Quantum Computing for Transport Network Optimization

Public transport systems play a crucial role in the development of large cities. Bus network design to optimize passenger flow coverage in a global metropolis is a challenging task. As an essential part of bus travel planning, considering the bus transfer factor in the existing extremely complex and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Entropy (Basel, Switzerland) Ročník 27; číslo 9; s. 953
Hlavní autori: Ju, Jiangwei, Liu, Zhihang, Bai, Yuelin, Wang, Yong, Gao, Qi, Ma, Yin, Zheng, Chao, Wen, Kai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 13.09.2025
Predmet:
ISSN:1099-4300, 1099-4300
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Public transport systems play a crucial role in the development of large cities. Bus network design to optimize passenger flow coverage in a global metropolis is a challenging task. As an essential part of bus travel planning, considering the bus transfer factor in the existing extremely complex and extensive public bus network usually leads to a optimization problem characterized by high-dimensionality and non-linearity. While classical computers struggle to deal with this kind of problems, quantum computers shed new light into this field. The coherent Ising machine (CIM), a specialized optical quantum computer using a photonic dissipative architecture, has shown its remarkable computational power in combinatorial optimization problems. We construct the classical model and the quadratic unconstrained binary optimization (QUBO) model of the bus route optimization problem, and solve it using a classical computer and CIM, respectively. Our experimental results demonstrate the significant acceleration capability of CIM over classical computers in finding the optimal or near-optimal solutions, albeit subject to the hardware limitations of the 100-qubit CIM.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e27090953