A Note on the Alternating Direction Method of Multipliers

We consider the linearly constrained separable convex programming, whose objective function is separable into m individual convex functions without coupled variables. The alternating direction method of multipliers has been well studied in the literature for the special case m =2, while it remains o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 155; číslo 1; s. 227 - 238
Hlavní autoři: Han, Deren, Yuan, Xiaoming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.10.2012
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the linearly constrained separable convex programming, whose objective function is separable into m individual convex functions without coupled variables. The alternating direction method of multipliers has been well studied in the literature for the special case m =2, while it remains open whether its convergence can be extended to the general case m ≥3. This note shows the global convergence of this extension when the involved functions are further assumed to be strongly convex.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-012-0003-z