Hierarchical Bayesian Inference and Learning in Spiking Neural Networks

Numerous experimental data from neuroscience and psychological science suggest that human brain utilizes Bayesian principles to deal the complex environment. Furthermore, hierarchical Bayesian inference has been proposed as an appropriate theoretical framework for modeling cortical processing. Howev...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 49; číslo 1; s. 133 - 145
Hlavní autori: Guo, Shangqi, Yu, Zhaofei, Deng, Fei, Hu, Xiaolin, Chen, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Numerous experimental data from neuroscience and psychological science suggest that human brain utilizes Bayesian principles to deal the complex environment. Furthermore, hierarchical Bayesian inference has been proposed as an appropriate theoretical framework for modeling cortical processing. However, it remains unknown how such a computation is organized in the network of biologically plausible spiking neurons. In this paper, we propose a hierarchical network of winner-take-all circuits which can carry out hierarchical Bayesian inference and learning through a spike-based variational expectation maximization (EM) algorithm. Particularly, we show how the firing activities of spiking neurons in response to the input stimuli and the spike-timing-dependent plasticity rule can be understood, respectively, as variational E-step and M-step of variational EM. Finally, we demonstrate the utility of this spiking neural network on the MNIST benchmark for unsupervised classification of handwritten digits.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2768554