A deep learning based malicious module identification using stacked sparse autoencoder network for VLSI circuit reliability
•A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional generative adversarial network.•More suitable features are extracted using handcrafted algorithms and structural reports.•Stacked autoencoder and st...
Uložené v:
| Vydané v: | Measurement : journal of the International Measurement Confederation Ročník 194; s. 111055 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Elsevier Ltd
15.05.2022
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0263-2241, 1873-412X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional generative adversarial network.•More suitable features are extracted using handcrafted algorithms and structural reports.•Stacked autoencoder and stacked sparse autoencoder model is used to discover the malicious logic in the gate level netlist.•The significance of sparsity is achieved by stacked sparse autoencoder technique, which minimizes the detection probability.
The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting dormant nature of threats, named Hardware Trojan (HT) in various process of integrated circuits (IC) design. The impact of HT’s emanates the encrypted signals, privacy disruption, performance degradation or denial of service. The threat models are unimaginable and it can be intruded at any stage which complicates the HT detection process. Therefore, a deep learning-based malicious module identification method is proposed in this work by implementing stacked autoencoder and stacked sparse autoencoder model. The simulation results shows that the proposed stacked sparse autoencoder outperforms the best in detecting the malicious modifications with an average accuracy of 97.53%, true positive rate of 93% and moreover the true negative rate achieved is 98.14% which proves the effectiveness of sparsity nature in extracting suitable features in the proposed schemes. |
|---|---|
| AbstractList | The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting dormant nature of threats, named Hardware Trojan (HT) in various process of integrated circuits (IC) design. The impact of HT's emanates the encrypted signals, privacy disruption, performance degradation or denial of service. The threat models are unimaginable and it can be intruded at any stage which complicates the HT detection process. Therefore, a deep learning-based malicious module identification method is proposed in this work by implementing stacked autoencoder and stacked sparse autoencoder model. The simulation results shows that the proposed stacked sparse autoencoder outperforms the best in detecting the malicious modifications with an average accuracy of 97.53%, true positive rate of 93% and moreover the true negative rate achieved is 98.14% which proves the effectiveness of sparsity nature in extracting suitable features in the proposed schemes. •A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional generative adversarial network.•More suitable features are extracted using handcrafted algorithms and structural reports.•Stacked autoencoder and stacked sparse autoencoder model is used to discover the malicious logic in the gate level netlist.•The significance of sparsity is achieved by stacked sparse autoencoder technique, which minimizes the detection probability. The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting dormant nature of threats, named Hardware Trojan (HT) in various process of integrated circuits (IC) design. The impact of HT’s emanates the encrypted signals, privacy disruption, performance degradation or denial of service. The threat models are unimaginable and it can be intruded at any stage which complicates the HT detection process. Therefore, a deep learning-based malicious module identification method is proposed in this work by implementing stacked autoencoder and stacked sparse autoencoder model. The simulation results shows that the proposed stacked sparse autoencoder outperforms the best in detecting the malicious modifications with an average accuracy of 97.53%, true positive rate of 93% and moreover the true negative rate achieved is 98.14% which proves the effectiveness of sparsity nature in extracting suitable features in the proposed schemes. |
| ArticleNumber | 111055 |
| Author | Priyatharishini, M. Nirmala Devi, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Priyatharishini fullname: Priyatharishini, M. email: mpriyatharishinicb18@gmail.com – sequence: 2 givenname: M. surname: Nirmala Devi fullname: Nirmala Devi, M. email: m_nirmala@cb.amrita.edu |
| BookMark | eNqNkE1v1DAQhi1UJLaF_2DEOYs_Esc5oWpFy0or9dCCuFmOPUGzTezFdlpV_HmyXQ6op57mMO_7jOY5J2chBiDkI2drzrj6vF9PYPOcYIJQ1oIJseacs6Z5Q1Zct7Kqufh5RlZMKFkJUfN35DznPWNMyU6tyJ9L6gEOdASbAoZftLcZPJ3siA7jnOkU_TwCRb_wcUBnC8ZA53zM5mLd_ZLOB5syUDuXCMFFD4kGKI8x3dMhJvpjd7ulDpObsdAEI9oeRyxP78nbwY4ZPvybF-T71de7zbdqd3O93VzuKlfzplTAO9C1rCXrvWRMAnSNqr1qlOCDkFw5Dr5jAnSvl61unPa8bn3LnOy7wcsL8unEPaT4e4ZczD7OKSwnjVC61VK1Wi-pL6eUSzHnBINxWJ6_LcniaDgzR-Nmb_4zbo7Gzcn4QuheEA4JJ5ueXtXdnLqwiHhASCY7XGSCxwSuGB_xFZS_C2GnfA |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113320 crossref_primary_10_1109_TVLSI_2024_3458892 crossref_primary_10_3390_aerospace10090789 crossref_primary_10_1016_j_eswa_2023_121757 crossref_primary_10_1007_s11227_025_07357_w crossref_primary_10_1109_ACCESS_2022_3209705 crossref_primary_10_1016_j_aeue_2025_155959 |
| Cites_doi | 10.1109/DTIS.2016.7483804 10.3390/s16060895 10.1007/s10836-011-5255-2 10.1109/ACCESS.2020.3001239 10.1109/TSMC.2016.2605132 10.1109/IOLTS.2016.7604700 10.1007/s10836-018-5726-9 10.1155/2018/8676387 10.1109/JPROC.2014.2334493 10.1109/ACCESS.2018.2890693 10.1109/TVLSI.2009.2029117 10.1109/TCAD.2015.2488495 10.1109/MDT.2012.2196252 10.1080/00051144.2019.1631568 10.1109/TIFS.2016.2613842 10.1162/neco.2006.18.7.1527 10.1109/ICCCNT.2014.6963036 10.7873/DATE.2015.1101 10.1109/TCAD.2015.2422836 10.1109/TIFS.2011.2136339 10.23919/DATE51398.2021.9474076 10.1007/978-981-15-7234-0_30 10.1177/1550147719888098 10.1109/ACCESS.2019.2923799 10.1007/s10836-016-5631-z 10.1109/ASAP.2016.7760768 10.1109/THS.2015.7225334 10.1109/ISCAS.2017.8050827 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier Science Ltd. May 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 15, 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2022.111055 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2022_111055 S0263224122003219 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFRF ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSH SSQ SST SSZ T5K ZMT ~G- 29M 9DU AAYWO AAYXX ABFNM ABXDB ACLOT ACNNM ACVFH ADCNI AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW WUQ XPP ~HD AGCQF |
| ID | FETCH-LOGICAL-c415t-e19e843430bd3003ee9564d65621f2316c1ed902e8b803e85c8d147d70c3b9fd3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793176700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Wed Aug 13 10:37:56 EDT 2025 Tue Nov 18 21:41:00 EST 2025 Sat Nov 29 07:22:07 EST 2025 Sun Apr 06 06:54:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generative Adversarial Network Feature Hardware Trojan Stacked Sparse Autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c415t-e19e843430bd3003ee9564d65621f2316c1ed902e8b803e85c8d147d70c3b9fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2687836788 |
| PQPubID | 2047460 |
| ParticipantIDs | proquest_journals_2687836788 crossref_citationtrail_10_1016_j_measurement_2022_111055 crossref_primary_10_1016_j_measurement_2022_111055 elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111055 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Elnaggar, Chakrabarty (b0040) 2018; 34 K.Hasegawa, M.Oya, M.Yanagisawa, N.Togawa, Hardware Trojans classification for gate-level netlists based on machine learning, In D.K. Karunakaran, N. Mohankumar, Malicious combinational hardware trojan detection by gate level characterization in 90nm technology, In Salmani (b0110) 2016; 12 O. Sinanoglu, “Do you trust your chip?” in Proc. Intl. Conf. on Design and Technology of Integrated Systems in Nanoscale Era (DTIS’16), Apr. 2016. Reshma, Priyatharishini, Nirmala Devi (b0115) 2018 Dong, Liu, Chen, Liu, Guo, Chen (b0130) 2020; 8 Mao, Liu, Ding, Li (b0140) 2019; 7 vol.15, no.12, p.1550147719888098, 2019. Proc. of Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, Anhui, 2014, pp. 1-7. 2015 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, 2015, pp. 1-6. Wang, Zhu (b0050) 2018; 48 Proc. of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, Hyderabad, India, 2021, pp. 345-353. C. Dong, J. Chen, W. Guo, J. Zou, A machine-learning-based hardware-Trojan detection approach for chips in the Internet of Things, International Journal of Distributed Sensor Networks vol.16, no.6, p.895, 2016. Ramesh, Jayaparvathy (b0060) 2019; 60 Rad, Plusquellic, Tehranipoor (b0070) 2009; 18 Hinton, Osindero, Teh (b0055) 2006; 18 N. Karimian, F. Tehranipoor, M.T. Rahman, S. Kelly, D. Forte, Genetic algorithm for hardware Trojan detection with ring oscillator network (RON), In Sensors Bhunia, Hsiao, Banga, Narasimhan (b0015) 2014; 102 Nasr, Abdulmageed (b0035) 2017; 33 K. Hasegawa, M. Yanagisawa, N. Togawa, Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier, In K. Hasegawa, M. Yanagisawa, N.Togawa, A hardware-Trojan classification method utilizing boundary net structures, In Proc. of IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, pp. 1-4. Meserkhani, Jafari, Rahi (b0145) 2021; 168 Bhunia, Abramovici, Agrawal, Bradle, Hsiao, Plusquellic, Tehranipoor (b0005) 2013; 30 R. Vishnupriya, M. Nirmala Devi, Hardware Trojan Detection Using Deep Learning-Deep Stacked Auto Encoder, In Tan, Yang, Tang, Jiang, Xie, Yuan (b0165) 2019; 7 Miao, Dong, Hao, Wang, Cao (b0155) 2021; 176 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 2017, pp. 1-4. Zhang, Cheng, Liu, He, Liu (b0160) 2018 Proc. of IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP), London, United Kingdom, 2016, pp. 17-24. Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp. 770-775. 2021 IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 1484-1489. J. Francq, F. Frick, Introduction to hardware Trojan detection methods, In Jin, Makris (b0025) 2008 Chakraborty, Bhunia (b0080) 2011; 27 S. Faezi, R. Yasaei, M.A. Al Faruque, HTnet: Transfer learning for golden chip-free hardware Trojan detection, In Lamech, Rad, Tehranipoor, Plusquellic (b0075) 2011; 6 C. Li, R.V. Śanchez, G. Zurita, M. Cerrada, D. Cabrera, Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS),Catalunya, Spain, 2016, pp. 203-206. Zhang, Yuan, Wei, Liu, Xu (b0085) 2015; 34 D.Jap, W.He, S.Bhasin, Supervised and unsupervised machine learning for side-channel based Trojan detection, In Bao, Xie, Liu, Srivastava (b0125) 2015; 35 10.1016/j.measurement.2022.111055_b0065 10.1016/j.measurement.2022.111055_b0120 10.1016/j.measurement.2022.111055_b0020 Salmani (10.1016/j.measurement.2022.111055_b0110) 2016; 12 Tan (10.1016/j.measurement.2022.111055_b0165) 2019; 7 Wang (10.1016/j.measurement.2022.111055_b0050) 2018; 48 Bao (10.1016/j.measurement.2022.111055_b0125) 2015; 35 Elnaggar (10.1016/j.measurement.2022.111055_b0040) 2018; 34 Zhang (10.1016/j.measurement.2022.111055_b0160) 2018 Miao (10.1016/j.measurement.2022.111055_b0155) 2021; 176 Rad (10.1016/j.measurement.2022.111055_b0070) 2009; 18 10.1016/j.measurement.2022.111055_b0135 Jin (10.1016/j.measurement.2022.111055_b0025) 2008 10.1016/j.measurement.2022.111055_b0010 10.1016/j.measurement.2022.111055_b0030 10.1016/j.measurement.2022.111055_b0095 10.1016/j.measurement.2022.111055_b0150 Bhunia (10.1016/j.measurement.2022.111055_b0015) 2014; 102 Chakraborty (10.1016/j.measurement.2022.111055_b0080) 2011; 27 10.1016/j.measurement.2022.111055_b0090 Nasr (10.1016/j.measurement.2022.111055_b0035) 2017; 33 Hinton (10.1016/j.measurement.2022.111055_b0055) 2006; 18 Reshma (10.1016/j.measurement.2022.111055_b0115) 2018 Mao (10.1016/j.measurement.2022.111055_b0140) 2019; 7 Dong (10.1016/j.measurement.2022.111055_b0130) 2020; 8 10.1016/j.measurement.2022.111055_b0105 Zhang (10.1016/j.measurement.2022.111055_b0085) 2015; 34 Ramesh (10.1016/j.measurement.2022.111055_b0060) 2019; 60 Bhunia (10.1016/j.measurement.2022.111055_b0005) 2013; 30 10.1016/j.measurement.2022.111055_b0045 10.1016/j.measurement.2022.111055_b0100 Meserkhani (10.1016/j.measurement.2022.111055_b0145) 2021; 168 Lamech (10.1016/j.measurement.2022.111055_b0075) 2011; 6 |
| References_xml | – volume: 30 start-page: 6 year: 2013 end-page: 17 ident: b0005 article-title: Protection against hardware trojan attacks: Towards a comprehensive solution publication-title: IEEE Design & Test – reference: 2015 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, 2015, pp. 1-6. – reference: O. Sinanoglu, “Do you trust your chip?” in Proc. Intl. Conf. on Design and Technology of Integrated Systems in Nanoscale Era (DTIS’16), Apr. 2016. – reference: Proc. of Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, Anhui, 2014, pp. 1-7. – volume: 18 start-page: 1735 year: 2009 end-page: 1744 ident: b0070 article-title: A sensitivity analysis of power signal methods for detecting hardware Trojans under real process and environmental conditions publication-title: IEEE Transactions on Very Large-Scale Integration (VLSI) Systems – volume: 7 start-page: 81759 year: 2019 end-page: 81769 ident: b0165 article-title: A deep imbalanced learning framework for transient stability assessment of power system publication-title: IEEE Access – volume: 33 start-page: 93 year: 2017 end-page: 105 ident: b0035 article-title: An efficient reverse engineering hardware trojan detector using histogram of oriented gradients publication-title: Journal of Electronic Testing – reference: K. Hasegawa, M. Yanagisawa, N. Togawa, Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier, In – reference: S. Faezi, R. Yasaei, M.A. Al Faruque, HTnet: Transfer learning for golden chip-free hardware Trojan detection, In – start-page: 51 year: 2008 end-page: 57 ident: b0025 article-title: Hardware Trojan detection using path delay fingerprint – volume: 34 start-page: 1148 year: 2015 end-page: 1161 ident: b0085 article-title: Veri-Trust: Verification for hardware trust publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems – reference: 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS),Catalunya, Spain, 2016, pp. 203-206. – reference: N. Karimian, F. Tehranipoor, M.T. Rahman, S. Kelly, D. Forte, Genetic algorithm for hardware Trojan detection with ring oscillator network (RON), In – reference: Proc. of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, Hyderabad, India, 2021, pp. 345-353. – reference: Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp. 770-775. – year: 2018 ident: b0160 article-title: Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status publication-title: Journal of Control Science and Engineering – reference: R. Vishnupriya, M. Nirmala Devi, Hardware Trojan Detection Using Deep Learning-Deep Stacked Auto Encoder, In – reference: C. Li, R.V. Śanchez, G. Zurita, M. Cerrada, D. Cabrera, Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning, – volume: 168 year: 2021 ident: b0145 article-title: Experimental comparison of acoustic emission sensors in the detection of outer race defects of angular contact ball bearings by artificial neural network publication-title: Measurements – reference: Proc. of IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP), London, United Kingdom, 2016, pp. 17-24. – start-page: 671 year: 2018 end-page: 680 ident: b0115 article-title: Hardware trojan detection using deep learning technique publication-title: Soft Computing and Signal Processing – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b0055 article-title: A fast learning algorithm for deep belief nets publication-title: Neural computation – volume: 6 start-page: 1170 year: 2011 end-page: 1179 ident: b0075 article-title: An experimental analysis of power and delay signal-to-noise requirements for detecting Trojans and methods for achieving the required detection sensitivities publication-title: IEEE Transactions on Information Forensics and Security – reference: J. Francq, F. Frick, Introduction to hardware Trojan detection methods, In – reference: Sensors, – reference: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 2017, pp. 1-4. – reference: K. Hasegawa, M. Yanagisawa, N.Togawa, A hardware-Trojan classification method utilizing boundary net structures, In Proc. of IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, pp. 1-4. – volume: 7 start-page: 9515 year: 2019 end-page: 9530 ident: b0140 article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study publication-title: IEEE Access – volume: 35 start-page: 49 year: 2015 end-page: 57 ident: b0125 article-title: On reverse engineering-based hardware Trojan detection publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems – volume: 34 start-page: 183 year: 2018 end-page: 201 ident: b0040 article-title: Machine learning for hardware security: opportunities and risks publication-title: Journal of Electronic Testing – volume: 48 start-page: 329 year: 2018 end-page: 341 ident: b0050 article-title: Sparse graph embedding unsupervised feature selection publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 176 year: 2021 ident: b0155 article-title: Magnetic anomaly detection based on fast convergence wavelet artificial neural network in the aeromagnetic field publication-title: Measurements – reference: D.K. Karunakaran, N. Mohankumar, Malicious combinational hardware trojan detection by gate level characterization in 90nm technology, In – reference: K.Hasegawa, M.Oya, M.Yanagisawa, N.Togawa, Hardware Trojans classification for gate-level netlists based on machine learning, In – reference: 2021 IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 1484-1489. – volume: 60 start-page: 360 year: 2019 end-page: 367 ident: b0060 article-title: Artificial neural network model for arrival time computation in gate level circuits publication-title: Automatika – reference: vol.15, no.12, p.1550147719888098, 2019. – reference: D.Jap, W.He, S.Bhasin, Supervised and unsupervised machine learning for side-channel based Trojan detection, In – reference: C. Dong, J. Chen, W. Guo, J. Zou, A machine-learning-based hardware-Trojan detection approach for chips in the Internet of Things, International Journal of Distributed Sensor Networks, – volume: 12 start-page: 338 year: 2016 end-page: 350 ident: b0110 article-title: COTD: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist publication-title: IEEE Transactions on Information Forensics and Security – volume: 8 start-page: 158169 year: 2020 end-page: 158183 ident: b0130 article-title: An unsupervised detection approach for hardware trojans publication-title: IEEE Access – volume: 27 start-page: 767 year: 2011 end-page: 785 ident: b0080 article-title: Security against hardware Trojan attacks using key-based design obfuscation publication-title: Journal of Electronic Testing – reference: vol.16, no.6, p.895, 2016. – volume: 102 start-page: 1229 year: 2014 end-page: 1247 ident: b0015 article-title: Hardware Trojan attacks: Threat analysis and countermeasures publication-title: Proceedings of the IEEE – ident: 10.1016/j.measurement.2022.111055_b0010 doi: 10.1109/DTIS.2016.7483804 – ident: 10.1016/j.measurement.2022.111055_b0065 doi: 10.3390/s16060895 – volume: 168 year: 2021 ident: 10.1016/j.measurement.2022.111055_b0145 article-title: Experimental comparison of acoustic emission sensors in the detection of outer race defects of angular contact ball bearings by artificial neural network publication-title: Measurements – volume: 27 start-page: 767 issue: 6 year: 2011 ident: 10.1016/j.measurement.2022.111055_b0080 article-title: Security against hardware Trojan attacks using key-based design obfuscation publication-title: Journal of Electronic Testing doi: 10.1007/s10836-011-5255-2 – volume: 8 start-page: 158169 year: 2020 ident: 10.1016/j.measurement.2022.111055_b0130 article-title: An unsupervised detection approach for hardware trojans publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001239 – ident: 10.1016/j.measurement.2022.111055_b0105 – volume: 48 start-page: 329 issue: 3 year: 2018 ident: 10.1016/j.measurement.2022.111055_b0050 article-title: Sparse graph embedding unsupervised feature selection publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2016.2605132 – volume: 176 year: 2021 ident: 10.1016/j.measurement.2022.111055_b0155 article-title: Magnetic anomaly detection based on fast convergence wavelet artificial neural network in the aeromagnetic field publication-title: Measurements – start-page: 51 year: 2008 ident: 10.1016/j.measurement.2022.111055_b0025 – ident: 10.1016/j.measurement.2022.111055_b0095 doi: 10.1109/IOLTS.2016.7604700 – volume: 34 start-page: 183 issue: 2 year: 2018 ident: 10.1016/j.measurement.2022.111055_b0040 article-title: Machine learning for hardware security: opportunities and risks publication-title: Journal of Electronic Testing doi: 10.1007/s10836-018-5726-9 – year: 2018 ident: 10.1016/j.measurement.2022.111055_b0160 article-title: Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status publication-title: Journal of Control Science and Engineering doi: 10.1155/2018/8676387 – volume: 102 start-page: 1229 issue: 8 year: 2014 ident: 10.1016/j.measurement.2022.111055_b0015 article-title: Hardware Trojan attacks: Threat analysis and countermeasures publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2014.2334493 – volume: 7 start-page: 9515 year: 2019 ident: 10.1016/j.measurement.2022.111055_b0140 article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890693 – volume: 18 start-page: 1735 issue: 12 year: 2009 ident: 10.1016/j.measurement.2022.111055_b0070 article-title: A sensitivity analysis of power signal methods for detecting hardware Trojans under real process and environmental conditions publication-title: IEEE Transactions on Very Large-Scale Integration (VLSI) Systems doi: 10.1109/TVLSI.2009.2029117 – volume: 35 start-page: 49 issue: 1 year: 2015 ident: 10.1016/j.measurement.2022.111055_b0125 article-title: On reverse engineering-based hardware Trojan detection publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2015.2488495 – volume: 30 start-page: 6 issue: 3 year: 2013 ident: 10.1016/j.measurement.2022.111055_b0005 article-title: Protection against hardware trojan attacks: Towards a comprehensive solution publication-title: IEEE Design & Test doi: 10.1109/MDT.2012.2196252 – volume: 60 start-page: 360 issue: 3 year: 2019 ident: 10.1016/j.measurement.2022.111055_b0060 article-title: Artificial neural network model for arrival time computation in gate level circuits publication-title: Automatika doi: 10.1080/00051144.2019.1631568 – volume: 12 start-page: 338 issue: 2 year: 2016 ident: 10.1016/j.measurement.2022.111055_b0110 article-title: COTD: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2016.2613842 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.measurement.2022.111055_b0055 article-title: A fast learning algorithm for deep belief nets publication-title: Neural computation doi: 10.1162/neco.2006.18.7.1527 – ident: 10.1016/j.measurement.2022.111055_b0030 doi: 10.1109/ICCCNT.2014.6963036 – ident: 10.1016/j.measurement.2022.111055_b0020 doi: 10.7873/DATE.2015.1101 – volume: 34 start-page: 1148 issue: 7 year: 2015 ident: 10.1016/j.measurement.2022.111055_b0085 article-title: Veri-Trust: Verification for hardware trust publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2015.2422836 – volume: 6 start-page: 1170 issue: 3 year: 2011 ident: 10.1016/j.measurement.2022.111055_b0075 article-title: An experimental analysis of power and delay signal-to-noise requirements for detecting Trojans and methods for achieving the required detection sensitivities publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2011.2136339 – ident: 10.1016/j.measurement.2022.111055_b0135 doi: 10.23919/DATE51398.2021.9474076 – ident: 10.1016/j.measurement.2022.111055_b0150 doi: 10.1007/978-981-15-7234-0_30 – ident: 10.1016/j.measurement.2022.111055_b0045 doi: 10.1177/1550147719888098 – volume: 7 start-page: 81759 year: 2019 ident: 10.1016/j.measurement.2022.111055_b0165 article-title: A deep imbalanced learning framework for transient stability assessment of power system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923799 – start-page: 671 year: 2018 ident: 10.1016/j.measurement.2022.111055_b0115 article-title: Hardware trojan detection using deep learning technique – volume: 33 start-page: 93 issue: 1 year: 2017 ident: 10.1016/j.measurement.2022.111055_b0035 article-title: An efficient reverse engineering hardware trojan detector using histogram of oriented gradients publication-title: Journal of Electronic Testing doi: 10.1007/s10836-016-5631-z – ident: 10.1016/j.measurement.2022.111055_b0090 doi: 10.1109/ASAP.2016.7760768 – ident: 10.1016/j.measurement.2022.111055_b0120 doi: 10.1109/THS.2015.7225334 – ident: 10.1016/j.measurement.2022.111055_b0100 doi: 10.1109/ISCAS.2017.8050827 |
| SSID | ssj0006396 |
| Score | 2.3707504 |
| Snippet | •A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional... The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111055 |
| SubjectTerms | Circuit design Circuit reliability Deep learning Feature Feature extraction Generative Adversarial Network Hardware Trojan Identification methods Integrated circuits Learning Modules Network reliability Neural networks Optimization Performance degradation Sparsity Stacked Sparse Autoencoder Threat models Very large scale integration |
| Title | A deep learning based malicious module identification using stacked sparse autoencoder network for VLSI circuit reliability |
| URI | https://dx.doi.org/10.1016/j.measurement.2022.111055 https://www.proquest.com/docview/2687836788 |
| Volume | 194 |
| WOSCitedRecordID | wos000793176700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBUh3cb2ULZuY926ocHejIM_4liGvYTS0o62FNqNvBlbkodL4gR_lI79hP3p3SvJsdNRyBh7McGOZON7JN17fe4RIZ_CIHGclLl2lnEJAcqE2SxLUYsw8LjLA5-nSsT1LLy4YLNZdDkY_GprYW7nYVGwu7to9V9NDefA2Fg6-xfmXncKJ-A3GB2OYHY4bmX4qSWkXLXbQXy3cJ0S1gL8ba74roulaObSyoXhCWkENJVJLMCoFhZMM2UlraSplyh0iXoTheaLK1rit7OrU4vnJW_yGqthci32vfGF-LxLPqq0Q0-ioiNstpnI_p9VDSLqgfYpApdl_gOz_KVKmSkGwvmo-6YCq8s8QQJU_4rJZUAYjDKoQZdga4tsOkZTpbRhfRs9jY1JW2-N_McCoHMRN6NF99wjvBMuDY4WBL6nr32F_WP3HvL0PJSQ3fHCIGJDsjM9PZp9WS_s4MxNdMpOP88T8rGjCz5ww4fcnXsLv_Jmrp-TXROG0KmGzwsykMUeedYTp9wjjxU5mFcvyc8pRUjRFlJUQYquIUU1pOgmpKiCFDWQohpStAcpaiBFAVIUIUUNpGgPUq_I1-Oj68MT22zaYXPwBWtbupFkWK7spMKHFyolROBjAWGD52YQTEy4K0XkeJKlDK6ygDPhjkMROtxPo0z4r8mwWBbyDaFjmOXGic-Ez8HXClwmYfZI0yTwUscFc-wT1r7bmBtFe9xYZR631MWbuGeWGM0Sa7PsE2_ddKVlXbZp9Lk1YGz8U-13xoC-bZoftEaPzZirYm_CsI4qZOztv_X-jjztRtQBGdZlI9-TR_y2zqvyg4HybxVTzaw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+malicious+module+identification+using+stacked+sparse+autoencoder+network+for+VLSI+circuit+reliability&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Priyatharishini%2C+M.&rft.au=Nirmala+Devi%2C+M.&rft.date=2022-05-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=194&rft_id=info:doi/10.1016%2Fj.measurement.2022.111055&rft.externalDocID=S0263224122003219 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |