Deep Learning Algorithms for Human Activity Recognition in Manual Material Handling Tasks

Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual Material Handling (MMH) activities, despite their diffusion and impact on the workers’ health. We propose four Deep Learning algorithms for HAR in MMH: Bidirectional Long Short-Term Memory (BiLSTM), Sparse...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 21; p. 6705
Main Authors: Bassani, Giulia, Avizzano, Carlo Alberto, Filippeschi, Alessandro
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 02.11.2025
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual Material Handling (MMH) activities, despite their diffusion and impact on the workers’ health. We propose four Deep Learning algorithms for HAR in MMH: Bidirectional Long Short-Term Memory (BiLSTM), Sparse Denoising Autoencoder (Sp-DAE), Recurrent Sp-DAE, and Recurrent Convolutional Neural Network (RCNN). We explored different hyperparameter combinations to maximize the classification performance (F1-score,) using wearable sensors’ data gathered from 14 subjects. We investigated the best three-parameter combinations for each network using the full dataset to select the two best-performing networks, which were then compared using 14 datasets with increasing subject numerosity, 70–30% split, and Leave-One-Subject-Out (LOSO) validation, to evaluate whether they may perform better with a larger dataset. The benchmarking network DeepConvLSTM was tested on the full dataset. BiLSTM performs best in classification and complexity (95.7% 70–30% split; 90.3% LOSO). RCNN performed similarly (95.9%; 89.2%) with a positive trend with subject numerosity. DeepConvLSTM achieves similar classification performance (95.2%; 90.3%) but requires ×57.1 and ×31.3 more Multiply and ACcumulate (MAC) and ×100.8 and ×28.3 more Multiplication and Addition (MA) operations, which measure the complexity of the network’s inference process, than BiLSTM and RCNN, respectively. The BILSTM and RCNN perform close to DeepConvLSTM while being computationally lighter, fostering their use in embedded systems. Such lighter algorithms can be readily used in the automatic ergonomic and biomechanical risk assessment systems, enabling personalization of risk assessment and easing the adoption of safety measures in industrial practices involving MMH.
AbstractList Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual Material Handling (MMH) activities, despite their diffusion and impact on the workers' health. We propose four Deep Learning algorithms for HAR in MMH: Bidirectional Long Short-Term Memory (BiLSTM), Sparse Denoising Autoencoder (Sp-DAE), Recurrent Sp-DAE, and Recurrent Convolutional Neural Network (RCNN). We explored different hyperparameter combinations to maximize the classification performance (F1-score,) using wearable sensors' data gathered from 14 subjects. We investigated the best three-parameter combinations for each network using the full dataset to select the two best-performing networks, which were then compared using 14 datasets with increasing subject numerosity, 70-30% split, and Leave-One-Subject-Out (LOSO) validation, to evaluate whether they may perform better with a larger dataset. The benchmarking network DeepConvLSTM was tested on the full dataset. BiLSTM performs best in classification and complexity (95.7% 70-30% split; 90.3% LOSO). RCNN performed similarly (95.9%; 89.2%) with a positive trend with subject numerosity. DeepConvLSTM achieves similar classification performance (95.2%; 90.3%) but requires ×57.1 and ×31.3 more Multiply and ACcumulate (MAC) and ×100.8 and ×28.3 more Multiplication and Addition (MA) operations, which measure the complexity of the network's inference process, than BiLSTM and RCNN, respectively. The BILSTM and RCNN perform close to DeepConvLSTM while being computationally lighter, fostering their use in embedded systems. Such lighter algorithms can be readily used in the automatic ergonomic and biomechanical risk assessment systems, enabling personalization of risk assessment and easing the adoption of safety measures in industrial practices involving MMH.
Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual Material Handling (MMH) activities, despite their diffusion and impact on the workers' health. We propose four Deep Learning algorithms for HAR in MMH: Bidirectional Long Short-Term Memory (BiLSTM), Sparse Denoising Autoencoder (Sp-DAE), Recurrent Sp-DAE, and Recurrent Convolutional Neural Network (RCNN). We explored different hyperparameter combinations to maximize the classification performance (F1-score,) using wearable sensors' data gathered from 14 subjects. We investigated the best three-parameter combinations for each network using the full dataset to select the two best-performing networks, which were then compared using 14 datasets with increasing subject numerosity, 70-30% split, and Leave-One-Subject-Out (LOSO) validation, to evaluate whether they may perform better with a larger dataset. The benchmarking network DeepConvLSTM was tested on the full dataset. BiLSTM performs best in classification and complexity (95.7% 70-30% split; 90.3% LOSO). RCNN performed similarly (95.9%; 89.2%) with a positive trend with subject numerosity. DeepConvLSTM achieves similar classification performance (95.2%; 90.3%) but requires ×57.1 and ×31.3 more Multiply and ACcumulate (MAC) and ×100.8 and ×28.3 more Multiplication and Addition (MA) operations, which measure the complexity of the network's inference process, than BiLSTM and RCNN, respectively. The BILSTM and RCNN perform close to DeepConvLSTM while being computationally lighter, fostering their use in embedded systems. Such lighter algorithms can be readily used in the automatic ergonomic and biomechanical risk assessment systems, enabling personalization of risk assessment and easing the adoption of safety measures in industrial practices involving MMH.Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual Material Handling (MMH) activities, despite their diffusion and impact on the workers' health. We propose four Deep Learning algorithms for HAR in MMH: Bidirectional Long Short-Term Memory (BiLSTM), Sparse Denoising Autoencoder (Sp-DAE), Recurrent Sp-DAE, and Recurrent Convolutional Neural Network (RCNN). We explored different hyperparameter combinations to maximize the classification performance (F1-score,) using wearable sensors' data gathered from 14 subjects. We investigated the best three-parameter combinations for each network using the full dataset to select the two best-performing networks, which were then compared using 14 datasets with increasing subject numerosity, 70-30% split, and Leave-One-Subject-Out (LOSO) validation, to evaluate whether they may perform better with a larger dataset. The benchmarking network DeepConvLSTM was tested on the full dataset. BiLSTM performs best in classification and complexity (95.7% 70-30% split; 90.3% LOSO). RCNN performed similarly (95.9%; 89.2%) with a positive trend with subject numerosity. DeepConvLSTM achieves similar classification performance (95.2%; 90.3%) but requires ×57.1 and ×31.3 more Multiply and ACcumulate (MAC) and ×100.8 and ×28.3 more Multiplication and Addition (MA) operations, which measure the complexity of the network's inference process, than BiLSTM and RCNN, respectively. The BILSTM and RCNN perform close to DeepConvLSTM while being computationally lighter, fostering their use in embedded systems. Such lighter algorithms can be readily used in the automatic ergonomic and biomechanical risk assessment systems, enabling personalization of risk assessment and easing the adoption of safety measures in industrial practices involving MMH.
Audience Academic
Author Avizzano, Carlo Alberto
Filippeschi, Alessandro
Bassani, Giulia
Author_xml – sequence: 1
  givenname: Giulia
  orcidid: 0000-0002-8359-6166
  surname: Bassani
  fullname: Bassani, Giulia
– sequence: 2
  givenname: Carlo Alberto
  orcidid: 0000-0001-5802-541X
  surname: Avizzano
  fullname: Avizzano, Carlo Alberto
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0001-6078-6429
  surname: Filippeschi
  fullname: Filippeschi, Alessandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41228930$$D View this record in MEDLINE/PubMed
BookMark eNpdkkuLFDEQgIOsuA89-AekwYseZk1SnXT6OKyPWRgRZD14aqqTdJuxOxmTtLD_3szOOojkUEXx8YV6XJIzH7wl5CWj1wAtfZe44Ew2VDwhF6zm9UpxTs_-yc_JZUo7SjkAqGfkvGacqxboBfn-3tp9tbUYvfNjtZ7GEF3-MadqCLHaLDP6aq2z--3yffXV6jB6l13wlfPVZ_QLTiVkG11JNujNdLDcYfqZnpOnA07JvniMV-Tbxw93N5vV9sun25v1dqVrJvLKsran1IgGgAJCjaZvjWasZD2VOAzSSD4I4Mq0xjQ9Z7Q3jW21bqRUUsEVuT16TcBdt49uxnjfBXTdQyHEscOYnZ5sp3nfSMuwZaBrLVBpDYpDDRYGZZEV15ujax_Dr8Wm3M0uaTtN6G1YUge8YUKWYTcFff0fugtL9KXTB4oKUO1BeH2kRiz_Oz-EHFGXZ-zsdNni4Ep9rSQIIUAetK8etUs_W3Pq5-_GCvD2COgYUop2OCGMdodr6E7XAH8AI_ijlQ
Cites_doi 10.1145/1390156.1390294
10.1109/JIOT.2018.2823084
10.1145/3090076
10.3390/s20061557
10.1109/JAS.2024.124329
10.3390/s16020189
10.1109/SSCI.2017.8280908
10.1038/s41598-024-57912-3
10.3390/s151229858
10.1109/LRA.2019.2894389
10.1109/INDIN51773.2022.9976078
10.1145/2499621
10.3390/s25134028
10.1007/s11831-023-09986-x
10.1109/PerCom59722.2024.10494448
10.1016/j.apergo.2022.103693
10.1145/3134230.3134231
10.1016/j.eswa.2018.03.056
10.1007/s11042-023-15830-y
10.1109/JLT.2024.3386886
10.1109/IoTaIS60147.2023.10346052
10.1109/JSEN.2023.3338264
10.1016/j.future.2024.06.016
10.1016/j.rcim.2022.102449
10.1109/78.650093
10.3390/s20143877
10.1016/j.apergo.2021.103386
10.1016/j.eswa.2024.123143
10.1016/j.engappai.2024.107850
10.1109/MED51440.2021.9480225
10.1109/PerCom53586.2022.9762388
10.1016/j.compbiomed.2022.106060
10.1115/1.4039145
10.3390/s16010115
10.1109/TNNLS.2016.2582924
10.1371/journal.pone.0192938
10.3390/s22041476
10.1016/j.bspc.2024.106870
10.3115/v1/D14-1179
10.1016/j.neunet.2018.07.011
10.3390/s17112556
10.3390/machines13080669
10.1016/j.inffus.2021.11.006
10.1109/TCDS.2023.3326192
10.3390/s25185765
10.1016/j.protcy.2016.05.114
10.3390/s23042182
10.1016/j.bspc.2019.02.011
10.1007/s12530-022-09480-y
10.1108/IR-04-2021-0077
10.3390/s19040947
10.1109/ACCESS.2022.3140373
10.1007/s12062-020-09260-z
10.1109/ACCESS.2020.2982225
10.1007/978-3-319-13817-6_11
10.1142/S0218488598000094
10.3390/s21030777
10.1109/JSEN.2021.3113123
10.3390/s22010134
10.1109/JBHI.2019.2909688
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/s25216705
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c2b76e1a913c4c5a8cc382343e3f8ea1
A863555367
41228930
10_3390_s25216705
Genre Journal Article
GeographicLocations New York
United States
GeographicLocations_xml – name: New York
– name: United States
GrantInformation_xml – fundername: European Union
  grantid: IR0000036
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c415t-e19b00d573303a34adb9dc1134ab06aff6d62f5328d9dd7b210bd7e9cc7668683
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613023400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 17 19:36:54 EST 2025
Thu Nov 13 18:01:38 EST 2025
Fri Nov 14 05:44:45 EST 2025
Tue Nov 18 03:51:27 EST 2025
Mon Nov 17 02:00:46 EST 2025
Wed Nov 05 20:47:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords human activity recognition (HAR)
recurrent neural network (RNN)
manual material handling (MMH)
autoencoder
convolutional neural network (CNN)
wearable sensor network (WSN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e19b00d573303a34adb9dc1134ab06aff6d62f5328d9dd7b210bd7e9cc7668683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5802-541X
0000-0001-6078-6429
0000-0002-8359-6166
OpenAccessLink https://doaj.org/article/c2b76e1a913c4c5a8cc382343e3f8ea1
PMID 41228930
PQID 3271053891
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c2b76e1a913c4c5a8cc382343e3f8ea1
proquest_miscellaneous_3271565217
proquest_journals_3271053891
gale_infotracacademiconefile_A863555367
pubmed_primary_41228930
crossref_primary_10_3390_s25216705
PublicationCentury 2000
PublicationDate 2025-11-02
PublicationDateYYYYMMDD 2025-11-02
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Syed (ref_32) 2020; 11
Huang (ref_63) 2019; 24
Xia (ref_51) 2020; 8
Maurice (ref_3) 2019; 4
ref_14
ref_13
ref_12
ref_55
ref_54
Schrader (ref_2) 2020; 13
Dentamaro (ref_29) 2024; 246
ref_53
ref_52
Greff (ref_39) 2016; 28
ref_19
Trkov (ref_31) 2022; 101
ref_15
Zhang (ref_25) 2023; 14
Qiu (ref_57) 2022; 80
Bulling (ref_18) 2014; 46
ref_61
Gu (ref_47) 2018; 5
ref_60
Almaslukh (ref_45) 2017; 17
Syed (ref_50) 2020; 11
ref_22
Zhang (ref_28) 2024; 73
ref_66
ref_65
ref_20
ref_64
Freire (ref_62) 2024; 25
Imran (ref_24) 2023; 24
Losey (ref_56) 2018; 70
Inkulu (ref_67) 2022; 49
Azizi (ref_5) 2018; 4
ref_26
Moutinho (ref_68) 2023; 80
Dahou (ref_27) 2024; 160
Chen (ref_9) 2021; 54
Luzheng (ref_11) 2019; 51
Thakur (ref_23) 2022; 10
Ponce (ref_4) 2019; 15
ref_36
ref_35
Attal (ref_17) 2015; 15
Kumar (ref_33) 2024; 31
Xiong (ref_16) 2024; 11
ref_38
Khosravy (ref_69) 2024; 16
Porta (ref_42) 2021; 93
Nweke (ref_10) 2018; 105
ref_46
Bassani (ref_34) 2021; 21
ref_44
ref_43
ref_41
Guan (ref_58) 2017; 1
ref_1
Hochreiter (ref_37) 1998; 6
Rajesh (ref_7) 2016; 24
Benmessabih (ref_30) 2024; 131
Buda (ref_59) 2018; 106
ref_49
ref_48
ref_8
Kaya (ref_21) 2024; 83
ref_6
Schuster (ref_40) 1997; 45
References_xml – ident: ref_46
  doi: 10.1145/1390156.1390294
– volume: 5
  start-page: 2085
  year: 2018
  ident: ref_47
  article-title: Locomotion activity recognition using stacked denoising autoencoders
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2823084
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 1
  start-page: 1
  year: 2017
  ident: ref_58
  article-title: Ensembles of deep lstm learners for activity recognition using wearables
  publication-title: Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3090076
– ident: ref_6
  doi: 10.3390/s20061557
– volume: 11
  start-page: 1075
  year: 2024
  ident: ref_16
  article-title: Intuitive human-robot-environment interaction with EMG signals: A review
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2024.124329
– ident: ref_44
  doi: 10.3390/s16020189
– ident: ref_12
  doi: 10.1109/SSCI.2017.8280908
– ident: ref_26
  doi: 10.1038/s41598-024-57912-3
– ident: ref_1
– volume: 15
  start-page: 31314
  year: 2015
  ident: ref_17
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s151229858
– volume: 4
  start-page: 1132
  year: 2019
  ident: ref_3
  article-title: Activity recognition for ergonomics assessment of industrial tasks with automatic feature selection
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2894389
– ident: ref_65
  doi: 10.1109/INDIN51773.2022.9976078
– volume: 46
  start-page: 1
  year: 2014
  ident: ref_18
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2499621
– ident: ref_20
  doi: 10.3390/s25134028
– volume: 31
  start-page: 179
  year: 2024
  ident: ref_33
  article-title: Human activity recognition (har) using deep learning: Review, methodologies, progress and future research directions
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-023-09986-x
– ident: ref_36
  doi: 10.1109/PerCom59722.2024.10494448
– volume: 4
  start-page: 1
  year: 2018
  ident: ref_5
  article-title: Design and fabrication of intelligent material handling system in modern manufacturing with industry 4.0 approaches
  publication-title: Int. Robot. Autom. J.
– volume: 101
  start-page: 103693
  year: 2022
  ident: ref_31
  article-title: Classifying hazardous movements and loads during manual materials handling using accelerometers and instrumented insoles
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2022.103693
– volume: 73
  start-page: 1
  year: 2024
  ident: ref_28
  article-title: Multi-STMT: Multi-level network for human activity recognition based on wearable sensors
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_61
  doi: 10.1145/3134230.3134231
– volume: 105
  start-page: 233
  year: 2018
  ident: ref_10
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.056
– volume: 83
  start-page: 10815
  year: 2024
  ident: ref_21
  article-title: Human activity recognition from multiple sensors data using deep CNNs
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15830-y
– volume: 25
  start-page: 4177
  year: 2024
  ident: ref_62
  article-title: Computational complexity optimization of neural network-based equalizers in digital signal processing: A comprehensive approach
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2024.3386886
– ident: ref_43
  doi: 10.1109/IoTaIS60147.2023.10346052
– volume: 24
  start-page: 1963
  year: 2023
  ident: ref_24
  article-title: Smart-wearable sensors and cnn-bigru model: A powerful combination for human activity recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3338264
– volume: 160
  start-page: 375
  year: 2024
  ident: ref_27
  article-title: TCN-inception: Temporal convolutional network and inception modules for sensor-based human activity recognition
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2024.06.016
– volume: 11
  start-page: 597
  year: 2020
  ident: ref_50
  article-title: Continuous human activity recognition in logistics from inertial sensor data using temporal convolutions in CNN
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 80
  start-page: 102449
  year: 2023
  ident: ref_68
  article-title: Deep learning-based human action recognition to leverage context awareness in collaborative assembly
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102449
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_40
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– ident: ref_14
  doi: 10.3390/s20143877
– volume: 93
  start-page: 103386
  year: 2021
  ident: ref_42
  article-title: Classifying diverse manual material handling tasks using a single wearable sensor
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2021.103386
– volume: 246
  start-page: 123143
  year: 2024
  ident: ref_29
  article-title: Human activity recognition with smartphone-integrated sensors: A survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123143
– volume: 131
  start-page: 107850
  year: 2024
  ident: ref_30
  article-title: Online human motion analysis in industrial context: A review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.107850
– ident: ref_55
  doi: 10.1109/MED51440.2021.9480225
– ident: ref_64
  doi: 10.1109/PerCom53586.2022.9762388
– ident: ref_48
  doi: 10.1016/j.compbiomed.2022.106060
– volume: 70
  start-page: 010804
  year: 2018
  ident: ref_56
  article-title: A review of intent detection, arbitration, and communication aspects of shared control for physical human–robot interaction
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4039145
– ident: ref_35
  doi: 10.3390/s16010115
– volume: 28
  start-page: 2222
  year: 2016
  ident: ref_39
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref_13
  doi: 10.1371/journal.pone.0192938
– ident: ref_19
  doi: 10.3390/s22041476
– ident: ref_22
  doi: 10.1016/j.bspc.2024.106870
– ident: ref_38
  doi: 10.3115/v1/D14-1179
– volume: 106
  start-page: 249
  year: 2018
  ident: ref_59
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.011
– ident: ref_41
  doi: 10.3390/s17112556
– ident: ref_15
  doi: 10.3390/machines13080669
– volume: 80
  start-page: 241
  year: 2022
  ident: ref_57
  article-title: Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.11.006
– volume: 15
  start-page: 1550147719853987
  year: 2019
  ident: ref_4
  article-title: A concise review on sensor signal acquisition and transformation applied to human activity recognition and human–robot interaction
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 16
  start-page: 165
  year: 2024
  ident: ref_69
  article-title: Human-Collaborative Artificial Intelligence Along With Social Values in Industry 5.0: A Survey of the State-of-the-Art
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2023.3326192
– ident: ref_52
  doi: 10.3390/s25185765
– volume: 24
  start-page: 568
  year: 2016
  ident: ref_7
  article-title: Manual material handling: A classification scheme
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2016.05.114
– volume: 17
  start-page: 160
  year: 2017
  ident: ref_45
  article-title: An effective deep autoencoder approach for online smartphone-based human activity recognition
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– ident: ref_8
  doi: 10.3390/s23042182
– volume: 51
  start-page: 113
  year: 2019
  ident: ref_11
  article-title: A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.02.011
– volume: 14
  start-page: 939
  year: 2023
  ident: ref_25
  article-title: A human activity recognition method using wearable sensors based on convtransformer model
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-022-09480-y
– volume: 49
  start-page: 226
  year: 2022
  ident: ref_67
  article-title: Challenges and opportunities in human robot collaboration context of Industry 4.0 - a state of the art review
  publication-title: Ind. Robot. Int. J. Robot. Res. Appl.
  doi: 10.1108/IR-04-2021-0077
– ident: ref_53
  doi: 10.3390/s19040947
– volume: 11
  start-page: 644
  year: 2020
  ident: ref_32
  article-title: Using wearable sensors for human activity recognition in logistics: A comparison of different feature sets and machine learning algorithms
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 10
  start-page: 4137
  year: 2022
  ident: ref_23
  article-title: Convae-lstm: Convolutional autoencoder long short-term memory network for smartphone-based human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3140373
– volume: 13
  start-page: 139
  year: 2020
  ident: ref_2
  article-title: Advanced sensing and human activity recognition in early intervention and rehabilitation of elderly people
  publication-title: J. Popul. Ageing
  doi: 10.1007/s12062-020-09260-z
– volume: 8
  start-page: 56855
  year: 2020
  ident: ref_51
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: Access
  doi: 10.1109/ACCESS.2020.2982225
– ident: ref_54
  doi: 10.1007/978-3-319-13817-6_11
– volume: 6
  start-page: 107
  year: 1998
  ident: ref_37
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertainty Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488598000094
– ident: ref_60
– ident: ref_66
  doi: 10.3390/s21030777
– volume: 21
  start-page: 24731
  year: 2021
  ident: ref_34
  article-title: A Dataset of Human Motion and Muscular Activities in Manual Material Handling Tasks for Biomechanical and Ergonomic Analyses
  publication-title: Sens. J.
  doi: 10.1109/JSEN.2021.3113123
– ident: ref_49
  doi: 10.3390/s22010134
– volume: 24
  start-page: 292
  year: 2019
  ident: ref_63
  article-title: TSE-CNN: A two-stage end-to-end CNN for human activity recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2909688
SSID ssj0023338
Score 2.4628668
Snippet Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual Material Handling (MMH) activities, despite their diffusion and...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6705
SubjectTerms Adult
Algorithms
autoencoder
Classification
Comparative analysis
convolutional neural network (CNN)
Datasets
Deep Learning
Embedded systems
Human Activities
human activity recognition (HAR)
Humans
Information management
manual material handling (MMH)
Materials handling
Neural networks
Neural Networks, Computer
recurrent neural network (RNN)
Sensors
Wearable Electronic Devices
wearable sensor network (WSN)
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgMceJcGCjIIiVO0aztxnBNaHlWRaLVCBbWnyK9dKiDZblJ-PzOJN1QgceKUKLFGlmY8M5_H_gbgpeE-9yYXKTnINAtCpzaUJjViltugVRB9S5YvH4vjY316Wi7i9eg2Hqvc-sTeUQ9sz3RuG53w1DeOdsynUmBkzKnG9np9kVIPKaq1xoYa12GHiLf0BHYWH44WZyMAk4jHBnYhiVB_2gqMXaqgznVXYlJP3f-3g_4j7ezDz8Gd_zvxu3A7pqFsPtjNPbgW6vtw6wo54QM4exfCmkX-1RWbf1-hnO7rj5Zhnsv6zX82d0PzCfZpew6pqdl5zY4MMZ3io-sNnB0SlwNJOTHtt_YhfD54f_L2MI2NGFKH8b1LAyfmRE_UiTNpZGa8Lb3jHN_sTJnlUnkllrkU2pfeFxZhpPVFKJ0rlNJKy12Y1E0d9oBJpay26NpyUxDYslxpXtgCpWQasWACL7aqqNYD30aFOIX0VY36SuANKWkcQBTZ_Ydms6riiqucQKmBm5JLl7ncaOeo5pnJIJc6GJ7AK1JxRQu52xhn4n0EnCdRYlVzTblYLlWRwP5Ws1Vc4W31W5EJPB9_49qkgoupQ3M5jMGEGVFfAo8G6xnnnHGBWFfOHv9b-BO4KajjMG1ki32YdJvL8BRuuJ_debt5Fg38F9kWCr4
  priority: 102
  providerName: ProQuest
Title Deep Learning Algorithms for Human Activity Recognition in Manual Material Handling Tasks
URI https://www.ncbi.nlm.nih.gov/pubmed/41228930
https://www.proquest.com/docview/3271053891
https://www.proquest.com/docview/3271565217
https://doaj.org/article/c2b76e1a913c4c5a8cc382343e3f8ea1
Volume 25
WOSCitedRecordID wos001613023400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4UAPiHcDZWUQEqeoGzuxneMWtioSu1pVBW1Pll9pKyBbbVKO_HZmkuxqBQcuXJzIsaLJjO2Zz3a-AXhns1AEW_CUJsg0j1ynLpY2tXxcuKhl5F1Klq-f1Xyul8tysZPqi86E9fTAveKOPHdKxsyWmfC5L6z2nrauchFFpaPtgA9GPRswNUAtgcir5xESCOqPGo5eSirKUbfjfTqS_r-n4j8CzM7RnDyCh0OEyCa9ZI_hTqyfwP4Ob-BTuPgY4w0bqFEv2eT75Qox_tWPhmEIyrp1eTbxfV4IdrY5IrSq2XXNZpZISPHSdn2PnRLNAr3l3Dbfmmfw5WR6_uE0HXIkpB5db5vGjEgNA7EajoUVuQ2uDD7L8M6Npa0qGSSvCsF1KENQDhGeCyqW3isptdTiOezVqzoeABNSOu1w1imsIhzkMqkzhdq3Va4RpiXwdqM7c9NTYRiEEKRgs1VwAsek1W0DYq_uKtCmZrCp-ZdNE3hPNjE0xtq19Xb4VQDlJLYqM9EUJhVCqgQON2Yzw-BrjOAYNhW0AZvAm-1jHDa0F2LruLrt22Asi4AsgRe9ubcy5xlHGCrGL__Ht7yCB5xSBtNKND-EvXZ9G1_Dff-zvW7WI7irlqor9QjuHU_ni7NR15OxnP2aYt3i02xx8RtTMPZg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQc-P4wFFgQiJNVe9feXR8QCpQqVdMIoYDSk1nvbkIFOCF2QfwpfiMz_kgrkLj1wClRYo028fObeZ71G4CnJnapMykPiSDDxHMdFj4zoeFRWngtPW9GsnwYqfFYT6fZ2w341T8LQ9sqe05siNotLN0j3xYcc2FKXbWXy28hTY2i7mo_QqOFxb7_-QMlW_VibwfP7zPOd99MXg_DbqpAaDFZ1aGPyQbQkQ9gJIxIjCsyZ-MY3xWRNLOZdJLPUsG1y5xTBWqiwimfWauk1FILjHsOziOPK9pCpqYnAk-g3mvdi4TIou2KY26Uiibjncp5zWiAvxPAH2Vtk952r_5vf8w1uNIV0mzQIv86bPjyBlw-Za94Ew53vF-yzkF2zgZf5rju-tPXimGlzpr2BRvYdnwGe9fvpFqU7KhkB4a8WvGlbi5RNiQ3CooyMdXn6ha8P5Pfdhs2y0Xp7wITUha6QHJOjSK5WMRSx6pQGCXRqGYDeNKf7HzZOobkqLQIEfkaEQG8IhisDyCT7-aDxWqed5yRW45RfWyyWNjEpkZbS13bRHgx097EATwnEOVERfXKWNM9UYHrJFOvfKCpmkyFVAFs9djJO46q8hPgBPB4_TWyC7WMTOkXx-0xWPKjbg3gTovP9ZqTmKNaF9G9fwd_BBeHk4NRPtob79-HS5zmJ9Nteb4Fm_Xq2D-AC_Z7fVStHjYXE4OPZw3S33u3Wsw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VghAc-P4wFFgQiJMVe9feXR8QCoSoVUtUoYLSk1nvbkIFOCF2Qfw1fh0z_kgrkLj1wClR4ozW8duZfZ71ewBPTexSZ1IeUoIME891WPjMhIZHaeG19LyxZPmwpyYTPZ1m-xvwq38WhrZV9jmxSdRuYeke-UBwrIUpddUGs25bxP5o_HL5LSQHKeq09nYaLUR2_c8fSN-qFzsjvNbPOB-_OXi9HXYOA6HFwlWHPiZJQEeagJEwIjGuyJyNY3xXRNLMZtJJPksF1y5zThXIjwqnfGatklJLLTDuOTiPP1dkG6GmJ2RPIPdrlYyEyKJBxbFOSkUueafqX2MT8Hcx-GOJ25S68dX_-U-6Ble6BTYbtjPiOmz48gZcPiW7eBMOR94vWacsO2fDL3Mcd_3pa8VwBc-atgYb2tZWg73rd1gtSnZUsreGNFzxpW6mLtsmlQqKcmCqz9UteH8m53YbNstF6e8CE1IWusCknRpFNLKIpY5VoTBKopHlBvCkv_D5slUSyZGBETryNToCeEWQWB9A4t_NB4vVPO9ySW45RvWxyWJhE5sabS11cxPhxUx7EwfwnACVU4qqV8aa7kkLHCeJfeVDTavMVEgVwFaPo7zLXVV-AqIAHq-_xqxDrSRT-sVxewxSAeSzAdxpsboecxJzZPEiuvfv4I_gImIz39uZ7N6HS5xsleluPd-CzXp17B_ABfu9PqpWD5t5xeDjWWP0N0oJY4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithms+for+Human+Activity+Recognition+in+Manual+Material+Handling+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Bassani%2C+Giulia&rft.au=Avizzano%2C+Carlo+Alberto&rft.au=Filippeschi%2C+Alessandro&rft.date=2025-11-02&rft.eissn=1424-8220&rft.volume=25&rft.issue=21&rft_id=info:doi/10.3390%2Fs25216705&rft_id=info%3Apmid%2F41228930&rft.externalDocID=41228930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon