Spam review detection using LSTM autoencoder: an unsupervised approach

The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract spammers who intend to elevate their products or services by writing positive reviews for them and lowering the business of others by writin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic commerce research Ročník 22; číslo 1; s. 113 - 133
Hlavní autoři: Saumya, Sunil, Singh, Jyoti Prakash
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer
Springer Nature B.V
Témata:
ISSN:1389-5753, 1572-9362
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract spammers who intend to elevate their products or services by writing positive reviews for them and lowering the business of others by writing negative reviews. Traditionally, the spam review identification task is seen as a two-class classification problem. The classification approach requires a labelled dataset to train a model for the environment it is working on. The unavailability of the labelled dataset is a major limitation in the classification approach. To overcome the problem of the labelled dataset, we propose an unsupervised learning model combining long short-term memory (LSTM) networks and autoencoder (LSTM-autoencoder) to distinguish spam reviews from other real reviews. The said model is trained to learn the patterns of real review from the review’s textual details without any label. The experimental results show that our model is able to separate the real and spam review with good accuracy.
AbstractList The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract spammers who intend to elevate their products or services by writing positive reviews for them and lowering the business of others by writing negative reviews. Traditionally, the spam review identification task is seen as a two-class classification problem. The classification approach requires a labelled dataset to train a model for the environment it is working on. The unavailability of the labelled dataset is a major limitation in the classification approach. To overcome the problem of the labelled dataset, we propose an unsupervised learning model combining long short-term memory (LSTM) networks and autoencoder (LSTM-autoencoder) to distinguish spam reviews from other real reviews. The said model is trained to learn the patterns of real review from the review’s textual details without any label. The experimental results show that our model is able to separate the real and spam review with good accuracy.
Audience Academic
Author Singh, Jyoti Prakash
Saumya, Sunil
Author_xml – sequence: 1
  givenname: Sunil
  orcidid: 0000-0002-9555-9434
  surname: Saumya
  fullname: Saumya, Sunil
  email: sunil.saumya@iiitdwd.ac.in
  organization: Indian Institute of Information Technology Dharwad
– sequence: 2
  givenname: Jyoti Prakash
  surname: Singh
  fullname: Singh, Jyoti Prakash
  organization: National Institute of Technology Patna
BookMark eNp9kE1LwzAch4NMcE6_gKeC5868t_U2hm8w8bB5Dv8l6czY0pq0E7-9mRUEDxJCQvJ78iPPORr5xluErgieEoyLm0iwlDjHNM2KE5bzEzQmoqB5xSQdpT0rq1wUgp2h8xi3OCULysfoftnCPgv24OxHZmxndecan_XR-U22WK6eM-i7xnrdGBtuM0hXPvatDQcXrcmgbUMD-u0Cndawi_byZ52g1_u71fwxX7w8PM1ni1xzIroc1lpSQ0FQLArQVEPFhdHYFAaLUpIa66KqCaGi4qUESYHrimnOa7EuAQyboOvh3VT73tvYqW3TB58qFS25qCRlJU-p6ZDawM4q5-umC6DTMHbvdDJXu3Q-K7AUuKSYJaAcAB2aGIOtlXYdHE0k0O0UweqoWQ2aVZKnvjWrYxf9g7bB7SF8_g-xAYop7Dc2_H7jH-oL1xiQyA
CitedBy_id crossref_primary_10_1007_s40747_022_00672_2
crossref_primary_10_1109_ACCESS_2023_3293641
crossref_primary_10_1007_s11042_022_12155_0
crossref_primary_10_1108_IJPPM_12_2023_0676
crossref_primary_10_1007_s11042_022_13702_5
crossref_primary_10_3390_app15137433
crossref_primary_10_1007_s11042_025_20922_y
crossref_primary_10_1007_s10489_022_03427_1
crossref_primary_10_1016_j_elerap_2023_101283
crossref_primary_10_1016_j_procs_2024_09_620
crossref_primary_10_3390_en17102340
crossref_primary_10_1007_s10660_020_09455_8
crossref_primary_10_1080_10941665_2023_2228939
crossref_primary_10_1017_S0269888924000067
crossref_primary_10_3390_electronics13081432
crossref_primary_10_3390_electronics12224673
crossref_primary_10_1109_JSEN_2021_3092728
crossref_primary_10_3390_math10193554
crossref_primary_10_1109_ACCESS_2024_3399824
crossref_primary_10_1117_1_JEI_33_2_023032
crossref_primary_10_1016_j_jbusres_2022_113631
crossref_primary_10_1007_s10115_025_02542_y
crossref_primary_10_1109_ACCESS_2024_3365193
crossref_primary_10_1177_01655515221124062
crossref_primary_10_1007_s00521_023_08941_y
crossref_primary_10_1177_14413582241283505
crossref_primary_10_1007_s10479_025_06770_x
Cites_doi 10.1016/j.ins.2017.01.015
10.1145/2070710.2070716
10.1007/s10489-018-1142-1
10.1016/j.neucom.2016.10.080
10.1186/s40537-015-0029-9
10.1007/s40012-018-0193-0
10.1016/j.future.2019.09.001
10.1016/j.eswa.2016.03.020
10.1007/s00500-019-03851-5
10.12733/jics20105452
10.1016/j.jbusres.2016.08.008
10.1007/s11948-017-9959-2
10.1093/comjnl/bxv068
10.1016/j.eswa.2014.12.029
10.1142/S0219649217500368
10.1016/j.elerap.2018.03.008
10.1016/j.ipm.2018.03.007
10.1145/2783258.2783370
10.1109/ICDM.2007.68
10.1109/ICMLA.2015.37
10.1145/1871437.1871557
10.1145/2339530.2339662
10.1145/1871437.1871669
10.1145/2487575.2487580
10.1145/1242572.1242759
10.1145/2701126.2701130
10.1109/ICEBE.2010.47
10.1145/3038912.3052582
10.21437/Interspeech.2012-65
10.1109/ICDMW.2010.30
10.1145/1531914.1531924
10.1145/1341531.1341560
10.1145/2464464.2464470
10.1145/2187836.2187863
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7TA
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10660-020-09413-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Materials Business File
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
Materials Business File
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1572-9362
EndPage 133
ExternalDocumentID A706508203
10_1007_s10660_020_09413_4
GrantInformation_xml – fundername: Ministry of Electronics and Information technology
  grantid: VISPHD-MEITY-523
  funderid: http://dx.doi.org/10.13039/501100008628
GroupedDBID -57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBO
EBS
EBU
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
OVD
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
QWB
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZD
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
ZL0
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7TA
7XB
8AL
8FD
8FK
JG9
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c415t-abc62d2a52057ac2ca945dc0d7d05861f0c79f11259486a62a4c93c44f5b8aad3
IEDL.DBID RSV
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532802800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-5753
IngestDate Tue Dec 02 16:07:14 EST 2025
Sat Nov 29 10:36:04 EST 2025
Tue Nov 18 22:20:18 EST 2025
Sat Nov 29 01:37:47 EST 2025
Fri Feb 21 02:47:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Long short-term memory
E-commerce
Autoencoder neural network
Spam detection
Unsupervised learning
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-abc62d2a52057ac2ca945dc0d7d05861f0c79f11259486a62a4c93c44f5b8aad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9555-9434
PQID 2845962384
PQPubID 25737
PageCount 21
ParticipantIDs proquest_journals_2845962384
gale_infotracacademiconefile_A706508203
crossref_citationtrail_10_1007_s10660_020_09413_4
crossref_primary_10_1007_s10660_020_09413_4
springer_journals_10_1007_s10660_020_09413_4
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Electronic commerce research
PublicationTitleAbbrev Electron Commer Res
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Saumya, Singh (CR33) 2018; 6
Wang, Hou, Song, Li, Kong (CR40) 2016; 59
Saumya, Singh, Dwivedi (CR35) 2019
CR18
Wang, Xie, Liu, Yu (CR38) 2012; 3
CR16
CR15
CR37
Heydari, Tavakoli, Salim (CR9) 2016; 58
CR13
CR12
CR11
Crawford, Khoshgoftaar, Prusa, Richter, Al Najada (CR5) 2015; 2
CR10
CR31
Wang, Gu, Xu (CR39) 2018; 48
Heydari, ali Tavakoli, Salim, Heydari (CR8) 2015; 42
Singh, Irani, Rana, Dwivedi, Saumya, Roy (CR36) 2017; 70
Zhang, Du, Yoshida, Wang (CR42) 2018; 54
CR2
CR4
Li, Qin, Ren, Liu (CR20) 2017; 254
CR3
Kolhar (CR14) 2018; 24
CR6
Li, Lin, Zhang, Li, Zhao (CR21) 2015; 12
Ren, Ji (CR30) 2017; 385
CR7
CR29
Akoglu, Chandy, Faloutsos (CR1) 2013; 13
CR27
CR26
CR25
CR24
Li, Ott, Cardie, Hovy (CR19) 2014; 1
CR23
CR22
CR41
Rastogi, Mehrotra (CR28) 2017; 16
Lau, Liao, Kwok, Xu, Xia, Li (CR17) 2011; 2
Roy, Singh, Banerjee (CR32) 2020; 102
Saumya, Singh, Baabdullah, Rana, Dwivedi (CR34) 2018; 29
RY Lau (9413_CR17) 2011; 2
9413_CR41
W Zhang (9413_CR42) 2018; 54
Z Wang (9413_CR39) 2018; 48
9413_CR29
S Saumya (9413_CR35) 2019
9413_CR25
9413_CR7
9413_CR26
Z Wang (9413_CR40) 2016; 59
9413_CR6
9413_CR27
9413_CR4
Y Li (9413_CR21) 2015; 12
9413_CR3
9413_CR22
JP Singh (9413_CR36) 2017; 70
9413_CR2
9413_CR23
M Kolhar (9413_CR14) 2018; 24
9413_CR24
M Crawford (9413_CR5) 2015; 2
J Li (9413_CR19) 2014; 1
9413_CR31
A Heydari (9413_CR9) 2016; 58
G Wang (9413_CR38) 2012; 3
S Saumya (9413_CR34) 2018; 29
A Heydari (9413_CR8) 2015; 42
9413_CR18
Y Ren (9413_CR30) 2017; 385
PK Roy (9413_CR32) 2020; 102
9413_CR15
A Rastogi (9413_CR28) 2017; 16
9413_CR37
L Akoglu (9413_CR1) 2013; 13
9413_CR16
L Li (9413_CR20) 2017; 254
9413_CR10
9413_CR11
S Saumya (9413_CR33) 2018; 6
9413_CR12
9413_CR13
References_xml – volume: 385
  start-page: 213
  year: 2017
  end-page: 224
  ident: CR30
  article-title: Neural networks for deceptive opinion spam detection: An empirical study
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.01.015
– ident: CR22
– volume: 3
  start-page: 61
  issue: 4
  year: 2012
  ident: CR38
  article-title: Identify online store review spammers via social review graph
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– ident: CR18
– volume: 2
  start-page: 1
  issue: 4
  year: 2011
  end-page: 30
  ident: CR17
  article-title: Text mining and probabilistic language modeling for online review spam detecting
  publication-title: ACM Transactions on Management Information Systems
  doi: 10.1145/2070710.2070716
– volume: 48
  start-page: 3094
  year: 2018
  end-page: 3107
  ident: CR39
  article-title: GSLDA: LDA-based group spamming detection in product reviews
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1142-1
– volume: 254
  start-page: 33
  year: 2017
  end-page: 41
  ident: CR20
  article-title: Document representation and feature combination for deceptive spam review detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.080
– ident: CR4
– ident: CR2
– volume: 2
  start-page: 23
  issue: 1
  year: 2015
  ident: CR5
  article-title: Survey of review spam detection using machine learning techniques
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-015-0029-9
– ident: CR16
– volume: 6
  start-page: 137
  issue: 2
  year: 2018
  end-page: 148
  ident: CR33
  article-title: Detection of spam reviews: A sentiment analysis approach
  publication-title: CSI Transactions on ICT
  doi: 10.1007/s40012-018-0193-0
– ident: CR37
– ident: CR12
– volume: 102
  start-page: 524
  year: 2020
  end-page: 533
  ident: CR32
  article-title: Deep learning to filter SMS spam
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.09.001
– ident: CR10
– volume: 1
  start-page: 1566
  year: 2014
  end-page: 1576
  ident: CR19
  article-title: Towards a general rule for identifying deceptive opinion spam
  publication-title: ACL
– ident: CR6
– volume: 58
  start-page: 83
  year: 2016
  end-page: 92
  ident: CR9
  article-title: Detection of fake opinions using time series
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.020
– ident: CR29
– year: 2019
  ident: CR35
  article-title: Predicting the helpfulness score of online reviews using convolutional neural network
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03851-5
– volume: 12
  start-page: 1615
  issue: 4
  year: 2015
  end-page: 1627
  ident: CR21
  article-title: Highlighting the fake reviews in review sequence with the suspicious contents and behaviours
  publication-title: Journal of Information & Computational Science
  doi: 10.12733/jics20105452
– volume: 70
  start-page: 346
  year: 2017
  end-page: 355
  ident: CR36
  article-title: Predicting the “helpfulness” of online consumer reviews
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2016.08.008
– ident: CR25
– volume: 24
  start-page: 1577
  year: 2018
  end-page: 1588
  ident: CR14
  article-title: E-commerce review system to detect false reviews
  publication-title: Science and Engineering Ethics
  doi: 10.1007/s11948-017-9959-2
– ident: CR27
– volume: 59
  start-page: 861
  issue: 6
  year: 2016
  end-page: 874
  ident: CR40
  article-title: Detecting review spammer groups via bipartite graph projection
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxv068
– ident: CR23
– volume: 42
  start-page: 3634
  issue: 7
  year: 2015
  end-page: 3642
  ident: CR8
  article-title: Detection of review spam: A survey
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.12.029
– volume: 16
  start-page: 1750036
  issue: 04
  year: 2017
  ident: CR28
  article-title: Opinion spam detection in online reviews
  publication-title: Journal of Information & Knowledge Management
  doi: 10.1142/S0219649217500368
– volume: 13
  start-page: 2
  year: 2013
  end-page: 11
  ident: CR1
  article-title: Opinion fraud detection in online reviews by network effects
  publication-title: ICWSM
– volume: 29
  start-page: 78
  year: 2018
  end-page: 89
  ident: CR34
  article-title: Ranking online consumer reviews
  publication-title: Electronic Commerce Research and Applications
  doi: 10.1016/j.elerap.2018.03.008
– ident: CR3
– ident: CR15
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 54
  start-page: 576
  issue: 4
  year: 2018
  end-page: 592
  ident: CR42
  article-title: DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.03.007
– ident: CR7
– ident: CR41
– ident: CR26
– ident: CR24
– ident: 9413_CR29
  doi: 10.1145/2783258.2783370
– ident: 9413_CR10
  doi: 10.1109/ICDM.2007.68
– ident: 9413_CR2
  doi: 10.1109/ICMLA.2015.37
– volume: 24
  start-page: 1577
  year: 2018
  ident: 9413_CR14
  publication-title: Science and Engineering Ethics
  doi: 10.1007/s11948-017-9959-2
– volume: 6
  start-page: 137
  issue: 2
  year: 2018
  ident: 9413_CR33
  publication-title: CSI Transactions on ICT
  doi: 10.1007/s40012-018-0193-0
– ident: 9413_CR22
  doi: 10.1145/1871437.1871557
– ident: 9413_CR41
  doi: 10.1145/2339530.2339662
– volume: 54
  start-page: 576
  issue: 4
  year: 2018
  ident: 9413_CR42
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.03.007
– ident: 9413_CR13
  doi: 10.1145/1871437.1871669
– volume: 2
  start-page: 23
  issue: 1
  year: 2015
  ident: 9413_CR5
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-015-0029-9
– volume: 59
  start-page: 861
  issue: 6
  year: 2016
  ident: 9413_CR40
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxv068
– volume: 13
  start-page: 2
  year: 2013
  ident: 9413_CR1
  publication-title: ICWSM
– volume: 42
  start-page: 3634
  issue: 7
  year: 2015
  ident: 9413_CR8
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.12.029
– ident: 9413_CR25
  doi: 10.1145/2487575.2487580
– ident: 9413_CR31
– ident: 9413_CR4
– volume: 12
  start-page: 1615
  issue: 4
  year: 2015
  ident: 9413_CR21
  publication-title: Journal of Information & Computational Science
  doi: 10.12733/jics20105452
– ident: 9413_CR11
  doi: 10.1145/1242572.1242759
– volume: 70
  start-page: 346
  year: 2017
  ident: 9413_CR36
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2016.08.008
– ident: 9413_CR3
  doi: 10.1145/2701126.2701130
– ident: 9413_CR6
– volume: 2
  start-page: 1
  issue: 4
  year: 2011
  ident: 9413_CR17
  publication-title: ACM Transactions on Management Information Systems
  doi: 10.1145/2070710.2070716
– ident: 9413_CR15
  doi: 10.1109/ICEBE.2010.47
– volume: 58
  start-page: 83
  year: 2016
  ident: 9413_CR9
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.020
– ident: 9413_CR18
  doi: 10.1145/3038912.3052582
– ident: 9413_CR37
  doi: 10.21437/Interspeech.2012-65
– ident: 9413_CR16
  doi: 10.1109/ICDMW.2010.30
– ident: 9413_CR24
  doi: 10.1145/1531914.1531924
– volume: 254
  start-page: 33
  year: 2017
  ident: 9413_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.080
– ident: 9413_CR27
– volume: 385
  start-page: 213
  year: 2017
  ident: 9413_CR30
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.01.015
– volume: 1
  start-page: 1566
  year: 2014
  ident: 9413_CR19
  publication-title: ACL
– volume: 3
  start-page: 61
  issue: 4
  year: 2012
  ident: 9413_CR38
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– year: 2019
  ident: 9413_CR35
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03851-5
– volume: 16
  start-page: 1750036
  issue: 04
  year: 2017
  ident: 9413_CR28
  publication-title: Journal of Information & Knowledge Management
  doi: 10.1142/S0219649217500368
– volume: 48
  start-page: 3094
  year: 2018
  ident: 9413_CR39
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1142-1
– ident: 9413_CR12
  doi: 10.1145/1341531.1341560
– ident: 9413_CR23
  doi: 10.1145/2464464.2464470
– ident: 9413_CR26
  doi: 10.1145/2187836.2187863
– volume: 102
  start-page: 524
  year: 2020
  ident: 9413_CR32
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.09.001
– volume: 29
  start-page: 78
  year: 2018
  ident: 9413_CR34
  publication-title: Electronic Commerce Research and Applications
  doi: 10.1016/j.elerap.2018.03.008
– ident: 9413_CR7
SSID ssj0020724
Score 2.412848
Snippet The review of online products or services is becoming a major factor in the user’s purchasing decisions. The popularity and influence of online reviews attract...
The review of online products or services is becoming a major factor in the user's purchasing decisions. The popularity and influence of online reviews attract...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Business and Management
Classification
Computer Communication Networks
Data Structures and Information Theory
Datasets
e-Commerce/e-business
IT in Business
Machine learning
Operations Research/Decision Theory
Spam (Junk email)
Unsupervised learning
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RQBWXQqGILQ_5UKmHEtWxnRcXhBArDoCQditxsyZ2UiFBdtlk-_vr8TqsCoJLz44fymfPw56ZD-BbKY3Tqs4tsbnASNVx7s6c8YCUosAETVl6sons5ia_uytuw4VbG8Iqe5noBbWdGLoj_-nEKBHFyFydTp8iYo2i19VAofEB1siyoZC-a37-7HDxLJDa5kXkzBIZkmZC6lya8oicJ-fgxDJS_yiml-L51TupVz_Dzf9d-BZ8CoYnO1vslM-wUjXb8LGPe9-B4WiKj2yRycJs1fkQrYZR-292NRpfM5x3Eyp7aavZCUPX1LTzKYmatrKsr03-BX4NL8bnl1EgWYiM091dhKVJhRWYCGe5oREGC5VYw21meZKncc1NVtTOKqO6LimmApUppFGqTsoc0cpdWG0mTbUHDIlAlNu4qutESdeNVKDEwla8NnlWDiDu_7A2oQI5EWE86GXtZEJFO1S0R0WrAfx47jNd1N949-vvBJymw-lGNhhyDNz6qMyVPsu8RSq4HMBBj5YOp7bVS6gGcNzjvWx-e96v74-2DxuCsiZ86NoBrHazeXUI6-ZPd9_Ojvye_QsSfu8Q
  priority: 102
  providerName: ProQuest
Title Spam review detection using LSTM autoencoder: an unsupervised approach
URI https://link.springer.com/article/10.1007/s10660-020-09413-4
https://www.proquest.com/docview/2845962384
Volume 22
WOSCitedRecordID wos000532802800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9362
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020724
  issn: 1389-5753
  databaseCode: RSV
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-qluKLVlvxrD3yIPigC9lkP7J9U_EoVI_Ds9X6EmaT3VJo947bPf9-J7ldtfYD7EtgyceGmUx-M2Q-APZyaQhVySyxSmAQlaEimTOeIbnIMEaT577YRDocquvrbNQGhdWdt3v3JOlv6kfBbknCA2fukEkSyiBaghWCO-UKNlyMv9ybWTxtS9mqLCBlRLahMn9e4xc4enop__Y66kFnsP5_230Na62SyY4Wp2IDXhTVJrzqfNzfwGA8xZ9sEbXCbNF4d6yKuf5v7Gx8ec5w3kxciktbzD4wpK6qnk_dtVIXlnV5yN_C58Hp5cnHoC2oEBjC6SbA3CTCCowFaWlohMEsiq3hNrU8VklYcpNmJWlgLodLgonAyGTSRFEZ5wrRyi1YriZVsQ0MXbFQbsOiLONI0jQHdxIzW_DSqDTvQdjRVZs227grevFDP-RJdgTSRCDtCaSjHhzcz5kucm38c_S-Y5d2gkgrG2zjCWh_LqWVPkq99im47MFux1HdSmitCZZd4SGpaKHDjoMP3X__787zhr-DVeEiJrzb2i4sN7N58R5emtvmez3rw1J69bUPK8enw9EFfX1KA2rP-Qm1o_im70_2HU2q6lI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgGXlkcRSwv4AOIAFontJA4SQlXLqtVuV0hdpN6MYztVpZJdNlmq_qn-xnq8SVeA6K0Hzo6dh795xTPzAbwuuPFW1YclVjJNRRlLL3MmbEjBcp1oUxSBbCIbjeTxcf51BS67WhhMq-x0YlDUdmLwH_kHr0aRKIZL8Xn6kyJrFJ6udhQaC1gM3MW5D9nqTwd7fn_fMNb_Mt7dpy2rADXeWDVUFyZllumEeVdFG2Z0LhJrIpvZKJFpXEYmy0vvhmAjk1SnTAuTcyNEmRRSa8v9undgTXCZoVwNMnod4EVZS6Irc-rdIN4W6bSlemkaUQzWfEAVcyp-M4R_moO_zmWDuetv_G8f6iGst4412VlIwiNYcdVjuNfl9T-B_tFU_yCLSh1iXRNS0CqC4ydkeDQ-JHreTLCtp3Wzj0T7oaqeT1GV1s6Srvf6Jny7lbd4CqvVpHLPgGgkSI1s7MoyEdxPQxPPdW5dVBqZFT2Iux1Vpu2wjkQfZ2rZGxpRoDwKVECBEj14dz1nuugvcuPVbxEoCpWPX9notobCPx-28VI7WfC4WcR7sN2hQ7VaqVZLaPTgfYev5fC_7_v85tVewf398eFQDQ9Ggy14wLBCJKTpbcNqM5u7F3DX_GpO69nLIC8Evt827q4A7XpL-g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlVcSnmJpaX4AOIAURPbeSEhVLWsqFpWK7VIFRfj2A5Cguyyybbir_HrmPE6XQGitx44O548_Hke8cx8AE8rYdCqYlhiC64jWScF7jnjF6TipU61qSpPNpGPRsXZWTlegZ99LQylVfY60StqOzH0j3wX1SgRxYhC7tYhLWJ8MHwz_R4RgxSdtPZ0GguIHLkfFxi-ta8PD3Ctn3E-fHu6_y4KDAORQcPVRboyGbdcpxzdFm240aVMrYltbuO0yJI6NnlZo0tCTU0ynXEtTSmMlHVaFVpbgXJvwFqOMSalE47Tj5fBXpwHQt2ijNAlEqFgJ5TtZVkcUeCGwVUiIvmbUfzTNPx1RutN3_D2__zRNmEjONxsb7FD7sCKa-7Cep_vfw-GJ1P9jS0qeJh1nU9NaxiNf2bHJ6fvmZ53E2r3ad3sFdM41LTzKanY1lnW92S_Dx-u5S0ewGozadxDYJqIU2ObuLpOpcBpZPqFLq2La1Pk1QCSfnWVCZ3XiQDkq1r2jCZEKESE8ohQcgAvLudMF31Hrrz6OYFGkVJCyUaH2gp8PmrvpfZy74nzWAxgu0eKCtqqVUuYDOBlj7Xl8L_v--hqaU9gHeGmjg9HR1twi1PhiM_e24bVbjZ3j-GmOe--tLMdv3UYfLpu2P0Cl3FVHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spam+review+detection+using+LSTM+autoencoder%3A+an+unsupervised+approach&rft.jtitle=Electronic+commerce+research&rft.au=Saumya%2C+Sunil&rft.au=Singh%2C+Jyoti+Prakash&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=1389-5753&rft.eissn=1572-9362&rft.volume=22&rft.issue=1&rft.spage=113&rft.epage=133&rft_id=info:doi/10.1007%2Fs10660-020-09413-4&rft.externalDocID=10_1007_s10660_020_09413_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-5753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-5753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-5753&client=summon