On the linear convergence of the alternating direction method of multipliers
We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two conve...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 162; číslo 1-2; s. 165 - 199 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only
two
convex functions defined on
two
separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of
any
number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth
ℓ
1
regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth ... regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function. We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth ℓ 1 regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function. |
| Author | Luo, Zhi-Quan Hong, Mingyi |
| Author_xml | – sequence: 1 givenname: Mingyi surname: Hong fullname: Hong, Mingyi organization: Department of Industrial and Manufacturing Systems Engineering, Iowa State University – sequence: 2 givenname: Zhi-Quan surname: Luo fullname: Luo, Zhi-Quan email: luozq@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, School of Science and Engineering, The Chinese University of Hong Kong |
| BookMark | eNp9kD1LBDEQhoMoeJ7-ALsFG5vVmWyyH6WIX3Bgo3WIu5MzRy45k5zgv3fXsxBBqynmeYZ53yO274Mnxk4RLhCguUwICE0JWJcIlSj5HpuhqOpS1KLeZzMALktZIxyyo5RWAIBV287Y4tEX-ZUKZz3pWPTBv1Ncku-pCOZro12m6HW2flkMNlKfbfDFmvJrGCZmvXXZbpylmI7ZgdEu0cn3nLPn25un6_ty8Xj3cH21KHuBMpeaxItpSbeyxwGwGTgnadCIrkZOXAre6abhssKuNjQM1dAZ04HmIKQR2lRzdr67u4nhbUspq7VNPTmnPYVtUti2AlF0XTWiZ7_QVdiOcdxENdDKSnAcqWZH9TGkFMmo3mY9Bc1RW6cQ1NSy2rWsxpbV1LLio4m_zE20ax0__nX4zkkj65cUf_z0p_QJeT2QNw |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1109_JSEN_2019_2951740 crossref_primary_10_1109_JSTSP_2022_3221681 crossref_primary_10_1287_moor_2019_1010 crossref_primary_10_3390_e21100959 crossref_primary_10_1109_TAC_2017_2658438 crossref_primary_10_1090_mcom_3799 crossref_primary_10_1016_j_infrared_2022_104144 crossref_primary_10_1109_TSP_2022_3160004 crossref_primary_10_1109_TSG_2024_3429371 crossref_primary_10_1007_s10898_019_00792_z crossref_primary_10_1016_j_neucom_2018_03_001 crossref_primary_10_1007_s11042_023_17423_1 crossref_primary_10_1007_s10915_020_01330_w crossref_primary_10_1109_TAP_2021_3119107 crossref_primary_10_1088_1361_6501_ad25e0 crossref_primary_10_1007_s10107_017_1205_9 crossref_primary_10_1016_j_patcog_2017_08_024 crossref_primary_10_1007_s11075_024_01834_8 crossref_primary_10_1049_iet_spr_2019_0365 crossref_primary_10_1109_TRO_2024_3365993 crossref_primary_10_1287_moor_2019_1008 crossref_primary_10_1109_TSG_2022_3159365 crossref_primary_10_1186_s13634_018_0589_x crossref_primary_10_1016_j_ifacol_2020_12_156 crossref_primary_10_1145_3322122 crossref_primary_10_1080_10556788_2017_1304548 crossref_primary_10_1109_TAC_2023_3244904 crossref_primary_10_1016_j_sigpro_2019_04_011 crossref_primary_10_1016_j_knosys_2024_111765 crossref_primary_10_1007_s10898_020_00911_1 crossref_primary_10_1080_01621459_2017_1407771 crossref_primary_10_1109_TSP_2018_2847636 crossref_primary_10_1007_s11081_020_09585_w crossref_primary_10_1007_s10898_021_01064_5 crossref_primary_10_1016_j_ymeth_2023_11_019 crossref_primary_10_1109_TMC_2017_2711026 crossref_primary_10_3390_sym13112114 crossref_primary_10_1007_s10898_022_01174_8 crossref_primary_10_1007_s10915_021_01548_2 crossref_primary_10_1007_s10957_017_1207_z crossref_primary_10_1007_s11425_016_9184_4 crossref_primary_10_1016_j_asoc_2020_106200 crossref_primary_10_1109_TCOMM_2024_3422170 crossref_primary_10_1007_s10107_019_01365_4 crossref_primary_10_1007_s12532_020_00192_5 crossref_primary_10_1109_TSIPN_2021_3051292 crossref_primary_10_1109_TSP_2021_3067738 crossref_primary_10_1109_TSP_2024_3392363 crossref_primary_10_3390_e23020132 crossref_primary_10_1016_j_cam_2021_113503 crossref_primary_10_1109_TVT_2017_2731359 crossref_primary_10_1016_j_cma_2020_113106 crossref_primary_10_1109_ACCESS_2018_2877267 crossref_primary_10_1109_ACCESS_2020_3027029 crossref_primary_10_1109_TCST_2020_3033010 crossref_primary_10_1109_TSP_2022_3178655 crossref_primary_10_1016_j_sigpro_2021_108099 crossref_primary_10_1109_TIFS_2022_3170271 crossref_primary_10_3934_ipi_2017048 crossref_primary_10_1080_02331934_2020_1728756 crossref_primary_10_1109_TGRS_2021_3081099 crossref_primary_10_1109_TSP_2024_3457778 crossref_primary_10_1109_TCYB_2018_2845838 crossref_primary_10_1007_s42514_023_00164_w crossref_primary_10_1007_s10915_017_0612_7 crossref_primary_10_1007_s10851_019_00920_0 crossref_primary_10_1111_itor_13624 crossref_primary_10_1155_2018_2728967 crossref_primary_10_1007_s40305_021_00368_3 crossref_primary_10_1007_s10444_017_9574_4 crossref_primary_10_1016_j_sigpro_2024_109476 crossref_primary_10_1109_TCNS_2018_2789726 crossref_primary_10_1109_TSG_2019_2895229 crossref_primary_10_1093_imanum_draa018 crossref_primary_10_1109_TGRS_2022_3173936 crossref_primary_10_1007_s10589_020_00221_y crossref_primary_10_1155_2017_9674528 crossref_primary_10_1007_s00521_020_05603_1 crossref_primary_10_1177_14759217221104224 crossref_primary_10_1109_TSP_2021_3052997 crossref_primary_10_1016_j_ins_2020_07_059 crossref_primary_10_1007_s10589_018_0039_6 crossref_primary_10_1016_j_sysconle_2020_104824 crossref_primary_10_3390_math13091510 crossref_primary_10_1007_s10489_022_03319_4 crossref_primary_10_1016_j_inffus_2025_103423 crossref_primary_10_1007_s10915_023_02101_z crossref_primary_10_1016_j_enconman_2020_113731 crossref_primary_10_1109_TSP_2019_2904935 crossref_primary_10_1016_j_tafmec_2025_105170 crossref_primary_10_1109_JETCAS_2017_2775151 crossref_primary_10_1109_TGRS_2024_3392606 crossref_primary_10_1109_TWC_2022_3159779 crossref_primary_10_1137_19M1292473 crossref_primary_10_1007_s10589_019_00072_2 crossref_primary_10_1109_JESTIE_2022_3225755 crossref_primary_10_1109_COMST_2021_3086014 crossref_primary_10_1109_TSG_2025_3566032 crossref_primary_10_1016_j_compeleceng_2025_110138 crossref_primary_10_3390_s24144574 crossref_primary_10_1007_s40305_018_0232_4 crossref_primary_10_1007_s00521_023_09159_8 crossref_primary_10_3389_fpls_2022_956636 crossref_primary_10_1002_oca_2459 crossref_primary_10_1109_TCOMM_2020_3035233 crossref_primary_10_1016_j_neucom_2017_08_057 crossref_primary_10_1016_j_optlastec_2024_111669 crossref_primary_10_1088_1361_6501_ad3294 crossref_primary_10_1155_2018_5358191 crossref_primary_10_1016_j_ijepes_2024_110252 crossref_primary_10_1007_s10851_019_00933_9 crossref_primary_10_1109_TCYB_2018_2828498 crossref_primary_10_1007_s40305_021_00344_x crossref_primary_10_1109_TSP_2020_2984895 crossref_primary_10_1080_10556788_2022_2091562 crossref_primary_10_1016_j_coche_2018_12_007 crossref_primary_10_1049_ipr2_12451 crossref_primary_10_1016_j_sigpro_2022_108746 crossref_primary_10_1016_j_dsp_2023_104169 crossref_primary_10_1080_00295450_2020_1746620 crossref_primary_10_1109_TNNLS_2021_3104840 crossref_primary_10_1287_moor_2016_0822 crossref_primary_10_1137_18M1190689 crossref_primary_10_1109_TSG_2022_3206147 crossref_primary_10_1109_TSP_2021_3097211 crossref_primary_10_1109_TKDE_2018_2865342 crossref_primary_10_1016_j_ifacol_2020_12_1655 crossref_primary_10_1016_j_cam_2021_113681 crossref_primary_10_1137_23M1545379 crossref_primary_10_1007_s11042_019_07979_2 crossref_primary_10_1137_20M135474X crossref_primary_10_1137_21M1449099 crossref_primary_10_1287_ijoc_2021_1069 crossref_primary_10_1007_s10589_016_9860_y crossref_primary_10_1080_02331934_2024_2407515 crossref_primary_10_1109_TSP_2021_3071173 crossref_primary_10_1109_TSIPN_2020_3022003 crossref_primary_10_1016_j_ifacol_2023_10_1052 crossref_primary_10_1109_TCYB_2020_3015705 crossref_primary_10_1109_ACCESS_2021_3120017 crossref_primary_10_1016_j_renene_2024_121192 crossref_primary_10_1109_TMC_2020_3025189 crossref_primary_10_1137_19M1304854 crossref_primary_10_1007_s10589_024_00630_3 crossref_primary_10_1137_18M119166X crossref_primary_10_1137_16M1110182 crossref_primary_10_1007_s13721_022_00373_3 crossref_primary_10_1109_TSP_2019_2928994 crossref_primary_10_1109_TAES_2024_3372490 crossref_primary_10_1109_TSP_2018_2868269 crossref_primary_10_1145_3230668 crossref_primary_10_1016_j_knosys_2024_112427 crossref_primary_10_1007_s10957_021_01919_7 crossref_primary_10_1007_s42405_018_0048_9 crossref_primary_10_1016_j_tej_2020_106883 crossref_primary_10_1109_TIP_2019_2924339 crossref_primary_10_3233_ICA_190614 crossref_primary_10_1109_TGRS_2019_2952662 crossref_primary_10_1137_21M1451944 crossref_primary_10_1137_19M1242276 crossref_primary_10_1007_s10589_020_00229_4 crossref_primary_10_1016_j_tre_2025_104108 crossref_primary_10_1049_iet_gtd_2018_6036 crossref_primary_10_1287_moor_2017_0875 crossref_primary_10_1016_j_compchemeng_2019_06_003 crossref_primary_10_1016_j_knosys_2024_112436 crossref_primary_10_1049_iet_spr_2018_5108 crossref_primary_10_1145_3555309 crossref_primary_10_1186_s13660_016_1173_2 crossref_primary_10_1007_s10115_023_01961_z crossref_primary_10_1007_s40305_023_00535_8 crossref_primary_10_1109_TGRS_2023_3329736 crossref_primary_10_1109_JSEN_2025_3583291 crossref_primary_10_1137_17M1113138 crossref_primary_10_1016_j_cjche_2018_08_027 crossref_primary_10_1007_s40314_021_01499_2 crossref_primary_10_1016_j_apnum_2019_08_008 crossref_primary_10_1061__ASCE_EM_1943_7889_0001847 crossref_primary_10_1109_TIP_2017_2676466 crossref_primary_10_1155_2020_7876949 crossref_primary_10_1016_j_cam_2017_11_033 crossref_primary_10_1007_s11075_017_0333_x crossref_primary_10_3390_math9080874 crossref_primary_10_1109_ACCESS_2018_2871030 crossref_primary_10_1109_TCST_2023_3315607 crossref_primary_10_1016_j_jfranklin_2022_01_014 crossref_primary_10_1109_TNSE_2025_3551767 crossref_primary_10_1007_s40305_019_00271_y crossref_primary_10_1088_1361_6560_ad524b crossref_primary_10_1080_0305215X_2019_1698035 crossref_primary_10_1007_s11081_020_09499_7 crossref_primary_10_1186_s13660_019_1987_9 crossref_primary_10_1080_10556788_2024_2424525 crossref_primary_10_1007_s41980_025_00985_1 crossref_primary_10_1109_TSMC_2019_2912825 crossref_primary_10_1142_S0217595920500359 crossref_primary_10_1007_s00521_023_08702_x crossref_primary_10_1177_0142331218799841 crossref_primary_10_1109_TSP_2021_3079819 crossref_primary_10_1287_ijoo_2019_0033 crossref_primary_10_1109_TNNLS_2020_3045153 crossref_primary_10_1109_TMM_2024_3521731 crossref_primary_10_1007_s10107_023_02037_0 crossref_primary_10_1109_TEVC_2024_3425629 crossref_primary_10_1061__ASCE_BE_1943_5592_0001906 crossref_primary_10_1016_j_scs_2022_104358 crossref_primary_10_1137_16M1082305 crossref_primary_10_1137_22M1503646 crossref_primary_10_1109_ACCESS_2020_3034155 crossref_primary_10_1007_s12532_023_00250_8 crossref_primary_10_1109_LCSYS_2018_2833116 crossref_primary_10_1016_j_cor_2023_106315 crossref_primary_10_1109_TAC_2020_3033512 crossref_primary_10_1007_s10589_021_00338_8 crossref_primary_10_1109_TSG_2018_2875736 crossref_primary_10_1137_17M1144623 crossref_primary_10_1016_j_comcom_2022_03_015 crossref_primary_10_3390_math10162954 crossref_primary_10_1109_TPWRS_2019_2896654 crossref_primary_10_1007_s10957_016_1058_z crossref_primary_10_1007_s10489_021_02258_w crossref_primary_10_1109_TCNS_2017_2774043 crossref_primary_10_1109_TCOMM_2023_3269839 crossref_primary_10_1016_j_neucom_2020_01_049 crossref_primary_10_1007_s10957_023_02176_6 crossref_primary_10_1109_TGRS_2021_3051192 crossref_primary_10_1186_s13634_025_01225_8 crossref_primary_10_1007_s10915_018_0893_5 crossref_primary_10_1109_TSIPN_2017_2681205 crossref_primary_10_1109_TCCN_2021_3130993 crossref_primary_10_1145_3747593 crossref_primary_10_1007_s10589_022_00433_4 crossref_primary_10_1016_j_ejor_2022_10_019 crossref_primary_10_1007_s10444_017_9560_x crossref_primary_10_1109_TNNLS_2019_2927385 crossref_primary_10_1109_TSIPN_2020_2975369 crossref_primary_10_1109_TPAMI_2020_3000512 crossref_primary_10_1109_TAC_2023_3238857 |
| Cites_doi | 10.1007/BF00939948 10.1137/070698816 10.1007/s10915-015-0150-0 10.1515/9781400873173 10.1016/0041-5553(67)90040-7 10.1137/100781894 10.6028/jres.049.027 10.1137/0328011 10.1007/BFb0120965 10.1137/0325033 10.1137/0325067 10.1007/s10107-010-0394-2 10.1090/S0002-9904-1964-11178-2 10.1090/S0002-9947-1956-0084194-4 10.1137/110822347 10.1007/BF02739237 10.1137/110849468 10.1007/BF01580851 10.1016/0898-1221(76)90003-1 10.1137/110836936 10.1007/BF02592017 10.1287/moor.16.3.462 10.1137/120896219 10.1007/BF01581204 10.1137/090780705 10.1137/0716071 10.1287/moor.12.3.474 10.1002/net.3230210407 10.1137/0325023 10.1007/s40305-013-0015-x 10.1137/120878951 10.1111/j.1467-9868.2005.00532.x 10.1561/2200000016 10.1109/ISIT.2010.5513535 10.1137/110833543 10.1137/0330025 10.1007/s10107-012-0530-2 10.1137/0801025 10.1007/s10915-015-0048-x 10.1016/S0168-2024(08)70034-1 10.1137/1.9781611970838 10.1287/moor.18.4.846 10.1137/090777761 10.1002/nav.3800330106 10.1007/978-3-662-12613-4 10.1002/net.3230140404 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 Mathematical Programming is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 – notice: Mathematical Programming is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-016-1034-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 199 |
| ExternalDocumentID | 4316682511 10_1007_s10107_016_1034_2 |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c415t-ae4bf8ea85c1d017d22e5f1f49612e25429a77253196fedd3d9ff90a2045f4af3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 325 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394986500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Wed Oct 01 12:51:19 EDT 2025 Thu Sep 25 00:39:14 EDT 2025 Tue Nov 18 22:12:13 EST 2025 Sat Nov 29 03:33:59 EST 2025 Fri Feb 21 02:32:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Error bound Linear convergence Dual ascent 49 Alternating directions of multipliers 90 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-ae4bf8ea85c1d017d22e5f1f49612e25429a77253196fedd3d9ff90a2045f4af3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1870853421 |
| PQPubID | 25307 |
| PageCount | 35 |
| ParticipantIDs | proquest_miscellaneous_1884114993 proquest_journals_1870853421 crossref_citationtrail_10_1007_s10107_016_1034_2 crossref_primary_10_1007_s10107_016_1034_2 springer_journals_10_1007_s10107_016_1034_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | De PierroARIusemANOn the convergence properties of Hildreth’s quadratic programming algorithmMath. Prog.1990473751105484010.1007/BF015808510712.90054 KontogiorgisSMeyerRRA variable-penalty alternating directions method for convex optimizationMath. Program.199883295316439630920.90118 BertsekasDPTsitsiklisJNParallel and Distributed Computation: Numerical Methods1989Englewood CliffsPrentice-Hall0743.65107 EcksteinJBertsekasDPOn the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.199255293318116818310.1007/BF015812040765.90073 Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. SIAM J. Optim. 22(2), 533–556 (2012) CottleRWDuvallSGZikanKA Lagrangian relaxation algorithm for the constrained matrix problemNav. Res. Logist. Q.198633557610.1002/nav.38003301060598.90070 Ventura, J.A., Hearn, D.W.: Computational Development of a Lagrangian Dual Approach for Quadratic Networks. 21(4), 469–485 (1991) BertsekasDPGafniEProjection methods for variational inequalities with application to the traffic assignment problemMath. Prog. Study19821713915965469710.1007/BFb01209650478.90071 HeBSTaoMYuanXMAlternating direction method with gaussian back substitution for separable convex programmingSIAM J. Optim.201222313340296885610.1137/1108223471273.90152 Zhang, H., Jiang, J.J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems. J. Oper. Res. Soc. Chin. 1(2), 163–186 (2013) GoldsteinAAConvex programming in hilbert spaceBull. Am. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101 LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/07160710426.65050 BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113112210.1561/22000000161229.90122(Michael Jordan, Editor in Chief) Deng, W., Yin, W.: On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers. J. Sci. Comput. 66(3), 889–916 (2012) LuoZ-QTsengPOn the convergence of the coordinate descent method for convex differentiable minimizationJ. Optim. Theory Appl.199272735114176410.1007/BF009399480795.90069 HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084 MonteiroRSvaiterBIteration-complexity of block-decomposition algorithms and the alternating direction method of multipliersSIAM J. Optim.201323475507303311610.1137/1108494681267.90181 GlowinskiRNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer10.1007/978-3-662-12613-40536.65054 OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046 BertsekasDPHoseinPATsengPRelaxation methods for network flow problems with convex arc costsSIAM J. Control Optim.1987251219124390504210.1137/03250670641.90036 Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0150-0 GabayDFortinMGlowinskiRApplication of the method of multipliers to varuational inequalitiesAugmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problem1983AmsterdamNorth-Holland29933110.1016/S0168-2024(08)70034-1 BertsekasDPNonlinear Programming1999BelmontAthena Scientific1015.90077 YangJFZhangYAlternating direction algorithms for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-problems in compressive sensingSIAM J. Sci. Comput.201133250278278319410.1137/0907777611256.65060 RockafellarRTConvex Analysis1970PrincetonPrinceton University Press10.1515/97814008731730193.18401 LuoZ-QTsengPOn the Linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230408425114907610.1137/03300250756.90084 GlowinskiRLe TallecPAugmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics1989PhiladelphiaSIAM Studies in Applied Mathematics10.1137/1.97816119708380698.73001 ZeniosSAMulveyJMRelaxation techniques for strictly convex network problemsAnn. Oper. Res.1986551753894803310.1007/BF02739237 Boley, D.: Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs. SIAM J. Optim. 23(4), 2183–2207 (2013) LuoZ-QTsengPOn the convergence rate of dual ascent methods for strictly convex minimizationMath. Oper. Res.199318846867125168310.1287/moor.18.4.8460804.90103 Zhou, Z., Li, X., Wright, J., Candes, E.J., Ma, Y.: Stable principal component pursuit. In: Proceedings of 2010 IEEE International Symposium on Information Theory (2010) DouglasJRachfordHHOn the numerical solution of the heat conduction problem in 2 and 3 space variablesTrans. Am. Math. Soc.1956824214398419410.1090/S0002-9947-1956-0084194-40070.35401 GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite-element approximationsComput. Math. Appl.19762174010.1016/0898-1221(76)90003-10352.65034 Goldstein, T., O’Donoghue, B., Setzer, S.: Fast alternating direction optimization methods. SIAM J. Imaging Sci, 7(3), 1588–1623 (2014) MangasarianOLShiauT-HLipschitz continuity of solutions of linear inequalities, programs and complementarity problemsSIAM J. Control Optim.19872558359588518710.1137/03250330613.90066 OhuchiAKajiILagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costsNetworks19841451553010.1002/net.32301404040585.90062 Levitin, E.S., Poljak, B.T.: Constrained minimization methods. Z. Vycisl. Mat. i Mat. Fiz. 6, 787–823 (1965). English translation in USSR Comput. Math. Phys. 6, 1–50 (1965) BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.1967720021721561710.1016/0041-5553(67)90040-70186.23807 TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115 TsengPBertsekasDPRelaxation methods for problems with strictly convex costs and linear constraintsMath. Oper. Res.199116462481112046410.1287/moor.16.3.4620755.90067 WangXFYuanXMThe linearized alternating direction method of multipliers for dantzig selectorSIAM J. Sci. Comput.20123427922811302372610.1137/1108335431263.90061 Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Prog. 125(2), 263–295 (2010) IusemANOn dual convergence and the rate of primal convergence of bregman’s convex programming methodSIAM J. Control Optim.19911401423111252710.1137/08010250753.90051 EcksteinJSvaiterBFGeneral projective splitting methods for sums of maximal monotone operatorsSIAM J. Control Optim.201048787811248609410.1137/0706988161194.49038 Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Prog. A. 141(1,2), 349–382 (2013) YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Statistical Methodology)2006684967221257410.1111/j.1467-9868.2005.00532.x1141.62030 PangJ-SA posteriori error bounds for the linearly-constrained variational inequality problemMath. Oper. Res.19871247448490641910.1287/moor.12.3.474 TsengPBertsekasDPRelaxation methods for problems with strictly convex separable costs and linear constraintsMath. Prog.19873830332190376910.1007/BF025920170636.90072 Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization. Ph.D. Thesis, Operations Research Center, MIT (1989) HoffmanAJOn approximate solutions of systems of linear inequalitiesJ. Res. Nat. Bur. Stand.1952492632655127510.6028/jres.049.027 TsengPDual ascent methods for problems with strictly convex costs and linear constraints: a unified approachSIAM J. Control Optim.199028214242103598010.1137/03280110692.49025 Chen, C., He, B. , Yuan, X., Ye, Y.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Prog. 155(1), 57–79 (2013) PangJ-SOn the Convergence of Dual Ascent Methods for Large Scale Linearly Constrained Optimization Problems1984DallasThe University of Texas, School of Management LinYYPangJ-SIterative methods for large convex quadratic programs: a surveySIAM J. Control Optim.19871838341187706910.1137/03250230624.90083 DP Bertsekas (1034_CR3) 1987; 25 BS He (1034_CR24) 2012; 22 DP Bertsekas (1034_CR4) 1989 D Gabay (1034_CR16) 1983 1034_CR45 P Tseng (1034_CR44) 1990; 28 J Eckstein (1034_CR15) 2010; 48 DP Bertsekas (1034_CR1) 1999 J-S Pang (1034_CR41) 1987; 12 1034_CR48 R Glowinski (1034_CR19) 1989 AR Pierro De (1034_CR10) 1990; 47 PL Lions (1034_CR30) 1979; 16 1034_CR54 Z-Q Luo (1034_CR34) 1993; 18 A Ohuchi (1034_CR38) 1984; 14 P Tseng (1034_CR47) 1991; 16 SA Zenios (1034_CR53) 1986; 5 1034_CR11 1034_CR52 1034_CR13 J-S Pang (1034_CR40) 1984 DP Bertsekas (1034_CR2) 1982; 17 JM Ortega (1034_CR39) 1970 S Boyd (1034_CR6) 2011; 3 J Douglas (1034_CR12) 1956; 82 M Yuan (1034_CR51) 2006; 68 RT Rockafellar (1034_CR42) 1970 D Gabay (1034_CR17) 1976; 2 JF Yang (1034_CR50) 2011; 33 1034_CR21 BS He (1034_CR25) 2012; 50 1034_CR20 1034_CR23 Z-Q Luo (1034_CR33) 1992; 30 J Eckstein (1034_CR14) 1992; 55 1034_CR29 RW Cottle (1034_CR9) 1986; 33 AA Goldstein (1034_CR22) 1964; 70 S Kontogiorgis (1034_CR28) 1998; 83 LM Bregman (1034_CR7) 1967; 7 YY Lin (1034_CR31) 1987; 18 P Tseng (1034_CR46) 1987; 38 M Tao (1034_CR43) 2011; 21 AJ Hoffman (1034_CR26) 1952; 49 OL Mangasarian (1034_CR36) 1987; 25 Z-Q Luo (1034_CR32) 1992; 72 1034_CR5 AN Iusem (1034_CR27) 1991; 1 1034_CR35 R Glowinski (1034_CR18) 1984 XF Wang (1034_CR49) 2012; 34 1034_CR8 R Monteiro (1034_CR37) 2013; 23 |
| References_xml | – reference: ZeniosSAMulveyJMRelaxation techniques for strictly convex network problemsAnn. Oper. Res.1986551753894803310.1007/BF02739237 – reference: LuoZ-QTsengPOn the Linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230408425114907610.1137/03300250756.90084 – reference: PangJ-SOn the Convergence of Dual Ascent Methods for Large Scale Linearly Constrained Optimization Problems1984DallasThe University of Texas, School of Management – reference: HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084 – reference: Deng, W., Yin, W.: On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers. J. Sci. Comput. 66(3), 889–916 (2012) – reference: Ventura, J.A., Hearn, D.W.: Computational Development of a Lagrangian Dual Approach for Quadratic Networks. 21(4), 469–485 (1991) – reference: BertsekasDPGafniEProjection methods for variational inequalities with application to the traffic assignment problemMath. Prog. Study19821713915965469710.1007/BFb01209650478.90071 – reference: BertsekasDPTsitsiklisJNParallel and Distributed Computation: Numerical Methods1989Englewood CliffsPrentice-Hall0743.65107 – reference: TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115 – reference: DouglasJRachfordHHOn the numerical solution of the heat conduction problem in 2 and 3 space variablesTrans. Am. Math. Soc.1956824214398419410.1090/S0002-9947-1956-0084194-40070.35401 – reference: EcksteinJSvaiterBFGeneral projective splitting methods for sums of maximal monotone operatorsSIAM J. Control Optim.201048787811248609410.1137/0706988161194.49038 – reference: De PierroARIusemANOn the convergence properties of Hildreth’s quadratic programming algorithmMath. Prog.1990473751105484010.1007/BF015808510712.90054 – reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/07160710426.65050 – reference: YangJFZhangYAlternating direction algorithms for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-problems in compressive sensingSIAM J. Sci. Comput.201133250278278319410.1137/0907777611256.65060 – reference: Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization. Ph.D. Thesis, Operations Research Center, MIT (1989) – reference: GlowinskiRNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer10.1007/978-3-662-12613-40536.65054 – reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113112210.1561/22000000161229.90122(Michael Jordan, Editor in Chief) – reference: GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite-element approximationsComput. Math. Appl.19762174010.1016/0898-1221(76)90003-10352.65034 – reference: Zhang, H., Jiang, J.J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems. J. Oper. Res. Soc. Chin. 1(2), 163–186 (2013) – reference: TsengPBertsekasDPRelaxation methods for problems with strictly convex separable costs and linear constraintsMath. Prog.19873830332190376910.1007/BF025920170636.90072 – reference: Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0150-0 – reference: Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. SIAM J. Optim. 22(2), 533–556 (2012) – reference: Zhou, Z., Li, X., Wright, J., Candes, E.J., Ma, Y.: Stable principal component pursuit. In: Proceedings of 2010 IEEE International Symposium on Information Theory (2010) – reference: WangXFYuanXMThe linearized alternating direction method of multipliers for dantzig selectorSIAM J. Sci. Comput.20123427922811302372610.1137/1108335431263.90061 – reference: KontogiorgisSMeyerRRA variable-penalty alternating directions method for convex optimizationMath. Program.199883295316439630920.90118 – reference: Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Prog. A. 141(1,2), 349–382 (2013) – reference: TsengPBertsekasDPRelaxation methods for problems with strictly convex costs and linear constraintsMath. Oper. Res.199116462481112046410.1287/moor.16.3.4620755.90067 – reference: EcksteinJBertsekasDPOn the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.199255293318116818310.1007/BF015812040765.90073 – reference: MangasarianOLShiauT-HLipschitz continuity of solutions of linear inequalities, programs and complementarity problemsSIAM J. Control Optim.19872558359588518710.1137/03250330613.90066 – reference: YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Statistical Methodology)2006684967221257410.1111/j.1467-9868.2005.00532.x1141.62030 – reference: Chen, C., He, B. , Yuan, X., Ye, Y.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Prog. 155(1), 57–79 (2013) – reference: Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Prog. 125(2), 263–295 (2010) – reference: Levitin, E.S., Poljak, B.T.: Constrained minimization methods. Z. Vycisl. Mat. i Mat. Fiz. 6, 787–823 (1965). English translation in USSR Comput. Math. Phys. 6, 1–50 (1965) – reference: BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.1967720021721561710.1016/0041-5553(67)90040-70186.23807 – reference: OhuchiAKajiILagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costsNetworks19841451553010.1002/net.32301404040585.90062 – reference: MonteiroRSvaiterBIteration-complexity of block-decomposition algorithms and the alternating direction method of multipliersSIAM J. Optim.201323475507303311610.1137/1108494681267.90181 – reference: RockafellarRTConvex Analysis1970PrincetonPrinceton University Press10.1515/97814008731730193.18401 – reference: LuoZ-QTsengPOn the convergence rate of dual ascent methods for strictly convex minimizationMath. Oper. Res.199318846867125168310.1287/moor.18.4.8460804.90103 – reference: PangJ-SA posteriori error bounds for the linearly-constrained variational inequality problemMath. Oper. Res.19871247448490641910.1287/moor.12.3.474 – reference: LinYYPangJ-SIterative methods for large convex quadratic programs: a surveySIAM J. Control Optim.19871838341187706910.1137/03250230624.90083 – reference: IusemANOn dual convergence and the rate of primal convergence of bregman’s convex programming methodSIAM J. Control Optim.19911401423111252710.1137/08010250753.90051 – reference: GlowinskiRLe TallecPAugmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics1989PhiladelphiaSIAM Studies in Applied Mathematics10.1137/1.97816119708380698.73001 – reference: HeBSTaoMYuanXMAlternating direction method with gaussian back substitution for separable convex programmingSIAM J. Optim.201222313340296885610.1137/1108223471273.90152 – reference: Goldstein, T., O’Donoghue, B., Setzer, S.: Fast alternating direction optimization methods. SIAM J. Imaging Sci, 7(3), 1588–1623 (2014) – reference: LuoZ-QTsengPOn the convergence of the coordinate descent method for convex differentiable minimizationJ. Optim. Theory Appl.199272735114176410.1007/BF009399480795.90069 – reference: OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046 – reference: TsengPDual ascent methods for problems with strictly convex costs and linear constraints: a unified approachSIAM J. Control Optim.199028214242103598010.1137/03280110692.49025 – reference: BertsekasDPNonlinear Programming1999BelmontAthena Scientific1015.90077 – reference: Boley, D.: Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs. SIAM J. Optim. 23(4), 2183–2207 (2013) – reference: BertsekasDPHoseinPATsengPRelaxation methods for network flow problems with convex arc costsSIAM J. Control Optim.1987251219124390504210.1137/03250670641.90036 – reference: CottleRWDuvallSGZikanKA Lagrangian relaxation algorithm for the constrained matrix problemNav. Res. Logist. Q.198633557610.1002/nav.38003301060598.90070 – reference: GabayDFortinMGlowinskiRApplication of the method of multipliers to varuational inequalitiesAugmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problem1983AmsterdamNorth-Holland29933110.1016/S0168-2024(08)70034-1 – reference: GoldsteinAAConvex programming in hilbert spaceBull. Am. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101 – reference: HoffmanAJOn approximate solutions of systems of linear inequalitiesJ. Res. Nat. Bur. Stand.1952492632655127510.6028/jres.049.027 – volume: 72 start-page: 7 year: 1992 ident: 1034_CR32 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939948 – volume: 48 start-page: 787 year: 2010 ident: 1034_CR15 publication-title: SIAM J. Control Optim. doi: 10.1137/070698816 – ident: 1034_CR35 doi: 10.1007/s10915-015-0150-0 – volume-title: Nonlinear Programming year: 1999 ident: 1034_CR1 – volume-title: Convex Analysis year: 1970 ident: 1034_CR42 doi: 10.1515/9781400873173 – volume: 7 start-page: 200 year: 1967 ident: 1034_CR7 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – volume: 83 start-page: 29 year: 1998 ident: 1034_CR28 publication-title: Math. Program. – volume: 21 start-page: 57 year: 2011 ident: 1034_CR43 publication-title: SIAM J. Optim. doi: 10.1137/100781894 – volume: 49 start-page: 263 year: 1952 ident: 1034_CR26 publication-title: J. Res. Nat. Bur. Stand. doi: 10.6028/jres.049.027 – volume: 28 start-page: 214 year: 1990 ident: 1034_CR44 publication-title: SIAM J. Control Optim. doi: 10.1137/0328011 – volume: 17 start-page: 139 year: 1982 ident: 1034_CR2 publication-title: Math. Prog. Study doi: 10.1007/BFb0120965 – volume: 25 start-page: 583 year: 1987 ident: 1034_CR36 publication-title: SIAM J. Control Optim. doi: 10.1137/0325033 – volume: 25 start-page: 1219 year: 1987 ident: 1034_CR3 publication-title: SIAM J. Control Optim. doi: 10.1137/0325067 – ident: 1034_CR45 doi: 10.1007/s10107-010-0394-2 – volume: 70 start-page: 709 year: 1964 ident: 1034_CR22 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1964-11178-2 – volume: 82 start-page: 421 year: 1956 ident: 1034_CR12 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1956-0084194-4 – volume-title: Parallel and Distributed Computation: Numerical Methods year: 1989 ident: 1034_CR4 – volume: 22 start-page: 313 year: 2012 ident: 1034_CR24 publication-title: SIAM J. Optim. doi: 10.1137/110822347 – volume: 5 start-page: 517 year: 1986 ident: 1034_CR53 publication-title: Ann. Oper. Res. doi: 10.1007/BF02739237 – volume: 23 start-page: 475 year: 2013 ident: 1034_CR37 publication-title: SIAM J. Optim. doi: 10.1137/110849468 – volume: 47 start-page: 37 year: 1990 ident: 1034_CR10 publication-title: Math. Prog. doi: 10.1007/BF01580851 – volume: 2 start-page: 17 year: 1976 ident: 1034_CR17 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(76)90003-1 – volume: 50 start-page: 700 year: 2012 ident: 1034_CR25 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110836936 – volume: 38 start-page: 303 year: 1987 ident: 1034_CR46 publication-title: Math. Prog. doi: 10.1007/BF02592017 – volume: 16 start-page: 462 year: 1991 ident: 1034_CR47 publication-title: Math. Oper. Res. doi: 10.1287/moor.16.3.462 – ident: 1034_CR23 doi: 10.1137/120896219 – volume: 55 start-page: 293 year: 1992 ident: 1034_CR14 publication-title: Math. Program. doi: 10.1007/BF01581204 – ident: 1034_CR20 doi: 10.1137/090780705 – volume: 16 start-page: 964 year: 1979 ident: 1034_CR30 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – volume: 12 start-page: 474 year: 1987 ident: 1034_CR41 publication-title: Math. Oper. Res. doi: 10.1287/moor.12.3.474 – ident: 1034_CR48 doi: 10.1002/net.3230210407 – volume-title: On the Convergence of Dual Ascent Methods for Large Scale Linearly Constrained Optimization Problems year: 1984 ident: 1034_CR40 – volume: 18 start-page: 383 year: 1987 ident: 1034_CR31 publication-title: SIAM J. Control Optim. doi: 10.1137/0325023 – ident: 1034_CR52 doi: 10.1007/s40305-013-0015-x – ident: 1034_CR5 doi: 10.1137/120878951 – volume: 68 start-page: 49 year: 2006 ident: 1034_CR51 publication-title: J. R. Stat. Soc. Ser. B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00532.x – volume: 3 start-page: 1 year: 2011 ident: 1034_CR6 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – ident: 1034_CR54 doi: 10.1109/ISIT.2010.5513535 – ident: 1034_CR29 – volume-title: Iterative Solution of Nonlinear Equations in Several Variables year: 1970 ident: 1034_CR39 – volume: 34 start-page: 2792 year: 2012 ident: 1034_CR49 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110833543 – volume: 30 start-page: 408 year: 1992 ident: 1034_CR33 publication-title: SIAM J. Control Optim. doi: 10.1137/0330025 – ident: 1034_CR8 – ident: 1034_CR21 doi: 10.1007/s10107-012-0530-2 – volume: 1 start-page: 401 year: 1991 ident: 1034_CR27 publication-title: SIAM J. Control Optim. doi: 10.1137/0801025 – ident: 1034_CR11 doi: 10.1007/s10915-015-0048-x – start-page: 299 volume-title: Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problem year: 1983 ident: 1034_CR16 doi: 10.1016/S0168-2024(08)70034-1 – volume-title: Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics year: 1989 ident: 1034_CR19 doi: 10.1137/1.9781611970838 – volume: 18 start-page: 846 year: 1993 ident: 1034_CR34 publication-title: Math. Oper. Res. doi: 10.1287/moor.18.4.846 – volume: 33 start-page: 250 year: 2011 ident: 1034_CR50 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090777761 – volume: 33 start-page: 55 year: 1986 ident: 1034_CR9 publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800330106 – ident: 1034_CR13 – volume-title: Numerical Methods for Nonlinear Variational Problems year: 1984 ident: 1034_CR18 doi: 10.1007/978-3-662-12613-4 – volume: 14 start-page: 515 year: 1984 ident: 1034_CR38 publication-title: Networks doi: 10.1002/net.3230140404 |
| SSID | ssj0001388 |
| Score | 2.6360161 |
| Snippet | We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We analyze the convergence rate of the alternating direction method of multipliers... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the convergence rate of the alternating direction method of multipliers... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 165 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Convergence Convex analysis Convexity Decomposition Errors Feasibility Full Length Paper Inequality Lagrange multiplier Linear programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematics Mathematics and Statistics Mathematics of Computing Methods Multipliers Numerical Analysis Optimization Studies Texts Theoretical |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcIADb8RgoCJxAkUsabY2J4QQExJjcAC0W5U1DkJC3diD30-ctttAYheOUdKmqu34S-z4AzgzKpS6JySLbCN1GxQjmebCMHS-X0nUDeXvrb22o04n7nbVU3HgNirSKss10S_Upp_SGfkld4rlXIsU_GrwyYg1iqKrBYXGMqxwITjp-X3EpisxD-O4pGwlnFBGNfOrc9wnXTbdQhRKJn76pRnY_BUf9W6ntfnfD96CjQJwBte5hmzDEmY7sD5XhtC1Hqa1W0e70H7MAtcMCH_qYeDT0v0NTQz61vf4CDudImZvQe4SnXCDnIuaxhRJikSyvQcvrdvnmztWcC6w1LnyMdMoezZGHTdSbpy1GiGwYbmVykEhFMRupR0g95Zr0ZjQKGtVXVNVeyu1DfehkvUzPIAAVTO11uGTWKGMhFaoreSYhlGohY6xCvXyjydpUZCceDE-klkpZRJSQkloJKREVOF8-sggr8axaHCtFExSGOYomUmlCqfTbmdSFCfRGfYnNCaWbpvokFsVLkrxz73irwkPF094BGuCMIFPYKtBZTyc4DGspl_j99HwxGvuN4yH8oY priority: 102 providerName: ProQuest |
| Title | On the linear convergence of the alternating direction method of multipliers |
| URI | https://link.springer.com/article/10.1007/s10107-016-1034-2 https://www.proquest.com/docview/1870853421 https://www.proquest.com/docview/1884114993 |
| Volume | 162 |
| WOSCitedRecordID | wos000394986500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_U-aAPfovzY1TwSSmsaWqTRxWHoJvD-f1SYnsRQTrZpn-_d1k7p6igL4GQa1qS3N0vvS-AnUyH0jwI6cc2SumCkknfBCLzkXS_lmgi7eLWrs_iVkvd3up2EcfdL73dS5Okk9RjwW6Bc5PcJ9ERSp_kboW0nWJuvOhcj8RvECpV1mllcFCaMr-b4rMy-kCYX4yiTtc05v_1lQswV0BL72B4FhZhAvMlmB1LOEi95ihLa38Zzs5zj7oeI03T85wDuovFRK9r3YizpfP_wvzRGyo_2kZvWHWaaQp3RC6nvQJXjePLoxO_qK7gp6S0B75B-WAVGhWlQUZ8mQmBkQ2s1AR6UHAdK0PQ2_GoxSwLM22trhvOX2-lseEqTOXdHNfAQ72fWktIRGmUsTAajZUBpmEcGmEUVqFeLnOSFqnHuQLGc_KRNJmXLWF3M162RFRhd_TIyzDvxm_Em-XeJQUL9pOAJBFhESmCKmyPhol52CJicuy-Mo2SdCEkjFaFvXI_x6b46YXrf6LegBnBYMB5rm3C1KD3ilswnb4Nnvq9GkzGN3c1qBwet9oX1DuNfWqb9SNuRZvbuENtO7qvuZP-DiBi70k |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9swED5BQYI9wDZAdPyYJ7EXUETjuDR-QAh1Q0WUwgMg3oIbnxESSru2bNo_xd_InZO0bBK88cBjZMdW4s93Z993dwBbVkfKdKUKGq6e0gHFqsCE0gZIul8rNHXt49au2o1OJ76-1udT8FjGwjCtspSJXlDbXsp35LshAYtUi5LhQf9XwFWj2LtaltDIYXGCf__QkW24f_yD1ve7lEc_L5qtoKgqEKSkrEaBQdV1MZq4noaW8GilxLoLndKk7FFy_SZDJqfHpkNrI6ud0zXDedudMi6icadhRinaDkwVrDXHkj-M4rgsEct2SelFzUP1Qk_y3CPBF6lA_qsHJ8btf_5Yr-aOFt_bD_oIC4VBLQ7zHfAJpjD7DB-epVmkp9NxbtrhErTPMkGPgu1rMxCedu8jUFH0nG_xDAK-Jc1uRa7yCbwir7XNfQoSJhcRX4bLN_m4FahkvQxXQaDeS50j-yvWqBrSaDROhZhGjchIE2MVauUKJ2mRcJ3rftwnk1TRDIqESXYMikRWYXv8Sj_PNvJa5_USCEkheIbJBAVV-DZuJpHBfiCTYe-B-8SKjsFkmVZhp4TbsyFemvDL6xN-hbnWxWk7aR93TtZgXrL948l661AZDR5wA2bT36O74WDT7xoBN2-NwidYgU_v |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ERfTBb3E6tYJPSnFNs615FHUozin4wd5K1lxEkG7sw7_fu7TdpqggPoakaUlyd7_0Pn4AR0aFUneE9Ou2mtAFxUhfB8L4SLZfSdRV5fLWnpv1Vitqt9V9znM6KKLdC5dkltPAVZrS4WnP2NOpxLfAhUzWSI2E0icdPCeZM4iv6w_PY1UchFFUcLYyUCjcmt9N8dkwTdDmFwepszuNlX9_8Sos55DTO8vOyBrMYLoOS1OFCKl1O67eOtiA5l3qUdNjBKr7ngtMdzma6HWt63E-dv6PmL54mVGk7fUyNmoek4cpMs32Jjw1Lh_Pr_ycdcFPyJgPfY2yYyPUUTUJDMmrEQKrNrBSERhCwfxWmiC5k12LxoRGWasqmuvaW6ltuAWzaTfFbfBQ1RJrCaFECmVdaIXaygCTsB5qoSMsQaVY8jjJS5IzM8ZbPCmmzMsWcxgaL1ssSnA8fqSX1eP4bXC52Mc4F81BHJCGIowiRVCCw3E3CRV7SnSK3RGPiSRdFAm7leCk2NupKX564c6fRh_Awv1FI25et252YVEwXnDBbWWYHfZHuAfzyfvwddDfd4f6AyFd89Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+linear+convergence+of+the+alternating+direction+method+of+multipliers&rft.jtitle=Mathematical+programming&rft.au=Hong%2C+Mingyi&rft.au=Luo%2C+Zhi-Quan&rft.date=2017-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=162&rft.issue=1-2&rft.spage=165&rft.epage=199&rft_id=info:doi/10.1007%2Fs10107-016-1034-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |