A Note on the Alternating Direction Method of Multipliers
We consider the linearly constrained separable convex programming, whose objective function is separable into m individual convex functions without coupled variables. The alternating direction method of multipliers has been well studied in the literature for the special case m =2, while it remains o...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 155; číslo 1; s. 227 - 238 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.10.2012
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the linearly constrained separable convex programming, whose objective function is separable into
m
individual convex functions without coupled variables. The alternating direction method of multipliers has been well studied in the literature for the special case
m
=2, while it remains open whether its convergence can be extended to the general case
m
≥3. This note shows the global convergence of this extension when the involved functions are further assumed to be strongly convex. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-012-0003-z |