On the linear convergence of the alternating direction method of multipliers

We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two conve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 162; číslo 1-2; s. 165 - 199
Hlavní autoři: Hong, Mingyi, Luo, Zhi-Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth ℓ 1 regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth ... regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function.
We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth ℓ 1 regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function.
Author Luo, Zhi-Quan
Hong, Mingyi
Author_xml – sequence: 1
  givenname: Mingyi
  surname: Hong
  fullname: Hong, Mingyi
  organization: Department of Industrial and Manufacturing Systems Engineering, Iowa State University
– sequence: 2
  givenname: Zhi-Quan
  surname: Luo
  fullname: Luo, Zhi-Quan
  email: luozq@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, School of Science and Engineering, The Chinese University of Hong Kong
BookMark eNp9kD1LBDEQhoMoeJ7-ALsFG5vVmWyyH6WIX3Bgo3WIu5MzRy45k5zgv3fXsxBBqynmeYZ53yO274Mnxk4RLhCguUwICE0JWJcIlSj5HpuhqOpS1KLeZzMALktZIxyyo5RWAIBV287Y4tEX-ZUKZz3pWPTBv1Ncku-pCOZro12m6HW2flkMNlKfbfDFmvJrGCZmvXXZbpylmI7ZgdEu0cn3nLPn25un6_ty8Xj3cH21KHuBMpeaxItpSbeyxwGwGTgnadCIrkZOXAre6abhssKuNjQM1dAZ04HmIKQR2lRzdr67u4nhbUspq7VNPTmnPYVtUti2AlF0XTWiZ7_QVdiOcdxENdDKSnAcqWZH9TGkFMmo3mY9Bc1RW6cQ1NSy2rWsxpbV1LLio4m_zE20ax0__nX4zkkj65cUf_z0p_QJeT2QNw
CODEN MHPGA4
CitedBy_id crossref_primary_10_1109_JSEN_2019_2951740
crossref_primary_10_1109_JSTSP_2022_3221681
crossref_primary_10_1287_moor_2019_1010
crossref_primary_10_3390_e21100959
crossref_primary_10_1109_TAC_2017_2658438
crossref_primary_10_1090_mcom_3799
crossref_primary_10_1016_j_infrared_2022_104144
crossref_primary_10_1109_TSP_2022_3160004
crossref_primary_10_1109_TSG_2024_3429371
crossref_primary_10_1007_s10898_019_00792_z
crossref_primary_10_1016_j_neucom_2018_03_001
crossref_primary_10_1007_s11042_023_17423_1
crossref_primary_10_1007_s10915_020_01330_w
crossref_primary_10_1109_TAP_2021_3119107
crossref_primary_10_1088_1361_6501_ad25e0
crossref_primary_10_1007_s10107_017_1205_9
crossref_primary_10_1016_j_patcog_2017_08_024
crossref_primary_10_1007_s11075_024_01834_8
crossref_primary_10_1049_iet_spr_2019_0365
crossref_primary_10_1109_TRO_2024_3365993
crossref_primary_10_1287_moor_2019_1008
crossref_primary_10_1109_TSG_2022_3159365
crossref_primary_10_1186_s13634_018_0589_x
crossref_primary_10_1016_j_ifacol_2020_12_156
crossref_primary_10_1145_3322122
crossref_primary_10_1080_10556788_2017_1304548
crossref_primary_10_1109_TAC_2023_3244904
crossref_primary_10_1016_j_sigpro_2019_04_011
crossref_primary_10_1016_j_knosys_2024_111765
crossref_primary_10_1007_s10898_020_00911_1
crossref_primary_10_1080_01621459_2017_1407771
crossref_primary_10_1109_TSP_2018_2847636
crossref_primary_10_1007_s11081_020_09585_w
crossref_primary_10_1007_s10898_021_01064_5
crossref_primary_10_1016_j_ymeth_2023_11_019
crossref_primary_10_1109_TMC_2017_2711026
crossref_primary_10_3390_sym13112114
crossref_primary_10_1007_s10898_022_01174_8
crossref_primary_10_1007_s10915_021_01548_2
crossref_primary_10_1007_s10957_017_1207_z
crossref_primary_10_1007_s11425_016_9184_4
crossref_primary_10_1016_j_asoc_2020_106200
crossref_primary_10_1109_TCOMM_2024_3422170
crossref_primary_10_1007_s10107_019_01365_4
crossref_primary_10_1007_s12532_020_00192_5
crossref_primary_10_1109_TSIPN_2021_3051292
crossref_primary_10_1109_TSP_2021_3067738
crossref_primary_10_1109_TSP_2024_3392363
crossref_primary_10_3390_e23020132
crossref_primary_10_1016_j_cam_2021_113503
crossref_primary_10_1109_TVT_2017_2731359
crossref_primary_10_1016_j_cma_2020_113106
crossref_primary_10_1109_ACCESS_2018_2877267
crossref_primary_10_1109_ACCESS_2020_3027029
crossref_primary_10_1109_TCST_2020_3033010
crossref_primary_10_1109_TSP_2022_3178655
crossref_primary_10_1016_j_sigpro_2021_108099
crossref_primary_10_1109_TIFS_2022_3170271
crossref_primary_10_3934_ipi_2017048
crossref_primary_10_1080_02331934_2020_1728756
crossref_primary_10_1109_TGRS_2021_3081099
crossref_primary_10_1109_TSP_2024_3457778
crossref_primary_10_1109_TCYB_2018_2845838
crossref_primary_10_1007_s42514_023_00164_w
crossref_primary_10_1007_s10915_017_0612_7
crossref_primary_10_1007_s10851_019_00920_0
crossref_primary_10_1111_itor_13624
crossref_primary_10_1155_2018_2728967
crossref_primary_10_1007_s40305_021_00368_3
crossref_primary_10_1007_s10444_017_9574_4
crossref_primary_10_1016_j_sigpro_2024_109476
crossref_primary_10_1109_TCNS_2018_2789726
crossref_primary_10_1109_TSG_2019_2895229
crossref_primary_10_1093_imanum_draa018
crossref_primary_10_1109_TGRS_2022_3173936
crossref_primary_10_1007_s10589_020_00221_y
crossref_primary_10_1155_2017_9674528
crossref_primary_10_1007_s00521_020_05603_1
crossref_primary_10_1177_14759217221104224
crossref_primary_10_1109_TSP_2021_3052997
crossref_primary_10_1016_j_ins_2020_07_059
crossref_primary_10_1007_s10589_018_0039_6
crossref_primary_10_1016_j_sysconle_2020_104824
crossref_primary_10_3390_math13091510
crossref_primary_10_1007_s10489_022_03319_4
crossref_primary_10_1016_j_inffus_2025_103423
crossref_primary_10_1007_s10915_023_02101_z
crossref_primary_10_1016_j_enconman_2020_113731
crossref_primary_10_1109_TSP_2019_2904935
crossref_primary_10_1016_j_tafmec_2025_105170
crossref_primary_10_1109_JETCAS_2017_2775151
crossref_primary_10_1109_TGRS_2024_3392606
crossref_primary_10_1109_TWC_2022_3159779
crossref_primary_10_1137_19M1292473
crossref_primary_10_1007_s10589_019_00072_2
crossref_primary_10_1109_JESTIE_2022_3225755
crossref_primary_10_1109_COMST_2021_3086014
crossref_primary_10_1109_TSG_2025_3566032
crossref_primary_10_1016_j_compeleceng_2025_110138
crossref_primary_10_3390_s24144574
crossref_primary_10_1007_s40305_018_0232_4
crossref_primary_10_1007_s00521_023_09159_8
crossref_primary_10_3389_fpls_2022_956636
crossref_primary_10_1002_oca_2459
crossref_primary_10_1109_TCOMM_2020_3035233
crossref_primary_10_1016_j_neucom_2017_08_057
crossref_primary_10_1016_j_optlastec_2024_111669
crossref_primary_10_1088_1361_6501_ad3294
crossref_primary_10_1155_2018_5358191
crossref_primary_10_1016_j_ijepes_2024_110252
crossref_primary_10_1007_s10851_019_00933_9
crossref_primary_10_1109_TCYB_2018_2828498
crossref_primary_10_1007_s40305_021_00344_x
crossref_primary_10_1109_TSP_2020_2984895
crossref_primary_10_1080_10556788_2022_2091562
crossref_primary_10_1016_j_coche_2018_12_007
crossref_primary_10_1049_ipr2_12451
crossref_primary_10_1016_j_sigpro_2022_108746
crossref_primary_10_1016_j_dsp_2023_104169
crossref_primary_10_1080_00295450_2020_1746620
crossref_primary_10_1109_TNNLS_2021_3104840
crossref_primary_10_1287_moor_2016_0822
crossref_primary_10_1137_18M1190689
crossref_primary_10_1109_TSG_2022_3206147
crossref_primary_10_1109_TSP_2021_3097211
crossref_primary_10_1109_TKDE_2018_2865342
crossref_primary_10_1016_j_ifacol_2020_12_1655
crossref_primary_10_1016_j_cam_2021_113681
crossref_primary_10_1137_23M1545379
crossref_primary_10_1007_s11042_019_07979_2
crossref_primary_10_1137_20M135474X
crossref_primary_10_1137_21M1449099
crossref_primary_10_1287_ijoc_2021_1069
crossref_primary_10_1007_s10589_016_9860_y
crossref_primary_10_1080_02331934_2024_2407515
crossref_primary_10_1109_TSP_2021_3071173
crossref_primary_10_1109_TSIPN_2020_3022003
crossref_primary_10_1016_j_ifacol_2023_10_1052
crossref_primary_10_1109_TCYB_2020_3015705
crossref_primary_10_1109_ACCESS_2021_3120017
crossref_primary_10_1016_j_renene_2024_121192
crossref_primary_10_1109_TMC_2020_3025189
crossref_primary_10_1137_19M1304854
crossref_primary_10_1007_s10589_024_00630_3
crossref_primary_10_1137_18M119166X
crossref_primary_10_1137_16M1110182
crossref_primary_10_1007_s13721_022_00373_3
crossref_primary_10_1109_TSP_2019_2928994
crossref_primary_10_1109_TAES_2024_3372490
crossref_primary_10_1109_TSP_2018_2868269
crossref_primary_10_1145_3230668
crossref_primary_10_1016_j_knosys_2024_112427
crossref_primary_10_1007_s10957_021_01919_7
crossref_primary_10_1007_s42405_018_0048_9
crossref_primary_10_1016_j_tej_2020_106883
crossref_primary_10_1109_TIP_2019_2924339
crossref_primary_10_3233_ICA_190614
crossref_primary_10_1109_TGRS_2019_2952662
crossref_primary_10_1137_21M1451944
crossref_primary_10_1137_19M1242276
crossref_primary_10_1007_s10589_020_00229_4
crossref_primary_10_1016_j_tre_2025_104108
crossref_primary_10_1049_iet_gtd_2018_6036
crossref_primary_10_1287_moor_2017_0875
crossref_primary_10_1016_j_compchemeng_2019_06_003
crossref_primary_10_1016_j_knosys_2024_112436
crossref_primary_10_1049_iet_spr_2018_5108
crossref_primary_10_1145_3555309
crossref_primary_10_1186_s13660_016_1173_2
crossref_primary_10_1007_s10115_023_01961_z
crossref_primary_10_1007_s40305_023_00535_8
crossref_primary_10_1109_TGRS_2023_3329736
crossref_primary_10_1109_JSEN_2025_3583291
crossref_primary_10_1137_17M1113138
crossref_primary_10_1016_j_cjche_2018_08_027
crossref_primary_10_1007_s40314_021_01499_2
crossref_primary_10_1016_j_apnum_2019_08_008
crossref_primary_10_1061__ASCE_EM_1943_7889_0001847
crossref_primary_10_1109_TIP_2017_2676466
crossref_primary_10_1155_2020_7876949
crossref_primary_10_1016_j_cam_2017_11_033
crossref_primary_10_1007_s11075_017_0333_x
crossref_primary_10_3390_math9080874
crossref_primary_10_1109_ACCESS_2018_2871030
crossref_primary_10_1109_TCST_2023_3315607
crossref_primary_10_1016_j_jfranklin_2022_01_014
crossref_primary_10_1109_TNSE_2025_3551767
crossref_primary_10_1007_s40305_019_00271_y
crossref_primary_10_1088_1361_6560_ad524b
crossref_primary_10_1080_0305215X_2019_1698035
crossref_primary_10_1007_s11081_020_09499_7
crossref_primary_10_1186_s13660_019_1987_9
crossref_primary_10_1080_10556788_2024_2424525
crossref_primary_10_1007_s41980_025_00985_1
crossref_primary_10_1109_TSMC_2019_2912825
crossref_primary_10_1142_S0217595920500359
crossref_primary_10_1007_s00521_023_08702_x
crossref_primary_10_1177_0142331218799841
crossref_primary_10_1109_TSP_2021_3079819
crossref_primary_10_1287_ijoo_2019_0033
crossref_primary_10_1109_TNNLS_2020_3045153
crossref_primary_10_1109_TMM_2024_3521731
crossref_primary_10_1007_s10107_023_02037_0
crossref_primary_10_1109_TEVC_2024_3425629
crossref_primary_10_1061__ASCE_BE_1943_5592_0001906
crossref_primary_10_1016_j_scs_2022_104358
crossref_primary_10_1137_16M1082305
crossref_primary_10_1137_22M1503646
crossref_primary_10_1109_ACCESS_2020_3034155
crossref_primary_10_1007_s12532_023_00250_8
crossref_primary_10_1109_LCSYS_2018_2833116
crossref_primary_10_1016_j_cor_2023_106315
crossref_primary_10_1109_TAC_2020_3033512
crossref_primary_10_1007_s10589_021_00338_8
crossref_primary_10_1109_TSG_2018_2875736
crossref_primary_10_1137_17M1144623
crossref_primary_10_1016_j_comcom_2022_03_015
crossref_primary_10_3390_math10162954
crossref_primary_10_1109_TPWRS_2019_2896654
crossref_primary_10_1007_s10957_016_1058_z
crossref_primary_10_1007_s10489_021_02258_w
crossref_primary_10_1109_TCNS_2017_2774043
crossref_primary_10_1109_TCOMM_2023_3269839
crossref_primary_10_1016_j_neucom_2020_01_049
crossref_primary_10_1007_s10957_023_02176_6
crossref_primary_10_1109_TGRS_2021_3051192
crossref_primary_10_1186_s13634_025_01225_8
crossref_primary_10_1007_s10915_018_0893_5
crossref_primary_10_1109_TSIPN_2017_2681205
crossref_primary_10_1109_TCCN_2021_3130993
crossref_primary_10_1145_3747593
crossref_primary_10_1007_s10589_022_00433_4
crossref_primary_10_1016_j_ejor_2022_10_019
crossref_primary_10_1007_s10444_017_9560_x
crossref_primary_10_1109_TNNLS_2019_2927385
crossref_primary_10_1109_TSIPN_2020_2975369
crossref_primary_10_1109_TPAMI_2020_3000512
crossref_primary_10_1109_TAC_2023_3238857
Cites_doi 10.1007/BF00939948
10.1137/070698816
10.1007/s10915-015-0150-0
10.1515/9781400873173
10.1016/0041-5553(67)90040-7
10.1137/100781894
10.6028/jres.049.027
10.1137/0328011
10.1007/BFb0120965
10.1137/0325033
10.1137/0325067
10.1007/s10107-010-0394-2
10.1090/S0002-9904-1964-11178-2
10.1090/S0002-9947-1956-0084194-4
10.1137/110822347
10.1007/BF02739237
10.1137/110849468
10.1007/BF01580851
10.1016/0898-1221(76)90003-1
10.1137/110836936
10.1007/BF02592017
10.1287/moor.16.3.462
10.1137/120896219
10.1007/BF01581204
10.1137/090780705
10.1137/0716071
10.1287/moor.12.3.474
10.1002/net.3230210407
10.1137/0325023
10.1007/s40305-013-0015-x
10.1137/120878951
10.1111/j.1467-9868.2005.00532.x
10.1561/2200000016
10.1109/ISIT.2010.5513535
10.1137/110833543
10.1137/0330025
10.1007/s10107-012-0530-2
10.1137/0801025
10.1007/s10915-015-0048-x
10.1016/S0168-2024(08)70034-1
10.1137/1.9781611970838
10.1287/moor.18.4.846
10.1137/090777761
10.1002/nav.3800330106
10.1007/978-3-662-12613-4
10.1002/net.3230140404
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016
Mathematical Programming is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016
– notice: Mathematical Programming is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-016-1034-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 199
ExternalDocumentID 4316682511
10_1007_s10107_016_1034_2
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c415t-ae4bf8ea85c1d017d22e5f1f49612e25429a77253196fedd3d9ff90a2045f4af3
IEDL.DBID RSV
ISICitedReferencesCount 325
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394986500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Wed Oct 01 12:51:19 EDT 2025
Thu Sep 25 00:39:14 EDT 2025
Tue Nov 18 22:12:13 EST 2025
Sat Nov 29 03:33:59 EST 2025
Fri Feb 21 02:32:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Error bound
Linear convergence
Dual ascent
49
Alternating directions of multipliers
90
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-ae4bf8ea85c1d017d22e5f1f49612e25429a77253196fedd3d9ff90a2045f4af3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1870853421
PQPubID 25307
PageCount 35
ParticipantIDs proquest_miscellaneous_1884114993
proquest_journals_1870853421
crossref_citationtrail_10_1007_s10107_016_1034_2
crossref_primary_10_1007_s10107_016_1034_2
springer_journals_10_1007_s10107_016_1034_2
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References De PierroARIusemANOn the convergence properties of Hildreth’s quadratic programming algorithmMath. Prog.1990473751105484010.1007/BF015808510712.90054
KontogiorgisSMeyerRRA variable-penalty alternating directions method for convex optimizationMath. Program.199883295316439630920.90118
BertsekasDPTsitsiklisJNParallel and Distributed Computation: Numerical Methods1989Englewood CliffsPrentice-Hall0743.65107
EcksteinJBertsekasDPOn the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.199255293318116818310.1007/BF015812040765.90073
Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. SIAM J. Optim. 22(2), 533–556 (2012)
CottleRWDuvallSGZikanKA Lagrangian relaxation algorithm for the constrained matrix problemNav. Res. Logist. Q.198633557610.1002/nav.38003301060598.90070
Ventura, J.A., Hearn, D.W.: Computational Development of a Lagrangian Dual Approach for Quadratic Networks. 21(4), 469–485 (1991)
BertsekasDPGafniEProjection methods for variational inequalities with application to the traffic assignment problemMath. Prog. Study19821713915965469710.1007/BFb01209650478.90071
HeBSTaoMYuanXMAlternating direction method with gaussian back substitution for separable convex programmingSIAM J. Optim.201222313340296885610.1137/1108223471273.90152
Zhang, H., Jiang, J.J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems. J. Oper. Res. Soc. Chin. 1(2), 163–186 (2013)
GoldsteinAAConvex programming in hilbert spaceBull. Am. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101
LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/07160710426.65050
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113112210.1561/22000000161229.90122(Michael Jordan, Editor in Chief)
Deng, W., Yin, W.: On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers. J. Sci. Comput. 66(3), 889–916 (2012)
LuoZ-QTsengPOn the convergence of the coordinate descent method for convex differentiable minimizationJ. Optim. Theory Appl.199272735114176410.1007/BF009399480795.90069
HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084
MonteiroRSvaiterBIteration-complexity of block-decomposition algorithms and the alternating direction method of multipliersSIAM J. Optim.201323475507303311610.1137/1108494681267.90181
GlowinskiRNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer10.1007/978-3-662-12613-40536.65054
OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046
BertsekasDPHoseinPATsengPRelaxation methods for network flow problems with convex arc costsSIAM J. Control Optim.1987251219124390504210.1137/03250670641.90036
Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0150-0
GabayDFortinMGlowinskiRApplication of the method of multipliers to varuational inequalitiesAugmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problem1983AmsterdamNorth-Holland29933110.1016/S0168-2024(08)70034-1
BertsekasDPNonlinear Programming1999BelmontAthena Scientific1015.90077
YangJFZhangYAlternating direction algorithms for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-problems in compressive sensingSIAM J. Sci. Comput.201133250278278319410.1137/0907777611256.65060
RockafellarRTConvex Analysis1970PrincetonPrinceton University Press10.1515/97814008731730193.18401
LuoZ-QTsengPOn the Linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230408425114907610.1137/03300250756.90084
GlowinskiRLe TallecPAugmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics1989PhiladelphiaSIAM Studies in Applied Mathematics10.1137/1.97816119708380698.73001
ZeniosSAMulveyJMRelaxation techniques for strictly convex network problemsAnn. Oper. Res.1986551753894803310.1007/BF02739237
Boley, D.: Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs. SIAM J. Optim. 23(4), 2183–2207 (2013)
LuoZ-QTsengPOn the convergence rate of dual ascent methods for strictly convex minimizationMath. Oper. Res.199318846867125168310.1287/moor.18.4.8460804.90103
Zhou, Z., Li, X., Wright, J., Candes, E.J., Ma, Y.: Stable principal component pursuit. In: Proceedings of 2010 IEEE International Symposium on Information Theory (2010)
DouglasJRachfordHHOn the numerical solution of the heat conduction problem in 2 and 3 space variablesTrans. Am. Math. Soc.1956824214398419410.1090/S0002-9947-1956-0084194-40070.35401
GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite-element approximationsComput. Math. Appl.19762174010.1016/0898-1221(76)90003-10352.65034
Goldstein, T., O’Donoghue, B., Setzer, S.: Fast alternating direction optimization methods. SIAM J. Imaging Sci, 7(3), 1588–1623 (2014)
MangasarianOLShiauT-HLipschitz continuity of solutions of linear inequalities, programs and complementarity problemsSIAM J. Control Optim.19872558359588518710.1137/03250330613.90066
OhuchiAKajiILagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costsNetworks19841451553010.1002/net.32301404040585.90062
Levitin, E.S., Poljak, B.T.: Constrained minimization methods. Z. Vycisl. Mat. i Mat. Fiz. 6, 787–823 (1965). English translation in USSR Comput. Math. Phys. 6, 1–50 (1965)
BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.1967720021721561710.1016/0041-5553(67)90040-70186.23807
TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115
TsengPBertsekasDPRelaxation methods for problems with strictly convex costs and linear constraintsMath. Oper. Res.199116462481112046410.1287/moor.16.3.4620755.90067
WangXFYuanXMThe linearized alternating direction method of multipliers for dantzig selectorSIAM J. Sci. Comput.20123427922811302372610.1137/1108335431263.90061
Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Prog. 125(2), 263–295 (2010)
IusemANOn dual convergence and the rate of primal convergence of bregman’s convex programming methodSIAM J. Control Optim.19911401423111252710.1137/08010250753.90051
EcksteinJSvaiterBFGeneral projective splitting methods for sums of maximal monotone operatorsSIAM J. Control Optim.201048787811248609410.1137/0706988161194.49038
Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Prog. A. 141(1,2), 349–382 (2013)
YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Statistical Methodology)2006684967221257410.1111/j.1467-9868.2005.00532.x1141.62030
PangJ-SA posteriori error bounds for the linearly-constrained variational inequality problemMath. Oper. Res.19871247448490641910.1287/moor.12.3.474
TsengPBertsekasDPRelaxation methods for problems with strictly convex separable costs and linear constraintsMath. Prog.19873830332190376910.1007/BF025920170636.90072
Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization. Ph.D. Thesis, Operations Research Center, MIT (1989)
HoffmanAJOn approximate solutions of systems of linear inequalitiesJ. Res. Nat. Bur. Stand.1952492632655127510.6028/jres.049.027
TsengPDual ascent methods for problems with strictly convex costs and linear constraints: a unified approachSIAM J. Control Optim.199028214242103598010.1137/03280110692.49025
Chen, C., He, B. , Yuan, X., Ye, Y.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Prog. 155(1), 57–79 (2013)
PangJ-SOn the Convergence of Dual Ascent Methods for Large Scale Linearly Constrained Optimization Problems1984DallasThe University of Texas, School of Management
LinYYPangJ-SIterative methods for large convex quadratic programs: a surveySIAM J. Control Optim.19871838341187706910.1137/03250230624.90083
DP Bertsekas (1034_CR3) 1987; 25
BS He (1034_CR24) 2012; 22
DP Bertsekas (1034_CR4) 1989
D Gabay (1034_CR16) 1983
1034_CR45
P Tseng (1034_CR44) 1990; 28
J Eckstein (1034_CR15) 2010; 48
DP Bertsekas (1034_CR1) 1999
J-S Pang (1034_CR41) 1987; 12
1034_CR48
R Glowinski (1034_CR19) 1989
AR Pierro De (1034_CR10) 1990; 47
PL Lions (1034_CR30) 1979; 16
1034_CR54
Z-Q Luo (1034_CR34) 1993; 18
A Ohuchi (1034_CR38) 1984; 14
P Tseng (1034_CR47) 1991; 16
SA Zenios (1034_CR53) 1986; 5
1034_CR11
1034_CR52
1034_CR13
J-S Pang (1034_CR40) 1984
DP Bertsekas (1034_CR2) 1982; 17
JM Ortega (1034_CR39) 1970
S Boyd (1034_CR6) 2011; 3
J Douglas (1034_CR12) 1956; 82
M Yuan (1034_CR51) 2006; 68
RT Rockafellar (1034_CR42) 1970
D Gabay (1034_CR17) 1976; 2
JF Yang (1034_CR50) 2011; 33
1034_CR21
BS He (1034_CR25) 2012; 50
1034_CR20
1034_CR23
Z-Q Luo (1034_CR33) 1992; 30
J Eckstein (1034_CR14) 1992; 55
1034_CR29
RW Cottle (1034_CR9) 1986; 33
AA Goldstein (1034_CR22) 1964; 70
S Kontogiorgis (1034_CR28) 1998; 83
LM Bregman (1034_CR7) 1967; 7
YY Lin (1034_CR31) 1987; 18
P Tseng (1034_CR46) 1987; 38
M Tao (1034_CR43) 2011; 21
AJ Hoffman (1034_CR26) 1952; 49
OL Mangasarian (1034_CR36) 1987; 25
Z-Q Luo (1034_CR32) 1992; 72
1034_CR5
AN Iusem (1034_CR27) 1991; 1
1034_CR35
R Glowinski (1034_CR18) 1984
XF Wang (1034_CR49) 2012; 34
1034_CR8
R Monteiro (1034_CR37) 2013; 23
References_xml – reference: ZeniosSAMulveyJMRelaxation techniques for strictly convex network problemsAnn. Oper. Res.1986551753894803310.1007/BF02739237
– reference: LuoZ-QTsengPOn the Linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230408425114907610.1137/03300250756.90084
– reference: PangJ-SOn the Convergence of Dual Ascent Methods for Large Scale Linearly Constrained Optimization Problems1984DallasThe University of Texas, School of Management
– reference: HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084
– reference: Deng, W., Yin, W.: On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers. J. Sci. Comput. 66(3), 889–916 (2012)
– reference: Ventura, J.A., Hearn, D.W.: Computational Development of a Lagrangian Dual Approach for Quadratic Networks. 21(4), 469–485 (1991)
– reference: BertsekasDPGafniEProjection methods for variational inequalities with application to the traffic assignment problemMath. Prog. Study19821713915965469710.1007/BFb01209650478.90071
– reference: BertsekasDPTsitsiklisJNParallel and Distributed Computation: Numerical Methods1989Englewood CliffsPrentice-Hall0743.65107
– reference: TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115
– reference: DouglasJRachfordHHOn the numerical solution of the heat conduction problem in 2 and 3 space variablesTrans. Am. Math. Soc.1956824214398419410.1090/S0002-9947-1956-0084194-40070.35401
– reference: EcksteinJSvaiterBFGeneral projective splitting methods for sums of maximal monotone operatorsSIAM J. Control Optim.201048787811248609410.1137/0706988161194.49038
– reference: De PierroARIusemANOn the convergence properties of Hildreth’s quadratic programming algorithmMath. Prog.1990473751105484010.1007/BF015808510712.90054
– reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/07160710426.65050
– reference: YangJFZhangYAlternating direction algorithms for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-problems in compressive sensingSIAM J. Sci. Comput.201133250278278319410.1137/0907777611256.65060
– reference: Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization. Ph.D. Thesis, Operations Research Center, MIT (1989)
– reference: GlowinskiRNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer10.1007/978-3-662-12613-40536.65054
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113112210.1561/22000000161229.90122(Michael Jordan, Editor in Chief)
– reference: GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite-element approximationsComput. Math. Appl.19762174010.1016/0898-1221(76)90003-10352.65034
– reference: Zhang, H., Jiang, J.J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems. J. Oper. Res. Soc. Chin. 1(2), 163–186 (2013)
– reference: TsengPBertsekasDPRelaxation methods for problems with strictly convex separable costs and linear constraintsMath. Prog.19873830332190376910.1007/BF025920170636.90072
– reference: Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0150-0
– reference: Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. SIAM J. Optim. 22(2), 533–556 (2012)
– reference: Zhou, Z., Li, X., Wright, J., Candes, E.J., Ma, Y.: Stable principal component pursuit. In: Proceedings of 2010 IEEE International Symposium on Information Theory (2010)
– reference: WangXFYuanXMThe linearized alternating direction method of multipliers for dantzig selectorSIAM J. Sci. Comput.20123427922811302372610.1137/1108335431263.90061
– reference: KontogiorgisSMeyerRRA variable-penalty alternating directions method for convex optimizationMath. Program.199883295316439630920.90118
– reference: Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Prog. A. 141(1,2), 349–382 (2013)
– reference: TsengPBertsekasDPRelaxation methods for problems with strictly convex costs and linear constraintsMath. Oper. Res.199116462481112046410.1287/moor.16.3.4620755.90067
– reference: EcksteinJBertsekasDPOn the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.199255293318116818310.1007/BF015812040765.90073
– reference: MangasarianOLShiauT-HLipschitz continuity of solutions of linear inequalities, programs and complementarity problemsSIAM J. Control Optim.19872558359588518710.1137/03250330613.90066
– reference: YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Statistical Methodology)2006684967221257410.1111/j.1467-9868.2005.00532.x1141.62030
– reference: Chen, C., He, B. , Yuan, X., Ye, Y.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Prog. 155(1), 57–79 (2013)
– reference: Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Prog. 125(2), 263–295 (2010)
– reference: Levitin, E.S., Poljak, B.T.: Constrained minimization methods. Z. Vycisl. Mat. i Mat. Fiz. 6, 787–823 (1965). English translation in USSR Comput. Math. Phys. 6, 1–50 (1965)
– reference: BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.1967720021721561710.1016/0041-5553(67)90040-70186.23807
– reference: OhuchiAKajiILagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costsNetworks19841451553010.1002/net.32301404040585.90062
– reference: MonteiroRSvaiterBIteration-complexity of block-decomposition algorithms and the alternating direction method of multipliersSIAM J. Optim.201323475507303311610.1137/1108494681267.90181
– reference: RockafellarRTConvex Analysis1970PrincetonPrinceton University Press10.1515/97814008731730193.18401
– reference: LuoZ-QTsengPOn the convergence rate of dual ascent methods for strictly convex minimizationMath. Oper. Res.199318846867125168310.1287/moor.18.4.8460804.90103
– reference: PangJ-SA posteriori error bounds for the linearly-constrained variational inequality problemMath. Oper. Res.19871247448490641910.1287/moor.12.3.474
– reference: LinYYPangJ-SIterative methods for large convex quadratic programs: a surveySIAM J. Control Optim.19871838341187706910.1137/03250230624.90083
– reference: IusemANOn dual convergence and the rate of primal convergence of bregman’s convex programming methodSIAM J. Control Optim.19911401423111252710.1137/08010250753.90051
– reference: GlowinskiRLe TallecPAugmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics1989PhiladelphiaSIAM Studies in Applied Mathematics10.1137/1.97816119708380698.73001
– reference: HeBSTaoMYuanXMAlternating direction method with gaussian back substitution for separable convex programmingSIAM J. Optim.201222313340296885610.1137/1108223471273.90152
– reference: Goldstein, T., O’Donoghue, B., Setzer, S.: Fast alternating direction optimization methods. SIAM J. Imaging Sci, 7(3), 1588–1623 (2014)
– reference: LuoZ-QTsengPOn the convergence of the coordinate descent method for convex differentiable minimizationJ. Optim. Theory Appl.199272735114176410.1007/BF009399480795.90069
– reference: OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046
– reference: TsengPDual ascent methods for problems with strictly convex costs and linear constraints: a unified approachSIAM J. Control Optim.199028214242103598010.1137/03280110692.49025
– reference: BertsekasDPNonlinear Programming1999BelmontAthena Scientific1015.90077
– reference: Boley, D.: Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs. SIAM J. Optim. 23(4), 2183–2207 (2013)
– reference: BertsekasDPHoseinPATsengPRelaxation methods for network flow problems with convex arc costsSIAM J. Control Optim.1987251219124390504210.1137/03250670641.90036
– reference: CottleRWDuvallSGZikanKA Lagrangian relaxation algorithm for the constrained matrix problemNav. Res. Logist. Q.198633557610.1002/nav.38003301060598.90070
– reference: GabayDFortinMGlowinskiRApplication of the method of multipliers to varuational inequalitiesAugmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problem1983AmsterdamNorth-Holland29933110.1016/S0168-2024(08)70034-1
– reference: GoldsteinAAConvex programming in hilbert spaceBull. Am. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101
– reference: HoffmanAJOn approximate solutions of systems of linear inequalitiesJ. Res. Nat. Bur. Stand.1952492632655127510.6028/jres.049.027
– volume: 72
  start-page: 7
  year: 1992
  ident: 1034_CR32
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939948
– volume: 48
  start-page: 787
  year: 2010
  ident: 1034_CR15
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070698816
– ident: 1034_CR35
  doi: 10.1007/s10915-015-0150-0
– volume-title: Nonlinear Programming
  year: 1999
  ident: 1034_CR1
– volume-title: Convex Analysis
  year: 1970
  ident: 1034_CR42
  doi: 10.1515/9781400873173
– volume: 7
  start-page: 200
  year: 1967
  ident: 1034_CR7
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 83
  start-page: 29
  year: 1998
  ident: 1034_CR28
  publication-title: Math. Program.
– volume: 21
  start-page: 57
  year: 2011
  ident: 1034_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/100781894
– volume: 49
  start-page: 263
  year: 1952
  ident: 1034_CR26
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.049.027
– volume: 28
  start-page: 214
  year: 1990
  ident: 1034_CR44
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0328011
– volume: 17
  start-page: 139
  year: 1982
  ident: 1034_CR2
  publication-title: Math. Prog. Study
  doi: 10.1007/BFb0120965
– volume: 25
  start-page: 583
  year: 1987
  ident: 1034_CR36
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0325033
– volume: 25
  start-page: 1219
  year: 1987
  ident: 1034_CR3
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0325067
– ident: 1034_CR45
  doi: 10.1007/s10107-010-0394-2
– volume: 70
  start-page: 709
  year: 1964
  ident: 1034_CR22
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1964-11178-2
– volume: 82
  start-page: 421
  year: 1956
  ident: 1034_CR12
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1989
  ident: 1034_CR4
– volume: 22
  start-page: 313
  year: 2012
  ident: 1034_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/110822347
– volume: 5
  start-page: 517
  year: 1986
  ident: 1034_CR53
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02739237
– volume: 23
  start-page: 475
  year: 2013
  ident: 1034_CR37
  publication-title: SIAM J. Optim.
  doi: 10.1137/110849468
– volume: 47
  start-page: 37
  year: 1990
  ident: 1034_CR10
  publication-title: Math. Prog.
  doi: 10.1007/BF01580851
– volume: 2
  start-page: 17
  year: 1976
  ident: 1034_CR17
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 50
  start-page: 700
  year: 2012
  ident: 1034_CR25
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 38
  start-page: 303
  year: 1987
  ident: 1034_CR46
  publication-title: Math. Prog.
  doi: 10.1007/BF02592017
– volume: 16
  start-page: 462
  year: 1991
  ident: 1034_CR47
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.16.3.462
– ident: 1034_CR23
  doi: 10.1137/120896219
– volume: 55
  start-page: 293
  year: 1992
  ident: 1034_CR14
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– ident: 1034_CR20
  doi: 10.1137/090780705
– volume: 16
  start-page: 964
  year: 1979
  ident: 1034_CR30
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 12
  start-page: 474
  year: 1987
  ident: 1034_CR41
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.12.3.474
– ident: 1034_CR48
  doi: 10.1002/net.3230210407
– volume-title: On the Convergence of Dual Ascent Methods for Large Scale Linearly Constrained Optimization Problems
  year: 1984
  ident: 1034_CR40
– volume: 18
  start-page: 383
  year: 1987
  ident: 1034_CR31
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0325023
– ident: 1034_CR52
  doi: 10.1007/s40305-013-0015-x
– ident: 1034_CR5
  doi: 10.1137/120878951
– volume: 68
  start-page: 49
  year: 2006
  ident: 1034_CR51
  publication-title: J. R. Stat. Soc. Ser. B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 3
  start-page: 1
  year: 2011
  ident: 1034_CR6
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– ident: 1034_CR54
  doi: 10.1109/ISIT.2010.5513535
– ident: 1034_CR29
– volume-title: Iterative Solution of Nonlinear Equations in Several Variables
  year: 1970
  ident: 1034_CR39
– volume: 34
  start-page: 2792
  year: 2012
  ident: 1034_CR49
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110833543
– volume: 30
  start-page: 408
  year: 1992
  ident: 1034_CR33
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330025
– ident: 1034_CR8
– ident: 1034_CR21
  doi: 10.1007/s10107-012-0530-2
– volume: 1
  start-page: 401
  year: 1991
  ident: 1034_CR27
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0801025
– ident: 1034_CR11
  doi: 10.1007/s10915-015-0048-x
– start-page: 299
  volume-title: Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problem
  year: 1983
  ident: 1034_CR16
  doi: 10.1016/S0168-2024(08)70034-1
– volume-title: Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics
  year: 1989
  ident: 1034_CR19
  doi: 10.1137/1.9781611970838
– volume: 18
  start-page: 846
  year: 1993
  ident: 1034_CR34
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.4.846
– volume: 33
  start-page: 250
  year: 2011
  ident: 1034_CR50
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090777761
– volume: 33
  start-page: 55
  year: 1986
  ident: 1034_CR9
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800330106
– ident: 1034_CR13
– volume-title: Numerical Methods for Nonlinear Variational Problems
  year: 1984
  ident: 1034_CR18
  doi: 10.1007/978-3-662-12613-4
– volume: 14
  start-page: 515
  year: 1984
  ident: 1034_CR38
  publication-title: Networks
  doi: 10.1002/net.3230140404
SSID ssj0001388
Score 2.6360161
Snippet We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We analyze the convergence rate of the alternating direction method of multipliers...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the convergence rate of the alternating direction method of multipliers...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 165
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Convergence
Convex analysis
Convexity
Decomposition
Errors
Feasibility
Full Length Paper
Inequality
Lagrange multiplier
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Multipliers
Numerical Analysis
Optimization
Studies
Texts
Theoretical
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcIADb8RgoCJxAkUsabY2J4QQExJjcAC0W5U1DkJC3diD30-ctttAYheOUdKmqu34S-z4AzgzKpS6JySLbCN1GxQjmebCMHS-X0nUDeXvrb22o04n7nbVU3HgNirSKss10S_Upp_SGfkld4rlXIsU_GrwyYg1iqKrBYXGMqxwITjp-X3EpisxD-O4pGwlnFBGNfOrc9wnXTbdQhRKJn76pRnY_BUf9W6ntfnfD96CjQJwBte5hmzDEmY7sD5XhtC1Hqa1W0e70H7MAtcMCH_qYeDT0v0NTQz61vf4CDudImZvQe4SnXCDnIuaxhRJikSyvQcvrdvnmztWcC6w1LnyMdMoezZGHTdSbpy1GiGwYbmVykEhFMRupR0g95Zr0ZjQKGtVXVNVeyu1DfehkvUzPIAAVTO11uGTWKGMhFaoreSYhlGohY6xCvXyjydpUZCceDE-klkpZRJSQkloJKREVOF8-sggr8axaHCtFExSGOYomUmlCqfTbmdSFCfRGfYnNCaWbpvokFsVLkrxz73irwkPF094BGuCMIFPYKtBZTyc4DGspl_j99HwxGvuN4yH8oY
  priority: 102
  providerName: ProQuest
Title On the linear convergence of the alternating direction method of multipliers
URI https://link.springer.com/article/10.1007/s10107-016-1034-2
https://www.proquest.com/docview/1870853421
https://www.proquest.com/docview/1884114993
Volume 162
WOSCitedRecordID wos000394986500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_U-aAPfovzY1TwSSmsaWqTRxWHoJvD-f1SYnsRQTrZpn-_d1k7p6igL4GQa1qS3N0vvS-AnUyH0jwI6cc2SumCkknfBCLzkXS_lmgi7eLWrs_iVkvd3up2EcfdL73dS5Okk9RjwW6Bc5PcJ9ERSp_kboW0nWJuvOhcj8RvECpV1mllcFCaMr-b4rMy-kCYX4yiTtc05v_1lQswV0BL72B4FhZhAvMlmB1LOEi95ihLa38Zzs5zj7oeI03T85wDuovFRK9r3YizpfP_wvzRGyo_2kZvWHWaaQp3RC6nvQJXjePLoxO_qK7gp6S0B75B-WAVGhWlQUZ8mQmBkQ2s1AR6UHAdK0PQ2_GoxSwLM22trhvOX2-lseEqTOXdHNfAQ72fWktIRGmUsTAajZUBpmEcGmEUVqFeLnOSFqnHuQLGc_KRNJmXLWF3M162RFRhd_TIyzDvxm_Em-XeJQUL9pOAJBFhESmCKmyPhol52CJicuy-Mo2SdCEkjFaFvXI_x6b46YXrf6LegBnBYMB5rm3C1KD3ilswnb4Nnvq9GkzGN3c1qBwet9oX1DuNfWqb9SNuRZvbuENtO7qvuZP-DiBi70k
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9swED5BQYI9wDZAdPyYJ7EXUETjuDR-QAh1Q0WUwgMg3oIbnxESSru2bNo_xd_InZO0bBK88cBjZMdW4s93Z993dwBbVkfKdKUKGq6e0gHFqsCE0gZIul8rNHXt49au2o1OJ76-1udT8FjGwjCtspSJXlDbXsp35LshAYtUi5LhQf9XwFWj2LtaltDIYXGCf__QkW24f_yD1ve7lEc_L5qtoKgqEKSkrEaBQdV1MZq4noaW8GilxLoLndKk7FFy_SZDJqfHpkNrI6ud0zXDedudMi6icadhRinaDkwVrDXHkj-M4rgsEct2SelFzUP1Qk_y3CPBF6lA_qsHJ8btf_5Yr-aOFt_bD_oIC4VBLQ7zHfAJpjD7DB-epVmkp9NxbtrhErTPMkGPgu1rMxCedu8jUFH0nG_xDAK-Jc1uRa7yCbwir7XNfQoSJhcRX4bLN_m4FahkvQxXQaDeS50j-yvWqBrSaDROhZhGjchIE2MVauUKJ2mRcJ3rftwnk1TRDIqESXYMikRWYXv8Sj_PNvJa5_USCEkheIbJBAVV-DZuJpHBfiCTYe-B-8SKjsFkmVZhp4TbsyFemvDL6xN-hbnWxWk7aR93TtZgXrL948l661AZDR5wA2bT36O74WDT7xoBN2-NwidYgU_v
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ERfTBb3E6tYJPSnFNs615FHUozin4wd5K1lxEkG7sw7_fu7TdpqggPoakaUlyd7_0Pn4AR0aFUneE9Ou2mtAFxUhfB8L4SLZfSdRV5fLWnpv1Vitqt9V9znM6KKLdC5dkltPAVZrS4WnP2NOpxLfAhUzWSI2E0icdPCeZM4iv6w_PY1UchFFUcLYyUCjcmt9N8dkwTdDmFwepszuNlX9_8Sos55DTO8vOyBrMYLoOS1OFCKl1O67eOtiA5l3qUdNjBKr7ngtMdzma6HWt63E-dv6PmL54mVGk7fUyNmoek4cpMs32Jjw1Lh_Pr_ycdcFPyJgPfY2yYyPUUTUJDMmrEQKrNrBSERhCwfxWmiC5k12LxoRGWasqmuvaW6ltuAWzaTfFbfBQ1RJrCaFECmVdaIXaygCTsB5qoSMsQaVY8jjJS5IzM8ZbPCmmzMsWcxgaL1ssSnA8fqSX1eP4bXC52Mc4F81BHJCGIowiRVCCw3E3CRV7SnSK3RGPiSRdFAm7leCk2NupKX564c6fRh_Awv1FI25et252YVEwXnDBbWWYHfZHuAfzyfvwddDfd4f6AyFd89Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+linear+convergence+of+the+alternating+direction+method+of+multipliers&rft.jtitle=Mathematical+programming&rft.au=Hong%2C+Mingyi&rft.au=Luo%2C+Zhi-Quan&rft.date=2017-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=162&rft.issue=1-2&rft.spage=165&rft.epage=199&rft_id=info:doi/10.1007%2Fs10107-016-1034-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon