Spam review detection using LSTM autoencoder: an unsupervised approach
The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract spammers who intend to elevate their products or services by writing positive reviews for them and lowering the business of others by writin...
Saved in:
| Published in: | Electronic commerce research Vol. 22; no. 1; pp. 113 - 133 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.03.2022
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1389-5753, 1572-9362 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract spammers who intend to elevate their products or services by writing positive reviews for them and lowering the business of others by writing negative reviews. Traditionally, the spam review identification task is seen as a two-class classification problem. The classification approach requires a labelled dataset to train a model for the environment it is working on. The unavailability of the labelled dataset is a major limitation in the classification approach. To overcome the problem of the labelled dataset, we propose an unsupervised learning model combining long short-term memory (LSTM) networks and autoencoder (LSTM-autoencoder) to distinguish spam reviews from other real reviews. The said model is trained to learn the patterns of real review from the review’s textual details without any label. The experimental results show that our model is able to separate the real and spam review with good accuracy. |
|---|---|
| AbstractList | The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract spammers who intend to elevate their products or services by writing positive reviews for them and lowering the business of others by writing negative reviews. Traditionally, the spam review identification task is seen as a two-class classification problem. The classification approach requires a labelled dataset to train a model for the environment it is working on. The unavailability of the labelled dataset is a major limitation in the classification approach. To overcome the problem of the labelled dataset, we propose an unsupervised learning model combining long short-term memory (LSTM) networks and autoencoder (LSTM-autoencoder) to distinguish spam reviews from other real reviews. The said model is trained to learn the patterns of real review from the review’s textual details without any label. The experimental results show that our model is able to separate the real and spam review with good accuracy. |
| Audience | Academic |
| Author | Singh, Jyoti Prakash Saumya, Sunil |
| Author_xml | – sequence: 1 givenname: Sunil orcidid: 0000-0002-9555-9434 surname: Saumya fullname: Saumya, Sunil email: sunil.saumya@iiitdwd.ac.in organization: Indian Institute of Information Technology Dharwad – sequence: 2 givenname: Jyoti Prakash surname: Singh fullname: Singh, Jyoti Prakash organization: National Institute of Technology Patna |
| BookMark | eNp9kE1LwzAch4NMcE6_gKeC5868t_U2hm8w8bB5Dv8l6czY0pq0E7-9mRUEDxJCQvJ78iPPORr5xluErgieEoyLm0iwlDjHNM2KE5bzEzQmoqB5xSQdpT0rq1wUgp2h8xi3OCULysfoftnCPgv24OxHZmxndecan_XR-U22WK6eM-i7xnrdGBtuM0hXPvatDQcXrcmgbUMD-u0Cndawi_byZ52g1_u71fwxX7w8PM1ni1xzIroc1lpSQ0FQLArQVEPFhdHYFAaLUpIa66KqCaGi4qUESYHrimnOa7EuAQyboOvh3VT73tvYqW3TB58qFS25qCRlJU-p6ZDawM4q5-umC6DTMHbvdDJXu3Q-K7AUuKSYJaAcAB2aGIOtlXYdHE0k0O0UweqoWQ2aVZKnvjWrYxf9g7bB7SF8_g-xAYop7Dc2_H7jH-oL1xiQyA |
| CitedBy_id | crossref_primary_10_1007_s40747_022_00672_2 crossref_primary_10_1109_ACCESS_2023_3293641 crossref_primary_10_1007_s11042_022_12155_0 crossref_primary_10_1108_IJPPM_12_2023_0676 crossref_primary_10_1007_s11042_022_13702_5 crossref_primary_10_3390_app15137433 crossref_primary_10_1007_s11042_025_20922_y crossref_primary_10_1007_s10489_022_03427_1 crossref_primary_10_1016_j_elerap_2023_101283 crossref_primary_10_1016_j_procs_2024_09_620 crossref_primary_10_3390_en17102340 crossref_primary_10_1007_s10660_020_09455_8 crossref_primary_10_1080_10941665_2023_2228939 crossref_primary_10_1017_S0269888924000067 crossref_primary_10_3390_electronics13081432 crossref_primary_10_3390_electronics12224673 crossref_primary_10_1109_JSEN_2021_3092728 crossref_primary_10_3390_math10193554 crossref_primary_10_1109_ACCESS_2024_3399824 crossref_primary_10_1117_1_JEI_33_2_023032 crossref_primary_10_1016_j_jbusres_2022_113631 crossref_primary_10_1007_s10115_025_02542_y crossref_primary_10_1109_ACCESS_2024_3365193 crossref_primary_10_1177_01655515221124062 crossref_primary_10_1007_s00521_023_08941_y crossref_primary_10_1177_14413582241283505 crossref_primary_10_1007_s10479_025_06770_x |
| Cites_doi | 10.1016/j.ins.2017.01.015 10.1145/2070710.2070716 10.1007/s10489-018-1142-1 10.1016/j.neucom.2016.10.080 10.1186/s40537-015-0029-9 10.1007/s40012-018-0193-0 10.1016/j.future.2019.09.001 10.1016/j.eswa.2016.03.020 10.1007/s00500-019-03851-5 10.12733/jics20105452 10.1016/j.jbusres.2016.08.008 10.1007/s11948-017-9959-2 10.1093/comjnl/bxv068 10.1016/j.eswa.2014.12.029 10.1142/S0219649217500368 10.1016/j.elerap.2018.03.008 10.1016/j.ipm.2018.03.007 10.1145/2783258.2783370 10.1109/ICDM.2007.68 10.1109/ICMLA.2015.37 10.1145/1871437.1871557 10.1145/2339530.2339662 10.1145/1871437.1871669 10.1145/2487575.2487580 10.1145/1242572.1242759 10.1145/2701126.2701130 10.1109/ICEBE.2010.47 10.1145/3038912.3052582 10.21437/Interspeech.2012-65 10.1109/ICDMW.2010.30 10.1145/1531914.1531924 10.1145/1341531.1341560 10.1145/2464464.2464470 10.1145/2187836.2187863 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7TA 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JG9 JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10660-020-09413-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Materials Business File ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Materials Research Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete Materials Business File ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1572-9362 |
| EndPage | 133 |
| ExternalDocumentID | A706508203 10_1007_s10660_020_09413_4 |
| GrantInformation_xml | – fundername: Ministry of Electronics and Information technology grantid: VISPHD-MEITY-523 funderid: http://dx.doi.org/10.13039/501100008628 |
| GroupedDBID | -57 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBO EBS EBU EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM OVD P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS QWB R89 R9I RNI ROL RPX RSV RZC RZD S16 S1Z S27 S3B SAP SBE SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 ZL0 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7TA 7XB 8AL 8FD 8FK JG9 JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c415t-abc62d2a52057ac2ca945dc0d7d05861f0c79f11259486a62a4c93c44f5b8aad3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532802800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-5753 |
| IngestDate | Tue Dec 02 16:07:14 EST 2025 Sat Nov 29 10:36:04 EST 2025 Tue Nov 18 22:20:18 EST 2025 Sat Nov 29 01:37:47 EST 2025 Fri Feb 21 02:47:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Long short-term memory E-commerce Autoencoder neural network Spam detection Unsupervised learning Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-abc62d2a52057ac2ca945dc0d7d05861f0c79f11259486a62a4c93c44f5b8aad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9555-9434 |
| PQID | 2845962384 |
| PQPubID | 25737 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2845962384 gale_infotracacademiconefile_A706508203 crossref_citationtrail_10_1007_s10660_020_09413_4 crossref_primary_10_1007_s10660_020_09413_4 springer_journals_10_1007_s10660_020_09413_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Electronic commerce research |
| PublicationTitleAbbrev | Electron Commer Res |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Saumya, Singh (CR33) 2018; 6 Wang, Hou, Song, Li, Kong (CR40) 2016; 59 Saumya, Singh, Dwivedi (CR35) 2019 CR18 Wang, Xie, Liu, Yu (CR38) 2012; 3 CR16 CR15 CR37 Heydari, Tavakoli, Salim (CR9) 2016; 58 CR13 CR12 CR11 Crawford, Khoshgoftaar, Prusa, Richter, Al Najada (CR5) 2015; 2 CR10 CR31 Wang, Gu, Xu (CR39) 2018; 48 Heydari, ali Tavakoli, Salim, Heydari (CR8) 2015; 42 Singh, Irani, Rana, Dwivedi, Saumya, Roy (CR36) 2017; 70 Zhang, Du, Yoshida, Wang (CR42) 2018; 54 CR2 CR4 Li, Qin, Ren, Liu (CR20) 2017; 254 CR3 Kolhar (CR14) 2018; 24 CR6 Li, Lin, Zhang, Li, Zhao (CR21) 2015; 12 Ren, Ji (CR30) 2017; 385 CR7 CR29 Akoglu, Chandy, Faloutsos (CR1) 2013; 13 CR27 CR26 CR25 CR24 Li, Ott, Cardie, Hovy (CR19) 2014; 1 CR23 CR22 CR41 Rastogi, Mehrotra (CR28) 2017; 16 Lau, Liao, Kwok, Xu, Xia, Li (CR17) 2011; 2 Roy, Singh, Banerjee (CR32) 2020; 102 Saumya, Singh, Baabdullah, Rana, Dwivedi (CR34) 2018; 29 RY Lau (9413_CR17) 2011; 2 9413_CR41 W Zhang (9413_CR42) 2018; 54 Z Wang (9413_CR39) 2018; 48 9413_CR29 S Saumya (9413_CR35) 2019 9413_CR25 9413_CR7 9413_CR26 Z Wang (9413_CR40) 2016; 59 9413_CR6 9413_CR27 9413_CR4 Y Li (9413_CR21) 2015; 12 9413_CR3 9413_CR22 JP Singh (9413_CR36) 2017; 70 9413_CR2 9413_CR23 M Kolhar (9413_CR14) 2018; 24 9413_CR24 M Crawford (9413_CR5) 2015; 2 J Li (9413_CR19) 2014; 1 9413_CR31 A Heydari (9413_CR9) 2016; 58 G Wang (9413_CR38) 2012; 3 S Saumya (9413_CR34) 2018; 29 A Heydari (9413_CR8) 2015; 42 9413_CR18 Y Ren (9413_CR30) 2017; 385 PK Roy (9413_CR32) 2020; 102 9413_CR15 A Rastogi (9413_CR28) 2017; 16 9413_CR37 L Akoglu (9413_CR1) 2013; 13 9413_CR16 L Li (9413_CR20) 2017; 254 9413_CR10 9413_CR11 S Saumya (9413_CR33) 2018; 6 9413_CR12 9413_CR13 |
| References_xml | – volume: 385 start-page: 213 year: 2017 end-page: 224 ident: CR30 article-title: Neural networks for deceptive opinion spam detection: An empirical study publication-title: Information Sciences doi: 10.1016/j.ins.2017.01.015 – ident: CR22 – volume: 3 start-page: 61 issue: 4 year: 2012 ident: CR38 article-title: Identify online store review spammers via social review graph publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – ident: CR18 – volume: 2 start-page: 1 issue: 4 year: 2011 end-page: 30 ident: CR17 article-title: Text mining and probabilistic language modeling for online review spam detecting publication-title: ACM Transactions on Management Information Systems doi: 10.1145/2070710.2070716 – volume: 48 start-page: 3094 year: 2018 end-page: 3107 ident: CR39 article-title: GSLDA: LDA-based group spamming detection in product reviews publication-title: Applied Intelligence doi: 10.1007/s10489-018-1142-1 – volume: 254 start-page: 33 year: 2017 end-page: 41 ident: CR20 article-title: Document representation and feature combination for deceptive spam review detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.080 – ident: CR4 – ident: CR2 – volume: 2 start-page: 23 issue: 1 year: 2015 ident: CR5 article-title: Survey of review spam detection using machine learning techniques publication-title: Journal of Big Data doi: 10.1186/s40537-015-0029-9 – ident: CR16 – volume: 6 start-page: 137 issue: 2 year: 2018 end-page: 148 ident: CR33 article-title: Detection of spam reviews: A sentiment analysis approach publication-title: CSI Transactions on ICT doi: 10.1007/s40012-018-0193-0 – ident: CR37 – ident: CR12 – volume: 102 start-page: 524 year: 2020 end-page: 533 ident: CR32 article-title: Deep learning to filter SMS spam publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.09.001 – ident: CR10 – volume: 1 start-page: 1566 year: 2014 end-page: 1576 ident: CR19 article-title: Towards a general rule for identifying deceptive opinion spam publication-title: ACL – ident: CR6 – volume: 58 start-page: 83 year: 2016 end-page: 92 ident: CR9 article-title: Detection of fake opinions using time series publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.020 – ident: CR29 – year: 2019 ident: CR35 article-title: Predicting the helpfulness score of online reviews using convolutional neural network publication-title: Soft Computing doi: 10.1007/s00500-019-03851-5 – volume: 12 start-page: 1615 issue: 4 year: 2015 end-page: 1627 ident: CR21 article-title: Highlighting the fake reviews in review sequence with the suspicious contents and behaviours publication-title: Journal of Information & Computational Science doi: 10.12733/jics20105452 – volume: 70 start-page: 346 year: 2017 end-page: 355 ident: CR36 article-title: Predicting the “helpfulness” of online consumer reviews publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2016.08.008 – ident: CR25 – volume: 24 start-page: 1577 year: 2018 end-page: 1588 ident: CR14 article-title: E-commerce review system to detect false reviews publication-title: Science and Engineering Ethics doi: 10.1007/s11948-017-9959-2 – ident: CR27 – volume: 59 start-page: 861 issue: 6 year: 2016 end-page: 874 ident: CR40 article-title: Detecting review spammer groups via bipartite graph projection publication-title: The Computer Journal doi: 10.1093/comjnl/bxv068 – ident: CR23 – volume: 42 start-page: 3634 issue: 7 year: 2015 end-page: 3642 ident: CR8 article-title: Detection of review spam: A survey publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.12.029 – volume: 16 start-page: 1750036 issue: 04 year: 2017 ident: CR28 article-title: Opinion spam detection in online reviews publication-title: Journal of Information & Knowledge Management doi: 10.1142/S0219649217500368 – volume: 13 start-page: 2 year: 2013 end-page: 11 ident: CR1 article-title: Opinion fraud detection in online reviews by network effects publication-title: ICWSM – volume: 29 start-page: 78 year: 2018 end-page: 89 ident: CR34 article-title: Ranking online consumer reviews publication-title: Electronic Commerce Research and Applications doi: 10.1016/j.elerap.2018.03.008 – ident: CR3 – ident: CR15 – ident: CR31 – ident: CR13 – ident: CR11 – volume: 54 start-page: 576 issue: 4 year: 2018 end-page: 592 ident: CR42 article-title: DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.03.007 – ident: CR7 – ident: CR41 – ident: CR26 – ident: CR24 – ident: 9413_CR29 doi: 10.1145/2783258.2783370 – ident: 9413_CR10 doi: 10.1109/ICDM.2007.68 – ident: 9413_CR2 doi: 10.1109/ICMLA.2015.37 – volume: 24 start-page: 1577 year: 2018 ident: 9413_CR14 publication-title: Science and Engineering Ethics doi: 10.1007/s11948-017-9959-2 – volume: 6 start-page: 137 issue: 2 year: 2018 ident: 9413_CR33 publication-title: CSI Transactions on ICT doi: 10.1007/s40012-018-0193-0 – ident: 9413_CR22 doi: 10.1145/1871437.1871557 – ident: 9413_CR41 doi: 10.1145/2339530.2339662 – volume: 54 start-page: 576 issue: 4 year: 2018 ident: 9413_CR42 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.03.007 – ident: 9413_CR13 doi: 10.1145/1871437.1871669 – volume: 2 start-page: 23 issue: 1 year: 2015 ident: 9413_CR5 publication-title: Journal of Big Data doi: 10.1186/s40537-015-0029-9 – volume: 59 start-page: 861 issue: 6 year: 2016 ident: 9413_CR40 publication-title: The Computer Journal doi: 10.1093/comjnl/bxv068 – volume: 13 start-page: 2 year: 2013 ident: 9413_CR1 publication-title: ICWSM – volume: 42 start-page: 3634 issue: 7 year: 2015 ident: 9413_CR8 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.12.029 – ident: 9413_CR25 doi: 10.1145/2487575.2487580 – ident: 9413_CR31 – ident: 9413_CR4 – volume: 12 start-page: 1615 issue: 4 year: 2015 ident: 9413_CR21 publication-title: Journal of Information & Computational Science doi: 10.12733/jics20105452 – ident: 9413_CR11 doi: 10.1145/1242572.1242759 – volume: 70 start-page: 346 year: 2017 ident: 9413_CR36 publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2016.08.008 – ident: 9413_CR3 doi: 10.1145/2701126.2701130 – ident: 9413_CR6 – volume: 2 start-page: 1 issue: 4 year: 2011 ident: 9413_CR17 publication-title: ACM Transactions on Management Information Systems doi: 10.1145/2070710.2070716 – ident: 9413_CR15 doi: 10.1109/ICEBE.2010.47 – volume: 58 start-page: 83 year: 2016 ident: 9413_CR9 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.020 – ident: 9413_CR18 doi: 10.1145/3038912.3052582 – ident: 9413_CR37 doi: 10.21437/Interspeech.2012-65 – ident: 9413_CR16 doi: 10.1109/ICDMW.2010.30 – ident: 9413_CR24 doi: 10.1145/1531914.1531924 – volume: 254 start-page: 33 year: 2017 ident: 9413_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.080 – ident: 9413_CR27 – volume: 385 start-page: 213 year: 2017 ident: 9413_CR30 publication-title: Information Sciences doi: 10.1016/j.ins.2017.01.015 – volume: 1 start-page: 1566 year: 2014 ident: 9413_CR19 publication-title: ACL – volume: 3 start-page: 61 issue: 4 year: 2012 ident: 9413_CR38 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – year: 2019 ident: 9413_CR35 publication-title: Soft Computing doi: 10.1007/s00500-019-03851-5 – volume: 16 start-page: 1750036 issue: 04 year: 2017 ident: 9413_CR28 publication-title: Journal of Information & Knowledge Management doi: 10.1142/S0219649217500368 – volume: 48 start-page: 3094 year: 2018 ident: 9413_CR39 publication-title: Applied Intelligence doi: 10.1007/s10489-018-1142-1 – ident: 9413_CR12 doi: 10.1145/1341531.1341560 – ident: 9413_CR23 doi: 10.1145/2464464.2464470 – ident: 9413_CR26 doi: 10.1145/2187836.2187863 – volume: 102 start-page: 524 year: 2020 ident: 9413_CR32 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.09.001 – volume: 29 start-page: 78 year: 2018 ident: 9413_CR34 publication-title: Electronic Commerce Research and Applications doi: 10.1016/j.elerap.2018.03.008 – ident: 9413_CR7 |
| SSID | ssj0020724 |
| Score | 2.412848 |
| Snippet | The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract... The review of online products or services is becoming a major factor in the user's purchasing decisions. The popularity and influence of online reviews attract... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113 |
| SubjectTerms | Business and Management Classification Computer Communication Networks Data Structures and Information Theory Datasets e-Commerce/e-business IT in Business Machine learning Operations Research/Decision Theory Spam (Junk email) Unsupervised learning |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RqCouhX6gbkuRD5V6oFYdx4mTXiqEuuIACAkqcbMmtlNVKtntJsvvr8frsKIVXHp24lh59syzPfMG4EOGbeVso7kXbc5VrZBXgVhwqb2uSy9c3USkT_X5eXV9XV-kA7c-hVWONjEaajezdEb-OZhRKhSTV-rr_DenqlF0u5pKaDyBLWI2FNJ3Jo7vNlxCp6K2Vc0DLclT0kxKnStLwWnzFDY4WRjmPcf0t3n-5540up_pzv8OfBeeJ-LJjlYz5QVs-O4lPBvj3l_B9HKON2yVycKcH2KIVseo_Qc7vbw6Y7gcZiR76fziC8PQ1PXLOZma3js2apO_hu_Tb1fHJzwVWeA2-O6BY2NL6SQWMjA3tNJirQpnhdNOFFWZtcLqug2sjHRdSiwlKlvnVqm2aCpEl-_BZjfr_BtgwbUpHTNVW69chugDXWty3RSy8BX6CWTjHzY2KZBTIYxfZq2dTKiYgIqJqBg1gcO7d-Yr_Y1Hn_5IwBlanKFniynHIIyPZK7MkY6MVIp8AvsjWiat2t6soZrApxHvdfPD3337eG_vYFtS1kQMXduHzWGx9O_hqb0dfvaLgzhn_wAwyO7x priority: 102 providerName: ProQuest |
| Title | Spam review detection using LSTM autoencoder: an unsupervised approach |
| URI | https://link.springer.com/article/10.1007/s10660-020-09413-4 https://www.proquest.com/docview/2845962384 |
| Volume | 22 |
| WOSCitedRecordID | wos000532802800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1572-9362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020724 issn: 1389-5753 databaseCode: RSV dateStart: 20010201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yKKWXJn2RbZJFh0IPqUCWZUvuLQlZCkmWJZu0aS9CluRSaJxl7e3v70hrJ2naBtqLwUgeixlJM0LzfQPwJjGVcraU1LMqpaIQhioMLCiXXha5Z64oo6VP5HisLi-LSQcKa_ps9_5KMu7Ud8Buec5oOO7gkSRBwauwju5OhYINZ9OPN8csJrtStqqgGIykHVTmzzJ-cUf3N-Xfbkej0xlt_N9wN-FpF2SS_eWseAYrvn4Oj_sc9xcwms7MFVmiVojzbUzHqklo_0pOpuenxCza60Bx6fz8PTHYVDeLWdhWGu9Iz0P-Ei5GR-eHH2hXUIFa9NMtNaXNueMm4xilGcutKUTmLHPSsUzlScWsLCqMwAKHS25yboQtUitElZXKGJe-grX6uvZbQNCNCRlRqZUXLjHGY2hWprLMeOaV8QNIer1q27GNh6IX3_UtT3JQkEYF6aggLQawd_PNbMm18WDvt8FcOixElGxNhyfA8QVKK70vY_TJWTqAnd6iuluhjUa3HAoPpQoFvesteNv89_--_rfu2_CEB8RETFvbgbV2vvC78Mj-aL818yGsyk-fh7B-cDSenOHbsaT4PGWH-JxkX4ZxZv8EY8zqMw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgGXlkcRSwv4AOIAFonjxA4SQlXLqtVuV0hdpN7MxHaqSiW7bLJU_VP9jbW9SVeA6K0Hzk4mif15HvF8MwCvYyyl0YWgNioTynOOVDrHgjJhRZ7ZyORFWOmhGI3k8XH-dQUuOy6MT6vsdGJQ1Gai_T_yD06N-kYxieSfpz-p7xrlT1e7FhoLWAzsxbkL2epPB3tufd8w1v8y3t2nbVcBqp2xaigWOmOGYcqcq4Kaacx5anRkhIlSmcVlpEVeOjfEFzLJMGPIdZ5ozsu0kIgmcXLvwBpPpPD7aiDodYAXibaJrsypc4OSlqTTUvWyLKI-WHMBVeym5TdD-Kc5-OtcNpi7_sb_NlEPYb11rMnOYic8ghVbPYZ7XV7_E-gfTfEHWTB1iLFNSEGriB8_IcOj8SHBeTPxZT2NnX0k6Iaqej71qrS2hnS11zfh2618xVNYrSaVfQbEmW4uAhO3tNzEiNa5o0UiipSlVqLtQdytqNJthXXf6ONMLWtDexQohwIVUKB4D95d3zNd1Be58eq3HijKKx8nWWPLoXDv58t4qR0RPG4WJT3Y7tChWq1UqyU0evC-w9dy-N_PfX6ztFdwf398OFTDg9FgCx4wzxAJaXrbsNrM5vYF3NW_mtN69jLsFwLfbxt3VxiiS9s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlW9QHmJbUvxAcQBrCaOEydICFVtV1RdViu1SBUX49gOqgTZ7SZL1b_WX8fY63RFEb31wNnJJLE_zyOe-QbgVayq3OhSUBtVCeUFVzRHx4IyYUWR2cgUpV_pgRgO89PTYrQEV10tjEur7HSiV9RmrN0_8h1Uo65RTJLznSqkRYz2-x8n59R1kHInrV07jTlEjuzlBYZvzYfDfVzr14z1D072PtHQYYBqNFwtVaXOmGEqZei2KM20KnhqdGSEidI8i6tIi6JCl8SRmmQqY4rrItGcV2mZK2USlHsPVgTGmC6dcJR-vQ72IhEa6uYFRZcoCQU7oWwvyyLqAjcMrmKcoj-M4k3T8NcZrTd9_Yf_86Stw4PgcJPd-Q55BEu2fgyrXb7_E-gfT9RPMq_gIca2PjWtJm78Oxkcn3wmataOHd2nsdP3ROFQ3cwmTsU21pCOk_0pfLmTr3gGy_W4ts-BoEnnwlfoVpabWCmLbmqZiDJlqc2V7UHcra7UgXndNQD5IRec0Q4REhEhPSIk78Hb63smc96RW69-40AjnVJCyVqF2gp8P0fvJXeF98RZlPRgq0OKDNqqkQuY9OBdh7XF8L-fu3G7tJewinCTg8Ph0SasMVc44rP3tmC5nc7sC7ivf7VnzXTbbx0C3-4adr8BxXlU_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spam+review+detection+using+LSTM+autoencoder%3A+an+unsupervised+approach&rft.jtitle=Electronic+commerce+research&rft.au=Saumya%2C+Sunil&rft.au=Singh%2C+Jyoti+Prakash&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=1389-5753&rft.eissn=1572-9362&rft.volume=22&rft.issue=1&rft.spage=113&rft.epage=133&rft_id=info:doi/10.1007%2Fs10660-020-09413-4&rft.externalDocID=10_1007_s10660_020_09413_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-5753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-5753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-5753&client=summon |