf3hknu9oL6qWXSIkmkv089sxYM28AvkmXCh9bGynheMRVVkfKU45YIxrTiCy1MhQK_5DTaXF9rWYbrb4oJ6ynB-6BO0X3JC8S6723DY897ok0rZUh4nCJmyOU-cZSbQRTqEmcy3TVyZve0ammJCy-vn2JM4wLVE-mSi4m56Ln_aHK8NOyOq8o66s4QRWnhrkbJisw-792fgejNPkA7wdvkpX9LD7CG9d-gp0NjsFdmJctqwJPBJoXduHcMxs4VW9Z-Xi7WN53d08MXVc2wdOPmbZh86fFg0PRLqRptYzuatlQCcUuTGf24GpSXZ5_j4ZOCpFFA91FjhtnEb2E29hnimcpWmnpsiI2wniPLpiTKil8kjS4NlTN2ihvufQ1ugu149k-bLWL1h0Ay2PpvMsFygtua4EBV4Y2rsgVMdGLYgQnK7C0HWjGqdvFo8Zwg9DVhK4mdHVAdwTH6x-ee4aN10XPCP21GFFjhw-oMHpQGP0vhRnBEa2dpg2MA7NmqEPA6REVli5FjkE7EeWN4HC1vHrY2S86UMLl6CQVn__HaL7ANs2vr248hK1u-ct9hXf2d3f_shzD27NqOvs5Dso9przUOT3_VPiciZu_e731Aw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQc-EYECuwBBBe3_tj1eg8ImSZRq4YIKUXqbbHXuwHROiExIP4Uv5GZtR16KbceOMbZWDvx23mz65k3AC-kjYULjQmUsDzgKikD5ShHrBJVUYkkNtIXCk_kdJqdnKgPW_C7r4WhtMreJ3pHXS0MnZHveSmuFMkpe7v8FlDXKHq72rfQaGFxZH_9xC3b-s3hEJ_vyzgej473D4Kuq0BgkKyawPLCGh66iJvQJYonMTKWtEkWFqJwDsMRK1WUuSiqcJ5U2VkpZ7h0JVJnaXmC970CVzGMiJVPFZz1-OVcxn3_cPqMoTylfvHNmU-Y4G5EtRKuFNhyLlq1IapH38tH-yPKNct2cWFRm95zROn7CVzEGp4Kx7f_tz_xDtzqgm6Wt6vkLmzZ-h7cPCfFeB9mec1GXk4DWZgNrV2yTnp2zvLTORrRfD5jGOGzMZIEK-qKzc4WXy0ObXw2W83oSJt1BWNsWDTFA_h4KVY9hO16UdtHwNJQWmdTgeMFN6XAfWmCoUCWKhLsF9kAdvunq02nxk5NQU417soIDprgoAkO2sNhAK83P1i2QiQXD31HcNkMIwVxf2GxmuvOIWkM-9MsMs45U6HJyDVxXKqCBPklkg5O8BWBTZOfw4mZoivXQPNIMUznIs0SSXqCA9jpwaY7B7jWf5H2-N9fP4frB8fvJ3pyOD16AjfIirbUcwe2m9V3-xSumR_Nl_XqmV9rDD5dNi7_AFuyW9k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VghAc-EYECuwBBBc3_tj1eg8ImSYRVasoUkGquGzt9W5AtE5IDIi_xq9jZm2HXsqtB45xNtZO_HbfzHrmDcALaWPhQmMCJSwPuErKQDnKEatEVVQiiY30hcKHcjrNjo_VbAt-97UwlFbZ74l-o64Whs7Ih16KK0VyyoauS4uYjSZvl98C6iBFb1r7dhotRA7sr58Yvq3f7I_wWb-M48n4w977oOswEBgkriawvLCGhy7iJnSJ4kmM7CVtkoWFKJxD18RKFWUuiiqcM1V5VsoZLl2JNFpanuB9r8BViTEmpRPOxKcey5zLuO8lTp_Rrac0ML45_wkTjExUK-dKTi7nolUeotr0YT7eG1PeWbaLi4xa9p4jTd9b4CIG8bQ4uf0__6F34FbnjLO8XT13YcvW9-DmOYnG-3CU12zsZTaQndnI2iXrJGnnLD-doxHN5zOGnj-bIHmwoq7Y0dniq8Whjc9yqxkddbOukIyNiqZ4AB8vxaqHsF0vavsIWBpK62wqcLzgphQYryboImSpIiF_kQ1gt3_S2nQq7dQs5FRjtEbQ0AQNTdDQHhoDeL35wbIVKLl46DuCzmYYKYv7C4vVXHcblcZwIM0i45wzFZqMHBTHpSpIqF8iGeEEXxHwNO1_ODFTdGUcaB4pielcpFkiSWdwADs98HS3Ma71X9Q9_vfXz-E6wlEf7k8PnsANMqKtAN2B7Wb13T6Fa-ZH82W9euaXHYOTy4blH1ZEZLI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Deep+Learning+Algorithm+for+Fire+and+Smoke+Detection+with+Limited+Data&rft.jtitle=Advances+in+electrical+and+computer+engineering&rft.au=NAMOZOV%2C+A.&rft.au=CHO%2C+Y.+I.&rft.date=2018-11-01&rft.issn=1582-7445&rft.eissn=1844-7600&rft.volume=18&rft.issue=4&rft.spage=121&rft.epage=128&rft_id=info:doi/10.4316%2FAECE.2018.04015&rft.externalDBID=n%2Fa&rft.externalDocID=10_4316_AECE_2018_04015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon