Edge Computing-Enabled Smart Agriculture: Technical Architectures, Practical Evolution, and Bottleneck Breakthroughs
As the global digital transformation of agriculture accelerates, the widespread deployment of farming equipment has triggered an exponential surge in agricultural production data. Consequently, traditional cloud computing frameworks face critical challenges: communication latency in the field, the d...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 25; číslo 17; s. 5302 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
26.08.2025
|
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | As the global digital transformation of agriculture accelerates, the widespread deployment of farming equipment has triggered an exponential surge in agricultural production data. Consequently, traditional cloud computing frameworks face critical challenges: communication latency in the field, the demand for low-power devices, and stringent real-time decision constraints. These bottlenecks collectively exacerbate bandwidth constraints, diminish response efficiency, and introduce data security vulnerabilities. In this context, edge computing offers a promising solution for smart agriculture. By provisioning computing resources to the network periphery and enabling localized processing at data sources adjacent to agricultural machinery, sensors, and crops, edge computing leverages low-latency responses, bandwidth optimization, and distributed computation capabilities. This paper provides a comprehensive survey of the research landscape in agricultural edge computing. We begin by defining its core concepts and highlighting its advantages over cloud computing. Subsequently, anchored in the “terminal sensing-edge intelligence-cloud coordination” architecture, we analyze technological evolution in edge sensing devices, lightweight intelligent algorithms, and cooperative communication mechanisms. Additionally, through precision farming, intelligent agricultural machinery control, and full-chain crop traceability, we demonstrate its efficacy in enhancing real-time agricultural decision-making. Finally, we identify adaptation challenges in complex environments and outline future directions for research and development in this field. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25175302 |