A deep learning based malicious module identification using stacked sparse autoencoder network for VLSI circuit reliability

•A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional generative adversarial network.•More suitable features are extracted using handcrafted algorithms and structural reports.•Stacked autoencoder and st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 194; S. 111055
Hauptverfasser: Priyatharishini, M., Nirmala Devi, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Elsevier Ltd 15.05.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional generative adversarial network.•More suitable features are extracted using handcrafted algorithms and structural reports.•Stacked autoencoder and stacked sparse autoencoder model is used to discover the malicious logic in the gate level netlist.•The significance of sparsity is achieved by stacked sparse autoencoder technique, which minimizes the detection probability. The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting dormant nature of threats, named Hardware Trojan (HT) in various process of integrated circuits (IC) design. The impact of HT’s emanates the encrypted signals, privacy disruption, performance degradation or denial of service. The threat models are unimaginable and it can be intruded at any stage which complicates the HT detection process. Therefore, a deep learning-based malicious module identification method is proposed in this work by implementing stacked autoencoder and stacked sparse autoencoder model. The simulation results shows that the proposed stacked sparse autoencoder outperforms the best in detecting the malicious modifications with an average accuracy of 97.53%, true positive rate of 93% and moreover the true negative rate achieved is 98.14% which proves the effectiveness of sparsity nature in extracting suitable features in the proposed schemes.
AbstractList The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting dormant nature of threats, named Hardware Trojan (HT) in various process of integrated circuits (IC) design. The impact of HT's emanates the encrypted signals, privacy disruption, performance degradation or denial of service. The threat models are unimaginable and it can be intruded at any stage which complicates the HT detection process. Therefore, a deep learning-based malicious module identification method is proposed in this work by implementing stacked autoencoder and stacked sparse autoencoder model. The simulation results shows that the proposed stacked sparse autoencoder outperforms the best in detecting the malicious modifications with an average accuracy of 97.53%, true positive rate of 93% and moreover the true negative rate achieved is 98.14% which proves the effectiveness of sparsity nature in extracting suitable features in the proposed schemes.
•A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional generative adversarial network.•More suitable features are extracted using handcrafted algorithms and structural reports.•Stacked autoencoder and stacked sparse autoencoder model is used to discover the malicious logic in the gate level netlist.•The significance of sparsity is achieved by stacked sparse autoencoder technique, which minimizes the detection probability. The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting dormant nature of threats, named Hardware Trojan (HT) in various process of integrated circuits (IC) design. The impact of HT’s emanates the encrypted signals, privacy disruption, performance degradation or denial of service. The threat models are unimaginable and it can be intruded at any stage which complicates the HT detection process. Therefore, a deep learning-based malicious module identification method is proposed in this work by implementing stacked autoencoder and stacked sparse autoencoder model. The simulation results shows that the proposed stacked sparse autoencoder outperforms the best in detecting the malicious modifications with an average accuracy of 97.53%, true positive rate of 93% and moreover the true negative rate achieved is 98.14% which proves the effectiveness of sparsity nature in extracting suitable features in the proposed schemes.
ArticleNumber 111055
Author Priyatharishini, M.
Nirmala Devi, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Priyatharishini
  fullname: Priyatharishini, M.
  email: mpriyatharishinicb18@gmail.com
– sequence: 2
  givenname: M.
  surname: Nirmala Devi
  fullname: Nirmala Devi, M.
  email: m_nirmala@cb.amrita.edu
BookMark eNqNkE1v1DAQhi1UJLaF_2DEOYs_Esc5oWpFy0or9dCCuFmOPUGzTezFdlpV_HmyXQ6op57mMO_7jOY5J2chBiDkI2drzrj6vF9PYPOcYIJQ1oIJseacs6Z5Q1Zct7Kqufh5RlZMKFkJUfN35DznPWNMyU6tyJ9L6gEOdASbAoZftLcZPJ3siA7jnOkU_TwCRb_wcUBnC8ZA53zM5mLd_ZLOB5syUDuXCMFFD4kGKI8x3dMhJvpjd7ulDpObsdAEI9oeRyxP78nbwY4ZPvybF-T71de7zbdqd3O93VzuKlfzplTAO9C1rCXrvWRMAnSNqr1qlOCDkFw5Dr5jAnSvl61unPa8bn3LnOy7wcsL8unEPaT4e4ZczD7OKSwnjVC61VK1Wi-pL6eUSzHnBINxWJ6_LcniaDgzR-Nmb_4zbo7Gzcn4QuheEA4JJ5ueXtXdnLqwiHhASCY7XGSCxwSuGB_xFZS_C2GnfA
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113320
crossref_primary_10_1109_TVLSI_2024_3458892
crossref_primary_10_3390_aerospace10090789
crossref_primary_10_1016_j_eswa_2023_121757
crossref_primary_10_1007_s11227_025_07357_w
crossref_primary_10_1109_ACCESS_2022_3209705
crossref_primary_10_1016_j_aeue_2025_155959
Cites_doi 10.1109/DTIS.2016.7483804
10.3390/s16060895
10.1007/s10836-011-5255-2
10.1109/ACCESS.2020.3001239
10.1109/TSMC.2016.2605132
10.1109/IOLTS.2016.7604700
10.1007/s10836-018-5726-9
10.1155/2018/8676387
10.1109/JPROC.2014.2334493
10.1109/ACCESS.2018.2890693
10.1109/TVLSI.2009.2029117
10.1109/TCAD.2015.2488495
10.1109/MDT.2012.2196252
10.1080/00051144.2019.1631568
10.1109/TIFS.2016.2613842
10.1162/neco.2006.18.7.1527
10.1109/ICCCNT.2014.6963036
10.7873/DATE.2015.1101
10.1109/TCAD.2015.2422836
10.1109/TIFS.2011.2136339
10.23919/DATE51398.2021.9474076
10.1007/978-981-15-7234-0_30
10.1177/1550147719888098
10.1109/ACCESS.2019.2923799
10.1007/s10836-016-5631-z
10.1109/ASAP.2016.7760768
10.1109/THS.2015.7225334
10.1109/ISCAS.2017.8050827
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier Science Ltd. May 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. May 15, 2022
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.111055
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_111055
S0263224122003219
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
AGCQF
ID FETCH-LOGICAL-c415t-e19e843430bd3003ee9564d65621f2316c1ed902e8b803e85c8d147d70c3b9fd3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793176700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Wed Aug 13 10:37:56 EDT 2025
Tue Nov 18 21:41:00 EST 2025
Sat Nov 29 07:22:07 EST 2025
Sun Apr 06 06:54:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Generative Adversarial Network
Feature
Hardware Trojan
Stacked Sparse Autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-e19e843430bd3003ee9564d65621f2316c1ed902e8b803e85c8d147d70c3b9fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2687836788
PQPubID 2047460
ParticipantIDs proquest_journals_2687836788
crossref_citationtrail_10_1016_j_measurement_2022_111055
crossref_primary_10_1016_j_measurement_2022_111055
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111055
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Elnaggar, Chakrabarty (b0040) 2018; 34
K.Hasegawa, M.Oya, M.Yanagisawa, N.Togawa, Hardware Trojans classification for gate-level netlists based on machine learning, In
D.K. Karunakaran, N. Mohankumar, Malicious combinational hardware trojan detection by gate level characterization in 90nm technology, In
Salmani (b0110) 2016; 12
O. Sinanoglu, “Do you trust your chip?” in Proc. Intl. Conf. on Design and Technology of Integrated Systems in Nanoscale Era (DTIS’16), Apr. 2016.
Reshma, Priyatharishini, Nirmala Devi (b0115) 2018
Dong, Liu, Chen, Liu, Guo, Chen (b0130) 2020; 8
Mao, Liu, Ding, Li (b0140) 2019; 7
vol.15, no.12, p.1550147719888098, 2019.
Proc. of Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, Anhui, 2014, pp. 1-7.
2015 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, 2015, pp. 1-6.
Wang, Zhu (b0050) 2018; 48
Proc. of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, Hyderabad, India, 2021, pp. 345-353.
C. Dong, J. Chen, W. Guo, J. Zou, A machine-learning-based hardware-Trojan detection approach for chips in the Internet of Things, International Journal of Distributed Sensor Networks
vol.16, no.6, p.895, 2016.
Ramesh, Jayaparvathy (b0060) 2019; 60
Rad, Plusquellic, Tehranipoor (b0070) 2009; 18
Hinton, Osindero, Teh (b0055) 2006; 18
N. Karimian, F. Tehranipoor, M.T. Rahman, S. Kelly, D. Forte, Genetic algorithm for hardware Trojan detection with ring oscillator network (RON), In
Sensors
Bhunia, Hsiao, Banga, Narasimhan (b0015) 2014; 102
Nasr, Abdulmageed (b0035) 2017; 33
K. Hasegawa, M. Yanagisawa, N. Togawa, Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier, In
K. Hasegawa, M. Yanagisawa, N.Togawa, A hardware-Trojan classification method utilizing boundary net structures, In Proc. of IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, pp. 1-4.
Meserkhani, Jafari, Rahi (b0145) 2021; 168
Bhunia, Abramovici, Agrawal, Bradle, Hsiao, Plusquellic, Tehranipoor (b0005) 2013; 30
R. Vishnupriya, M. Nirmala Devi, Hardware Trojan Detection Using Deep Learning-Deep Stacked Auto Encoder, In
Tan, Yang, Tang, Jiang, Xie, Yuan (b0165) 2019; 7
Miao, Dong, Hao, Wang, Cao (b0155) 2021; 176
2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 2017, pp. 1-4.
Zhang, Cheng, Liu, He, Liu (b0160) 2018
Proc. of IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP), London, United Kingdom, 2016, pp. 17-24.
Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp. 770-775.
2021 IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 1484-1489.
J. Francq, F. Frick, Introduction to hardware Trojan detection methods, In
Jin, Makris (b0025) 2008
Chakraborty, Bhunia (b0080) 2011; 27
S. Faezi, R. Yasaei, M.A. Al Faruque, HTnet: Transfer learning for golden chip-free hardware Trojan detection, In
Lamech, Rad, Tehranipoor, Plusquellic (b0075) 2011; 6
C. Li, R.V. Śanchez, G. Zurita, M. Cerrada, D. Cabrera, Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning
2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS),Catalunya, Spain, 2016, pp. 203-206.
Zhang, Yuan, Wei, Liu, Xu (b0085) 2015; 34
D.Jap, W.He, S.Bhasin, Supervised and unsupervised machine learning for side-channel based Trojan detection, In
Bao, Xie, Liu, Srivastava (b0125) 2015; 35
10.1016/j.measurement.2022.111055_b0065
10.1016/j.measurement.2022.111055_b0120
10.1016/j.measurement.2022.111055_b0020
Salmani (10.1016/j.measurement.2022.111055_b0110) 2016; 12
Tan (10.1016/j.measurement.2022.111055_b0165) 2019; 7
Wang (10.1016/j.measurement.2022.111055_b0050) 2018; 48
Bao (10.1016/j.measurement.2022.111055_b0125) 2015; 35
Elnaggar (10.1016/j.measurement.2022.111055_b0040) 2018; 34
Zhang (10.1016/j.measurement.2022.111055_b0160) 2018
Miao (10.1016/j.measurement.2022.111055_b0155) 2021; 176
Rad (10.1016/j.measurement.2022.111055_b0070) 2009; 18
10.1016/j.measurement.2022.111055_b0135
Jin (10.1016/j.measurement.2022.111055_b0025) 2008
10.1016/j.measurement.2022.111055_b0010
10.1016/j.measurement.2022.111055_b0030
10.1016/j.measurement.2022.111055_b0095
10.1016/j.measurement.2022.111055_b0150
Bhunia (10.1016/j.measurement.2022.111055_b0015) 2014; 102
Chakraborty (10.1016/j.measurement.2022.111055_b0080) 2011; 27
10.1016/j.measurement.2022.111055_b0090
Nasr (10.1016/j.measurement.2022.111055_b0035) 2017; 33
Hinton (10.1016/j.measurement.2022.111055_b0055) 2006; 18
Reshma (10.1016/j.measurement.2022.111055_b0115) 2018
Mao (10.1016/j.measurement.2022.111055_b0140) 2019; 7
Dong (10.1016/j.measurement.2022.111055_b0130) 2020; 8
10.1016/j.measurement.2022.111055_b0105
Zhang (10.1016/j.measurement.2022.111055_b0085) 2015; 34
Ramesh (10.1016/j.measurement.2022.111055_b0060) 2019; 60
Bhunia (10.1016/j.measurement.2022.111055_b0005) 2013; 30
10.1016/j.measurement.2022.111055_b0045
10.1016/j.measurement.2022.111055_b0100
Meserkhani (10.1016/j.measurement.2022.111055_b0145) 2021; 168
Lamech (10.1016/j.measurement.2022.111055_b0075) 2011; 6
References_xml – volume: 30
  start-page: 6
  year: 2013
  end-page: 17
  ident: b0005
  article-title: Protection against hardware trojan attacks: Towards a comprehensive solution
  publication-title: IEEE Design & Test
– reference: 2015 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, 2015, pp. 1-6.
– reference: O. Sinanoglu, “Do you trust your chip?” in Proc. Intl. Conf. on Design and Technology of Integrated Systems in Nanoscale Era (DTIS’16), Apr. 2016.
– reference: Proc. of Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, Anhui, 2014, pp. 1-7.
– volume: 18
  start-page: 1735
  year: 2009
  end-page: 1744
  ident: b0070
  article-title: A sensitivity analysis of power signal methods for detecting hardware Trojans under real process and environmental conditions
  publication-title: IEEE Transactions on Very Large-Scale Integration (VLSI) Systems
– volume: 7
  start-page: 81759
  year: 2019
  end-page: 81769
  ident: b0165
  article-title: A deep imbalanced learning framework for transient stability assessment of power system
  publication-title: IEEE Access
– volume: 33
  start-page: 93
  year: 2017
  end-page: 105
  ident: b0035
  article-title: An efficient reverse engineering hardware trojan detector using histogram of oriented gradients
  publication-title: Journal of Electronic Testing
– reference: K. Hasegawa, M. Yanagisawa, N. Togawa, Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier, In
– reference: S. Faezi, R. Yasaei, M.A. Al Faruque, HTnet: Transfer learning for golden chip-free hardware Trojan detection, In
– start-page: 51
  year: 2008
  end-page: 57
  ident: b0025
  article-title: Hardware Trojan detection using path delay fingerprint
– volume: 34
  start-page: 1148
  year: 2015
  end-page: 1161
  ident: b0085
  article-title: Veri-Trust: Verification for hardware trust
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
– reference: 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS),Catalunya, Spain, 2016, pp. 203-206.
– reference: N. Karimian, F. Tehranipoor, M.T. Rahman, S. Kelly, D. Forte, Genetic algorithm for hardware Trojan detection with ring oscillator network (RON), In
– reference: Proc. of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, Hyderabad, India, 2021, pp. 345-353.
– reference: Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp. 770-775.
– year: 2018
  ident: b0160
  article-title: Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status
  publication-title: Journal of Control Science and Engineering
– reference: R. Vishnupriya, M. Nirmala Devi, Hardware Trojan Detection Using Deep Learning-Deep Stacked Auto Encoder, In
– reference: C. Li, R.V. Śanchez, G. Zurita, M. Cerrada, D. Cabrera, Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning,
– volume: 168
  year: 2021
  ident: b0145
  article-title: Experimental comparison of acoustic emission sensors in the detection of outer race defects of angular contact ball bearings by artificial neural network
  publication-title: Measurements
– reference: Proc. of IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP), London, United Kingdom, 2016, pp. 17-24.
– start-page: 671
  year: 2018
  end-page: 680
  ident: b0115
  article-title: Hardware trojan detection using deep learning technique
  publication-title: Soft Computing and Signal Processing
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural computation
– volume: 6
  start-page: 1170
  year: 2011
  end-page: 1179
  ident: b0075
  article-title: An experimental analysis of power and delay signal-to-noise requirements for detecting Trojans and methods for achieving the required detection sensitivities
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: J. Francq, F. Frick, Introduction to hardware Trojan detection methods, In
– reference: Sensors,
– reference: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 2017, pp. 1-4.
– reference: K. Hasegawa, M. Yanagisawa, N.Togawa, A hardware-Trojan classification method utilizing boundary net structures, In Proc. of IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, pp. 1-4.
– volume: 7
  start-page: 9515
  year: 2019
  end-page: 9530
  ident: b0140
  article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study
  publication-title: IEEE Access
– volume: 35
  start-page: 49
  year: 2015
  end-page: 57
  ident: b0125
  article-title: On reverse engineering-based hardware Trojan detection
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
– volume: 34
  start-page: 183
  year: 2018
  end-page: 201
  ident: b0040
  article-title: Machine learning for hardware security: opportunities and risks
  publication-title: Journal of Electronic Testing
– volume: 48
  start-page: 329
  year: 2018
  end-page: 341
  ident: b0050
  article-title: Sparse graph embedding unsupervised feature selection
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 176
  year: 2021
  ident: b0155
  article-title: Magnetic anomaly detection based on fast convergence wavelet artificial neural network in the aeromagnetic field
  publication-title: Measurements
– reference: D.K. Karunakaran, N. Mohankumar, Malicious combinational hardware trojan detection by gate level characterization in 90nm technology, In
– reference: K.Hasegawa, M.Oya, M.Yanagisawa, N.Togawa, Hardware Trojans classification for gate-level netlists based on machine learning, In
– reference: 2021 IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 1484-1489.
– volume: 60
  start-page: 360
  year: 2019
  end-page: 367
  ident: b0060
  article-title: Artificial neural network model for arrival time computation in gate level circuits
  publication-title: Automatika
– reference: vol.15, no.12, p.1550147719888098, 2019.
– reference: D.Jap, W.He, S.Bhasin, Supervised and unsupervised machine learning for side-channel based Trojan detection, In
– reference: C. Dong, J. Chen, W. Guo, J. Zou, A machine-learning-based hardware-Trojan detection approach for chips in the Internet of Things, International Journal of Distributed Sensor Networks,
– volume: 12
  start-page: 338
  year: 2016
  end-page: 350
  ident: b0110
  article-title: COTD: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 8
  start-page: 158169
  year: 2020
  end-page: 158183
  ident: b0130
  article-title: An unsupervised detection approach for hardware trojans
  publication-title: IEEE Access
– volume: 27
  start-page: 767
  year: 2011
  end-page: 785
  ident: b0080
  article-title: Security against hardware Trojan attacks using key-based design obfuscation
  publication-title: Journal of Electronic Testing
– reference: vol.16, no.6, p.895, 2016.
– volume: 102
  start-page: 1229
  year: 2014
  end-page: 1247
  ident: b0015
  article-title: Hardware Trojan attacks: Threat analysis and countermeasures
  publication-title: Proceedings of the IEEE
– ident: 10.1016/j.measurement.2022.111055_b0010
  doi: 10.1109/DTIS.2016.7483804
– ident: 10.1016/j.measurement.2022.111055_b0065
  doi: 10.3390/s16060895
– volume: 168
  year: 2021
  ident: 10.1016/j.measurement.2022.111055_b0145
  article-title: Experimental comparison of acoustic emission sensors in the detection of outer race defects of angular contact ball bearings by artificial neural network
  publication-title: Measurements
– volume: 27
  start-page: 767
  issue: 6
  year: 2011
  ident: 10.1016/j.measurement.2022.111055_b0080
  article-title: Security against hardware Trojan attacks using key-based design obfuscation
  publication-title: Journal of Electronic Testing
  doi: 10.1007/s10836-011-5255-2
– volume: 8
  start-page: 158169
  year: 2020
  ident: 10.1016/j.measurement.2022.111055_b0130
  article-title: An unsupervised detection approach for hardware trojans
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001239
– ident: 10.1016/j.measurement.2022.111055_b0105
– volume: 48
  start-page: 329
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2022.111055_b0050
  article-title: Sparse graph embedding unsupervised feature selection
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2016.2605132
– volume: 176
  year: 2021
  ident: 10.1016/j.measurement.2022.111055_b0155
  article-title: Magnetic anomaly detection based on fast convergence wavelet artificial neural network in the aeromagnetic field
  publication-title: Measurements
– start-page: 51
  year: 2008
  ident: 10.1016/j.measurement.2022.111055_b0025
– ident: 10.1016/j.measurement.2022.111055_b0095
  doi: 10.1109/IOLTS.2016.7604700
– volume: 34
  start-page: 183
  issue: 2
  year: 2018
  ident: 10.1016/j.measurement.2022.111055_b0040
  article-title: Machine learning for hardware security: opportunities and risks
  publication-title: Journal of Electronic Testing
  doi: 10.1007/s10836-018-5726-9
– year: 2018
  ident: 10.1016/j.measurement.2022.111055_b0160
  article-title: Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status
  publication-title: Journal of Control Science and Engineering
  doi: 10.1155/2018/8676387
– volume: 102
  start-page: 1229
  issue: 8
  year: 2014
  ident: 10.1016/j.measurement.2022.111055_b0015
  article-title: Hardware Trojan attacks: Threat analysis and countermeasures
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2334493
– volume: 7
  start-page: 9515
  year: 2019
  ident: 10.1016/j.measurement.2022.111055_b0140
  article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890693
– volume: 18
  start-page: 1735
  issue: 12
  year: 2009
  ident: 10.1016/j.measurement.2022.111055_b0070
  article-title: A sensitivity analysis of power signal methods for detecting hardware Trojans under real process and environmental conditions
  publication-title: IEEE Transactions on Very Large-Scale Integration (VLSI) Systems
  doi: 10.1109/TVLSI.2009.2029117
– volume: 35
  start-page: 49
  issue: 1
  year: 2015
  ident: 10.1016/j.measurement.2022.111055_b0125
  article-title: On reverse engineering-based hardware Trojan detection
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2015.2488495
– volume: 30
  start-page: 6
  issue: 3
  year: 2013
  ident: 10.1016/j.measurement.2022.111055_b0005
  article-title: Protection against hardware trojan attacks: Towards a comprehensive solution
  publication-title: IEEE Design & Test
  doi: 10.1109/MDT.2012.2196252
– volume: 60
  start-page: 360
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2022.111055_b0060
  article-title: Artificial neural network model for arrival time computation in gate level circuits
  publication-title: Automatika
  doi: 10.1080/00051144.2019.1631568
– volume: 12
  start-page: 338
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2022.111055_b0110
  article-title: COTD: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2016.2613842
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.measurement.2022.111055_b0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural computation
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.measurement.2022.111055_b0030
  doi: 10.1109/ICCCNT.2014.6963036
– ident: 10.1016/j.measurement.2022.111055_b0020
  doi: 10.7873/DATE.2015.1101
– volume: 34
  start-page: 1148
  issue: 7
  year: 2015
  ident: 10.1016/j.measurement.2022.111055_b0085
  article-title: Veri-Trust: Verification for hardware trust
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2015.2422836
– volume: 6
  start-page: 1170
  issue: 3
  year: 2011
  ident: 10.1016/j.measurement.2022.111055_b0075
  article-title: An experimental analysis of power and delay signal-to-noise requirements for detecting Trojans and methods for achieving the required detection sensitivities
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2011.2136339
– ident: 10.1016/j.measurement.2022.111055_b0135
  doi: 10.23919/DATE51398.2021.9474076
– ident: 10.1016/j.measurement.2022.111055_b0150
  doi: 10.1007/978-981-15-7234-0_30
– ident: 10.1016/j.measurement.2022.111055_b0045
  doi: 10.1177/1550147719888098
– volume: 7
  start-page: 81759
  year: 2019
  ident: 10.1016/j.measurement.2022.111055_b0165
  article-title: A deep imbalanced learning framework for transient stability assessment of power system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923799
– start-page: 671
  year: 2018
  ident: 10.1016/j.measurement.2022.111055_b0115
  article-title: Hardware trojan detection using deep learning technique
– volume: 33
  start-page: 93
  issue: 1
  year: 2017
  ident: 10.1016/j.measurement.2022.111055_b0035
  article-title: An efficient reverse engineering hardware trojan detector using histogram of oriented gradients
  publication-title: Journal of Electronic Testing
  doi: 10.1007/s10836-016-5631-z
– ident: 10.1016/j.measurement.2022.111055_b0090
  doi: 10.1109/ASAP.2016.7760768
– ident: 10.1016/j.measurement.2022.111055_b0120
  doi: 10.1109/THS.2015.7225334
– ident: 10.1016/j.measurement.2022.111055_b0100
  doi: 10.1109/ISCAS.2017.8050827
SSID ssj0006396
Score 2.3707504
Snippet •A deep learning- based hardware trojan identification method is proposed.•The data imbalance in VLSI circuits is addressed by using deep convolutional...
The rate of development of technology and its associated security issues are increasing in integrated circuit industry. This provides a space for implanting...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111055
SubjectTerms Circuit design
Circuit reliability
Deep learning
Feature
Feature extraction
Generative Adversarial Network
Hardware Trojan
Identification methods
Integrated circuits
Learning
Modules
Network reliability
Neural networks
Optimization
Performance degradation
Sparsity
Stacked Sparse Autoencoder
Threat models
Very large scale integration
Title A deep learning based malicious module identification using stacked sparse autoencoder network for VLSI circuit reliability
URI https://dx.doi.org/10.1016/j.measurement.2022.111055
https://www.proquest.com/docview/2687836788
Volume 194
WOSCitedRecordID wos000793176700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKB2g8IBggBgMZibcoVb6a2BIvFRpiaJsmMVDfosR2p0xtWqXJtIn_xG_k-iOJOzRRkHiJoqR23d6T6-ubc48Res8hCI_iKHMZSXI3igR3c-7BmSRghGNBc6F0Zo-T01MyndKzweBnWwtzNU_Kklxf09V_NTVcA2PL0tm_MHfXKVyAczA6HMHscNzK8BOHC7Fqt4O4cOQ8xZ0FxNtM8V0XS97MhVNwwxPSCGjWJrEATzV3wM1Ua-FkTb2UQpdSb6LUfHFFS_x-_PXIYUXFmqKW1TCFFvveeEN80icfVdrBkqjoCZttJtL-sKpBlHqgNkXgrCpuZJa_UikzxUA4GfXvVGB2mWeSAGXfMbkMWAZLGdSx5fKCOHRlULHhn2lkeVjwzZ4W9v3N-es8xOVo0Y95JL9l1LfZFNy-NRF29MSW-XaZWl2lsqtUd3UP7QTJmJIh2pkcHU6_dHM_xHuxzurp3_EQvesZhXeM666I6FZsoAKe8yfosVmp4IlG2FM0EOUeemTpV-6hB4o_zNbP0I8JlqjDLeqwQh3uUIc16vAm6rBCHTaowxp12EIdNqjDgDosUYcN6rCFuufo26fD84-fXbOvh8sgXKxd4VNBZEWzl_MQZhUhYJEecVhZBP4M1hsx8wWnXiBITuAuGTPC_SjhicfCnM54-AINy2UpXiJMvTzMQuEzVTSdMSKCWZyFgeo3pNk-Iu1_mzIjei_3Xpmnf7TxPgq6piut_LJNow-tAVMTwurQNAWQbtP8oDV6ah7LdRrERJZaJYS8-pchvUa7_aN2gIZ11Yg36D67qot19dYA-BeINtVM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+malicious+module+identification+using+stacked+sparse+autoencoder+network+for+VLSI+circuit+reliability&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Priyatharishini%2C+M.&rft.au=Nirmala+Devi%2C+M.&rft.date=2022-05-15&rft.issn=0263-2241&rft.volume=194&rft.spage=111055&rft_id=info:doi/10.1016%2Fj.measurement.2022.111055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2022_111055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon