Factors affecting thermal conductivities of the polymers and polymer composites: A review
It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer composites. Limited understanding of heat transfer in polymers and polymer composites imposes restrictions on the designing and fabricating better ther...
Uloženo v:
| Vydáno v: | Composites science and technology Ročník 193; s. 108134 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
16.06.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0266-3538, 1879-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer composites. Limited understanding of heat transfer in polymers and polymer composites imposes restrictions on the designing and fabricating better thermally conductive polymers and polymer composites. This review attempts to help understand the thermal conduction mechanisms by analyzing the effects of different components in polymers and polymer composites on heat transfer. Factors of micro- and macro-characteristics, such as chain structures, interfaces, functionalization and processing techniques, etc., are all illustrated to elucidate their impacts on the thermal conductivities. In general, chain structures of polymers, intrinsic λ values of thermally conductive fillers and interfacial thermal resistances are the main and internal factors to determine the λ values of polymers and polymer composites. Meantime, processing and environmental factors are only auxiliary factors to improve the thermal conductivities. We expect this review will give some guidance to the future studies in thermally conductive polymers and polymer composites. |
|---|---|
| AbstractList | It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer composites. Limited understanding of heat transfer in polymers and polymer composites imposes restrictions on the designing and fabricating better thermally conductive polymers and polymer composites. This review attempts to help understand the thermal conduction mechanisms by analyzing the effects of different components in polymers and polymer composites on heat transfer. Factors of micro- and macro-characteristics, such as chain structures, interfaces, functionalization and processing techniques, etc., are all illustrated to elucidate their impacts on the thermal conductivities. In general, chain structures of polymers, intrinsic λ values of thermally conductive fillers and interfacial thermal resistances are the main and internal factors to determine the λ values of polymers and polymer composites. Meantime, processing and environmental factors are only auxiliary factors to improve the thermal conductivities. We expect this review will give some guidance to the future studies in thermally conductive polymers and polymer composites. |
| ArticleNumber | 108134 |
| Author | Yang, Xutong Guo, Yongqiang Shi, Xuetao Gu, Junwei Ruan, Kunpeng |
| Author_xml | – sequence: 1 givenname: Yongqiang surname: Guo fullname: Guo, Yongqiang organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 2 givenname: Kunpeng surname: Ruan fullname: Ruan, Kunpeng organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 3 givenname: Xuetao surname: Shi fullname: Shi, Xuetao organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 4 givenname: Xutong surname: Yang fullname: Yang, Xutong organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 5 givenname: Junwei surname: Gu fullname: Gu, Junwei email: gjw@nwpu.edu.cn, nwpugjw@163.com organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China |
| BookMark | eNqNkE9LAzEQxYNUsK1-hxXPWye72T_xIqVYFQpe9OApZLOzNku7qUla6bc3yyqIp56GmXnvzfCbkFFnOiTkmsKMAs1v25ky251T2qNazxJI-nlJU3ZGxrQseEwhgxEZQ5LncZql5QWZONcCQJHxZEzel1J5Y10kmwaV191H5Ndot3ITKdPV-zA6aK_RRabpN9HObI5b7A1d_dtE_Q_GhR_cXTSPLB40fl2S80ZuHF791Cl5Wz68Lp7i1cvj82K-ihWjmY9lVjOEQlWq5GmaVqxivARWcJ5zylhWVoWkqsJSNmlFocglcKwbaDjKmvIsnZKbIXdnzecenRet2dsunBQJY8A4sDIJKj6olDXOWWzEzuqttEdBQfQkRSv-kBQ9STGQDN77f94gkl6bzlupNyclLIYEDCACHCuCCjuFtbaBuqiNPiHlG7OXmuM |
| CitedBy_id | crossref_primary_10_3390_polym16162315 crossref_primary_10_1016_j_compositesa_2022_107212 crossref_primary_10_1016_j_diamond_2023_110340 crossref_primary_10_1016_j_trac_2024_118062 crossref_primary_10_1007_s42114_022_00423_4 crossref_primary_10_1002_app_57962 crossref_primary_10_1007_s40820_022_00868_8 crossref_primary_10_1039_D4SE00171K crossref_primary_10_1002_mame_202200311 crossref_primary_10_3390_membranes11070536 crossref_primary_10_3390_polym16060772 crossref_primary_10_1002_pc_29431 crossref_primary_10_1016_j_compositesb_2025_112531 crossref_primary_10_1016_j_compscitech_2022_109310 crossref_primary_10_1038_s41427_024_00554_8 crossref_primary_10_3390_nano11102654 crossref_primary_10_1016_j_coco_2022_101101 crossref_primary_10_1016_j_coco_2021_101044 crossref_primary_10_1016_j_polymer_2023_126499 crossref_primary_10_1002_mame_202100715 crossref_primary_10_3390_polym16060778 crossref_primary_10_1016_j_mtcomm_2022_105239 crossref_primary_10_3390_nano11020373 crossref_primary_10_52711_2231_5713_2024_00015 crossref_primary_10_1007_s10854_021_07269_4 crossref_primary_10_1002_adfm_202415921 crossref_primary_10_1002_marc_202300335 crossref_primary_10_1002_smll_202412447 crossref_primary_10_1007_s11595_024_2890_x crossref_primary_10_1088_1742_6596_3006_1_012022 crossref_primary_10_1016_j_carbon_2021_12_067 crossref_primary_10_1016_j_compositesb_2022_109613 crossref_primary_10_1016_j_surfin_2022_102375 crossref_primary_10_1007_s10692_021_10236_8 crossref_primary_10_3390_polym13020258 crossref_primary_10_1016_j_matchemphys_2022_126325 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126495 crossref_primary_10_1007_s13233_024_00288_0 crossref_primary_10_1016_j_ceramint_2023_08_133 crossref_primary_10_1016_j_ceramint_2025_04_111 crossref_primary_10_1007_s10853_021_06664_w crossref_primary_10_1007_s11431_022_2168_3 crossref_primary_10_1039_D3MH01796F crossref_primary_10_1016_j_compscitech_2021_109253 crossref_primary_10_1038_s41699_021_00231_2 crossref_primary_10_1016_j_icheatmasstransfer_2025_109672 crossref_primary_10_1016_j_compscitech_2021_109152 crossref_primary_10_3390_molecules26123555 crossref_primary_10_1038_s41467_024_49354_2 crossref_primary_10_1002_ange_202117433 crossref_primary_10_3390_polym14132707 crossref_primary_10_1016_j_compositesa_2025_109142 crossref_primary_10_1177_09673911221106686 crossref_primary_10_1002_pssa_202400256 crossref_primary_10_1016_j_reactfunctpolym_2023_105687 crossref_primary_10_1016_j_apsusc_2021_149255 crossref_primary_10_1016_j_compositesb_2024_111396 crossref_primary_10_1038_s41598_025_03474_x crossref_primary_10_1016_j_compscitech_2021_109026 crossref_primary_10_1007_s42464_024_00286_y crossref_primary_10_1016_j_compositesa_2023_107533 crossref_primary_10_1016_j_pnsc_2022_03_007 crossref_primary_10_1016_j_jcis_2022_03_115 crossref_primary_10_1016_j_polymer_2024_127935 crossref_primary_10_1016_j_polymer_2025_128191 crossref_primary_10_1002_app_55586 crossref_primary_10_1016_j_cej_2020_128206 crossref_primary_10_1016_j_cej_2023_143963 crossref_primary_10_1002_adfm_202215168 crossref_primary_10_1016_j_compositesb_2024_111357 crossref_primary_10_1080_00222348_2022_2085486 crossref_primary_10_1007_s13204_021_01799_3 crossref_primary_10_3390_su16156482 crossref_primary_10_1016_j_icheatmasstransfer_2024_107908 crossref_primary_10_1021_acsapm_5c01320 crossref_primary_10_3390_ma14144050 crossref_primary_10_1088_1361_6528_acae2b crossref_primary_10_1002_app_53289 crossref_primary_10_1002_pc_28666 crossref_primary_10_1007_s10118_023_3057_5 crossref_primary_10_3103_S1068799823030212 crossref_primary_10_1016_j_ceramint_2020_09_038 crossref_primary_10_3390_su16052166 crossref_primary_10_1016_j_jallcom_2021_159332 crossref_primary_10_1016_j_coco_2023_101764 crossref_primary_10_1515_rams_2024_0026 crossref_primary_10_1002_app_56321 crossref_primary_10_1016_j_polymer_2023_126218 crossref_primary_10_1016_j_surfin_2022_102246 crossref_primary_10_1080_25740881_2022_2116343 crossref_primary_10_1016_j_compositesa_2025_109289 crossref_primary_10_3390_ma17102400 crossref_primary_10_3390_app15063207 crossref_primary_10_3390_polym17121604 crossref_primary_10_1016_j_compositesb_2021_109163 crossref_primary_10_1016_j_jallcom_2022_167123 crossref_primary_10_1039_D4QM00520A crossref_primary_10_3390_nano11112891 crossref_primary_10_1109_TIA_2022_3186286 crossref_primary_10_1016_j_mtcomm_2024_109116 crossref_primary_10_1002_pc_28534 crossref_primary_10_1002_pc_29985 crossref_primary_10_1016_j_cryogenics_2022_103423 crossref_primary_10_3390_polym15020450 crossref_primary_10_1016_j_eurpolymj_2024_113083 crossref_primary_10_1016_j_coco_2021_101035 crossref_primary_10_1016_j_compositesa_2022_107117 crossref_primary_10_1063_5_0254207 crossref_primary_10_1016_j_compositesa_2023_107998 crossref_primary_10_1016_j_polymer_2023_126663 crossref_primary_10_1080_09276440_2024_2320482 crossref_primary_10_1007_s42114_023_00816_z crossref_primary_10_1016_j_compscitech_2023_109934 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123429 crossref_primary_10_3390_polym12091954 crossref_primary_10_1002_smll_202309338 crossref_primary_10_3390_polym16050616 crossref_primary_10_1002_pc_28326 crossref_primary_10_1016_j_compscitech_2022_109890 crossref_primary_10_1007_s10163_024_01956_0 crossref_primary_10_1002_app_53077 crossref_primary_10_3390_sym14122597 crossref_primary_10_3390_jcs4040180 crossref_primary_10_3390_molecules27228066 crossref_primary_10_1016_j_nxmate_2025_100499 crossref_primary_10_1016_j_mtphys_2021_100594 crossref_primary_10_18586_msufbd_1617726 crossref_primary_10_1002_macp_202200305 crossref_primary_10_3390_nano11081898 crossref_primary_10_1016_j_compscitech_2022_109769 crossref_primary_10_1002_pc_27342 crossref_primary_10_1002_sstr_202500102 crossref_primary_10_3390_ijms24087606 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127576 crossref_primary_10_1007_s10854_024_12794_z crossref_primary_10_1002_pc_28433 crossref_primary_10_1007_s11664_022_09465_2 crossref_primary_10_1016_j_compscitech_2022_109400 crossref_primary_10_1016_j_cej_2025_164502 crossref_primary_10_1016_j_compositesb_2021_108666 crossref_primary_10_1016_j_surfin_2025_105787 crossref_primary_10_3390_nano11061511 crossref_primary_10_1016_j_colsurfa_2024_134195 crossref_primary_10_1002_cphc_202100645 crossref_primary_10_1016_j_compositesa_2025_109074 crossref_primary_10_1002_adfm_202510818 crossref_primary_10_1002_pc_27531 crossref_primary_10_1007_s42114_021_00414_x crossref_primary_10_1016_j_indcrop_2024_119714 crossref_primary_10_1016_j_cej_2025_163651 crossref_primary_10_3390_polym17030373 crossref_primary_10_1016_j_ijmecsci_2025_110452 crossref_primary_10_1038_s41524_025_01671_w crossref_primary_10_1016_j_arabjc_2024_105997 crossref_primary_10_1016_j_matchemphys_2025_131140 crossref_primary_10_1515_polyeng_2023_0182 crossref_primary_10_1002_pc_27522 crossref_primary_10_1007_s42114_023_00709_1 crossref_primary_10_1002_pc_27767 crossref_primary_10_1177_08927057211059754 crossref_primary_10_1016_j_icheatmasstransfer_2024_107726 crossref_primary_10_1016_j_polymertesting_2022_107868 crossref_primary_10_3390_app11125663 crossref_primary_10_1016_j_matchemphys_2021_125151 crossref_primary_10_1021_acsami_5c03517 crossref_primary_10_1038_s41528_021_00113_z crossref_primary_10_1016_j_coco_2024_102007 crossref_primary_10_1515_ipp_2024_0047 crossref_primary_10_3390_jcs8100399 crossref_primary_10_1002_pc_29612 crossref_primary_10_1038_s41598_021_81925_x crossref_primary_10_1002_pc_28521 crossref_primary_10_1016_j_compscitech_2021_108681 crossref_primary_10_1002_pc_29613 crossref_primary_10_1016_j_matdes_2025_114662 crossref_primary_10_1002_pc_29728 crossref_primary_10_1016_j_radphyschem_2023_110966 crossref_primary_10_1016_j_ceramint_2022_12_124 crossref_primary_10_1007_s10118_020_2466_y crossref_primary_10_1016_j_polymer_2024_126810 crossref_primary_10_1016_j_memsci_2023_121664 crossref_primary_10_1002_app_55618 crossref_primary_10_1016_j_ceramint_2025_01_580 crossref_primary_10_1002_pc_26570 crossref_primary_10_3390_photonics10070824 crossref_primary_10_1039_D2PY00432A crossref_primary_10_1007_s10853_023_09190_z crossref_primary_10_3390_nano13152154 crossref_primary_10_1021_polymscitech_5c00056 crossref_primary_10_1016_j_icheatmasstransfer_2025_108716 crossref_primary_10_1016_j_jallcom_2025_182630 crossref_primary_10_1016_j_polymertesting_2021_107325 crossref_primary_10_1039_D4NR03175J crossref_primary_10_1016_j_compscitech_2024_110590 crossref_primary_10_1016_j_compscitech_2024_110592 crossref_primary_10_1002_pen_27084 crossref_primary_10_1016_j_coco_2024_102183 crossref_primary_10_1016_j_compscitech_2021_108788 crossref_primary_10_1088_1361_6501_ad9e17 crossref_primary_10_1007_s10853_022_07005_1 crossref_primary_10_1016_j_compscitech_2021_108668 crossref_primary_10_3390_en18071647 crossref_primary_10_1016_j_ceramint_2022_05_132 crossref_primary_10_1002_pat_5858 crossref_primary_10_1016_j_apmt_2025_102727 crossref_primary_10_1016_j_jmst_2024_07_053 crossref_primary_10_1016_j_ceramint_2024_09_398 crossref_primary_10_1016_j_compositesb_2021_109203 crossref_primary_10_1016_j_eurpolymj_2024_113368 crossref_primary_10_1016_j_compositesb_2021_109207 crossref_primary_10_1134_S0018151X23050139 crossref_primary_10_1039_D2NR02421G crossref_primary_10_1016_j_cej_2025_164719 crossref_primary_10_1007_s42114_024_01076_1 crossref_primary_10_1016_j_compscitech_2022_109904 crossref_primary_10_1016_j_jmst_2022_10_077 crossref_primary_10_1049_hve2_12261 crossref_primary_10_1016_j_compscitech_2021_108799 crossref_primary_10_1016_j_coco_2024_102196 crossref_primary_10_1016_j_susmat_2023_e00765 crossref_primary_10_1002_sus2_128 crossref_primary_10_1002_smtd_202500453 crossref_primary_10_1016_j_jallcom_2023_171072 crossref_primary_10_3390_polym17141929 crossref_primary_10_1016_j_polymer_2021_124168 crossref_primary_10_1016_j_compositesa_2023_107598 crossref_primary_10_1080_00218464_2022_2158084 crossref_primary_10_1002_pen_27057 crossref_primary_10_1016_j_mtsust_2022_100269 crossref_primary_10_1016_j_diamond_2023_109856 crossref_primary_10_1016_j_mser_2020_100577 crossref_primary_10_1016_j_mtcomm_2022_103507 crossref_primary_10_1002_pc_70349 crossref_primary_10_1002_pat_5751 crossref_primary_10_1007_s42823_024_00814_1 crossref_primary_10_1016_j_cej_2025_160443 crossref_primary_10_1016_j_compscitech_2020_108242 crossref_primary_10_1016_j_jeurceramsoc_2024_01_089 crossref_primary_10_1007_s10965_023_03454_7 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126777 crossref_primary_10_1016_j_polymertesting_2022_107835 crossref_primary_10_1016_j_cej_2020_127764 crossref_primary_10_1016_j_jmst_2021_03_084 crossref_primary_10_1016_j_molstruc_2022_133656 crossref_primary_10_1016_j_coco_2021_100693 crossref_primary_10_1016_j_compositesb_2021_109468 crossref_primary_10_3390_polym13010147 crossref_primary_10_1016_j_surfcoat_2023_130185 crossref_primary_10_3390_polym15010002 crossref_primary_10_1016_j_jmst_2021_01_018 crossref_primary_10_1002_adfm_202510822 crossref_primary_10_1016_j_jmst_2021_01_017 crossref_primary_10_1016_j_apsusc_2025_162493 crossref_primary_10_1002_inf2_12568 crossref_primary_10_1016_j_ceramint_2025_01_263 crossref_primary_10_1002_pc_27980 crossref_primary_10_1016_j_compscitech_2021_108779 crossref_primary_10_3390_polym13162797 crossref_primary_10_1016_j_jmst_2022_04_059 crossref_primary_10_1016_j_compscitech_2022_109800 crossref_primary_10_1007_s10853_024_10518_6 crossref_primary_10_1002_pc_25877 crossref_primary_10_1177_09540083251358876 crossref_primary_10_3390_nano12203574 crossref_primary_10_1016_j_carbpol_2021_117929 crossref_primary_10_1016_j_compscitech_2020_108590 crossref_primary_10_1016_j_jclepro_2024_141657 crossref_primary_10_1007_s11664_024_11285_5 crossref_primary_10_1016_j_cej_2022_138332 crossref_primary_10_1016_j_est_2025_116401 crossref_primary_10_1080_02533839_2022_2101538 crossref_primary_10_1364_JOSAB_564930 crossref_primary_10_1002_adem_202000989 crossref_primary_10_1016_j_apsusc_2023_159140 crossref_primary_10_1016_j_ceramint_2022_10_006 crossref_primary_10_1016_j_applthermaleng_2025_125687 crossref_primary_10_1016_j_polymer_2024_127175 crossref_primary_10_1002_mame_202100267 crossref_primary_10_1080_1023666X_2025_2547895 crossref_primary_10_1007_s42823_025_00908_4 crossref_primary_10_1016_j_cej_2022_140891 crossref_primary_10_1007_s42114_025_01308_y crossref_primary_10_1016_j_matdes_2025_114600 crossref_primary_10_1016_j_ceramint_2025_09_198 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121306 crossref_primary_10_1002_macp_202400365 crossref_primary_10_1088_1742_6596_2478_12_122050 crossref_primary_10_1007_s10965_022_03052_z crossref_primary_10_1016_j_compscitech_2023_110268 crossref_primary_10_1016_j_mtcomm_2022_103735 crossref_primary_10_1016_j_enconman_2021_114957 crossref_primary_10_1016_j_cej_2021_131540 crossref_primary_10_1016_j_cej_2024_153160 crossref_primary_10_1016_j_cej_2024_153162 crossref_primary_10_1016_j_compscitech_2024_110440 crossref_primary_10_1016_j_porgcoat_2020_105722 crossref_primary_10_3390_polym17010111 crossref_primary_10_1016_j_ijbiomac_2024_133690 crossref_primary_10_1016_j_mser_2020_100580 crossref_primary_10_1016_j_jallcom_2024_178209 crossref_primary_10_1007_s12221_023_00053_7 crossref_primary_10_1002_pc_25865 crossref_primary_10_1002_app_56099 crossref_primary_10_1016_j_coco_2021_100661 crossref_primary_10_1007_s10853_021_05923_0 crossref_primary_10_1016_j_surfin_2024_105569 crossref_primary_10_1016_j_compositesa_2020_106260 crossref_primary_10_1007_s42114_022_00463_w crossref_primary_10_1016_j_coco_2020_100584 crossref_primary_10_1016_j_compscitech_2024_110698 crossref_primary_10_1016_j_polymer_2022_125652 crossref_primary_10_1016_j_compositesa_2020_106026 crossref_primary_10_1016_j_compositesa_2020_106265 crossref_primary_10_1016_j_ijrefrig_2024_07_004 crossref_primary_10_1002_app_56094 crossref_primary_10_1039_D1ME00182E crossref_primary_10_1002_app_52615 crossref_primary_10_1016_j_cej_2024_156789 crossref_primary_10_1016_j_mtla_2023_101915 crossref_primary_10_1007_s10163_023_01701_z crossref_primary_10_1016_j_cej_2023_145364 crossref_primary_10_1002_smll_202304886 crossref_primary_10_1016_j_compscitech_2020_108322 crossref_primary_10_1016_j_fuel_2025_135101 crossref_primary_10_1016_j_icheatmasstransfer_2024_107331 crossref_primary_10_1007_s40820_021_00624_4 crossref_primary_10_1016_j_coco_2021_100650 crossref_primary_10_3390_nano12193473 crossref_primary_10_1016_j_mtphys_2025_101808 crossref_primary_10_1021_acs_macromol_4c01794 crossref_primary_10_1063_5_0225850 crossref_primary_10_1007_s00289_023_04789_3 crossref_primary_10_1016_j_mtcomm_2025_112190 crossref_primary_10_3390_polym15132818 crossref_primary_10_1002_macp_202400020 crossref_primary_10_1016_j_triboint_2024_110359 crossref_primary_10_1016_j_polymdegradstab_2023_110480 crossref_primary_10_1016_j_ceramint_2022_10_260 crossref_primary_10_1002_app_50324 crossref_primary_10_1016_j_jechem_2021_08_027 crossref_primary_10_1016_j_conbuildmat_2024_136552 crossref_primary_10_1016_j_carbon_2021_07_048 crossref_primary_10_1016_j_matchemphys_2023_128360 crossref_primary_10_3390_polym13050681 crossref_primary_10_1016_j_jmst_2021_02_009 crossref_primary_10_1002_adem_202401709 crossref_primary_10_3390_polym16202859 crossref_primary_10_1016_j_polymer_2020_122763 crossref_primary_10_1016_j_jpcs_2025_113041 crossref_primary_10_1016_j_progpolymsci_2025_102025 crossref_primary_10_3390_jcs8050183 crossref_primary_10_1016_j_molstruc_2024_139801 crossref_primary_10_1039_D4RA03653K crossref_primary_10_1007_s10338_024_00498_0 crossref_primary_10_1016_j_polymer_2022_124662 crossref_primary_10_1016_j_autcon_2025_106311 crossref_primary_10_1016_j_jmrt_2025_03_138 crossref_primary_10_1016_j_jmst_2024_02_070 crossref_primary_10_1002_app_50575 crossref_primary_10_1016_j_cej_2024_153499 crossref_primary_10_1016_j_mtcomm_2021_102792 crossref_primary_10_3390_electronics13214287 crossref_primary_10_1016_j_coco_2021_100719 crossref_primary_10_1016_j_compscitech_2020_108429 crossref_primary_10_1016_j_compscitech_2021_108945 crossref_primary_10_1088_1361_648X_ad7086 crossref_primary_10_3390_pr11041184 crossref_primary_10_1080_14658011_2023_2231286 crossref_primary_10_1039_D4TC05170J crossref_primary_10_1007_s11664_021_09079_0 crossref_primary_10_1016_j_surfcoat_2024_130417 crossref_primary_10_1002_admi_202200610 crossref_primary_10_1016_j_coco_2022_101093 crossref_primary_10_3390_polym13183185 crossref_primary_10_1007_s10853_023_08241_9 crossref_primary_10_1080_08927022_2022_2071874 crossref_primary_10_1016_j_surfin_2025_106946 crossref_primary_10_3390_polym15163489 crossref_primary_10_1016_j_coco_2020_04_016 crossref_primary_10_3390_polym16030365 crossref_primary_10_1016_j_compscitech_2023_110348 crossref_primary_10_1007_s10853_022_07551_8 crossref_primary_10_1016_j_pmatsci_2022_101054 crossref_primary_10_1039_D2QM00090C crossref_primary_10_1002_app_51679 crossref_primary_10_1016_j_jmst_2021_10_052 crossref_primary_10_3390_coatings13020444 crossref_primary_10_1002_adfm_202420708 crossref_primary_10_1002_pat_6537 crossref_primary_10_1016_j_polymertesting_2023_108274 crossref_primary_10_1002_adma_202311335 crossref_primary_10_1007_s12274_023_6257_y crossref_primary_10_3390_nano14040331 crossref_primary_10_1016_j_compositesa_2022_106944 crossref_primary_10_1016_j_ceramint_2023_11_137 crossref_primary_10_3390_molecules29153572 crossref_primary_10_1016_j_compscitech_2024_110652 crossref_primary_10_3390_polym15061505 crossref_primary_10_1016_j_compscitech_2023_110375 crossref_primary_10_1016_j_polymdegradstab_2024_110902 crossref_primary_10_1016_j_nanoms_2021_08_002 crossref_primary_10_1039_D2NR06360C crossref_primary_10_1016_j_optlastec_2024_110687 crossref_primary_10_3390_polym14061092 crossref_primary_10_1016_j_coco_2020_100427 crossref_primary_10_1016_j_coco_2021_100986 crossref_primary_10_1002_app_51327 crossref_primary_10_3390_ijms23020842 crossref_primary_10_1016_j_compositesa_2021_106738 crossref_primary_10_1002_app_51683 crossref_primary_10_1007_s11664_024_11140_7 crossref_primary_10_1063_5_0248917 crossref_primary_10_1016_j_polymertesting_2023_108126 crossref_primary_10_1016_S1872_5805_21_60089_6 crossref_primary_10_1002_adfm_202301549 crossref_primary_10_1016_j_psep_2022_12_011 crossref_primary_10_1016_j_coco_2020_100430 crossref_primary_10_1016_j_commatsci_2024_112864 crossref_primary_10_1016_j_compositesb_2020_108599 crossref_primary_10_1002_macp_202400060 crossref_primary_10_1016_j_cej_2024_151170 crossref_primary_10_1007_s42114_024_00934_2 crossref_primary_10_1016_j_nanoms_2024_10_007 crossref_primary_10_1016_j_compscitech_2020_108638 crossref_primary_10_1016_j_compscitech_2021_108934 crossref_primary_10_3390_nano11051236 crossref_primary_10_3390_polym16233231 crossref_primary_10_1016_j_reactfunctpolym_2023_105804 crossref_primary_10_1177_09540083211069039 crossref_primary_10_1002_adem_202100662 crossref_primary_10_1002_app_53756 crossref_primary_10_1016_j_est_2023_109877 crossref_primary_10_1016_j_mtchem_2022_101305 crossref_primary_10_1016_j_cej_2023_145791 crossref_primary_10_1016_j_cej_2021_128647 crossref_primary_10_1016_j_cej_2025_168666 crossref_primary_10_1007_s10118_021_2620_1 crossref_primary_10_1016_j_mtphys_2021_100449 crossref_primary_10_1016_j_compositesb_2021_109072 crossref_primary_10_1016_j_coco_2020_100528 crossref_primary_10_1016_j_compscitech_2021_108907 crossref_primary_10_1016_j_ceramint_2020_07_340 crossref_primary_10_1177_09540083221106058 crossref_primary_10_1016_j_coco_2020_100518 crossref_primary_10_1016_j_applthermaleng_2025_125845 crossref_primary_10_1016_j_jcis_2021_04_123 crossref_primary_10_1016_j_apmt_2022_101672 crossref_primary_10_4028_www_scientific_net_KEM_869_7 crossref_primary_10_1088_1402_4896_ad8d37 crossref_primary_10_4028_www_scientific_net_KEM_869_1 crossref_primary_10_1002_app_56242 crossref_primary_10_1016_j_tca_2021_179141 crossref_primary_10_1016_j_mtphys_2021_100456 crossref_primary_10_1039_D2PY00272H crossref_primary_10_1002_marc_202300060 crossref_primary_10_1002_pat_6101 crossref_primary_10_1002_adma_202413618 crossref_primary_10_1002_sstr_202300090 crossref_primary_10_1016_j_matdes_2020_109003 crossref_primary_10_1038_s41528_025_00429_0 crossref_primary_10_1515_polyeng_2022_0005 crossref_primary_10_1016_j_polymer_2025_128942 crossref_primary_10_1016_j_jaap_2022_105819 crossref_primary_10_1002_smll_202305104 crossref_primary_10_1007_s10765_021_02898_7 crossref_primary_10_1002_prep_202300311 crossref_primary_10_1007_s42114_024_00979_3 crossref_primary_10_1016_j_apsusc_2023_156711 crossref_primary_10_1016_j_jallcom_2023_169519 crossref_primary_10_1016_j_ceramint_2022_01_188 crossref_primary_10_1002_anie_202117433 crossref_primary_10_1016_j_porgcoat_2025_109065 crossref_primary_10_1016_j_compscitech_2025_111064 crossref_primary_10_1016_j_jallcom_2022_166046 crossref_primary_10_3390_polym14030433 crossref_primary_10_4028_www_scientific_net_MSF_1026_129 crossref_primary_10_1016_S1872_5805_23_60774_7 crossref_primary_10_1080_10407782_2025_2520808 crossref_primary_10_1007_s42114_025_01243_y crossref_primary_10_1002_pen_26723 crossref_primary_10_1016_j_compositesa_2024_108045 crossref_primary_10_3390_polym16152139 crossref_primary_10_1016_j_cej_2025_160804 crossref_primary_10_1016_j_polymertesting_2023_108209 crossref_primary_10_1016_j_coco_2024_101845 crossref_primary_10_1007_s10965_022_02981_z crossref_primary_10_1016_j_compscitech_2023_110323 crossref_primary_10_1016_j_compscitech_2024_110865 crossref_primary_10_1016_j_compositesa_2022_106855 crossref_primary_10_1002_macp_202200199 crossref_primary_10_1002_pen_25865 crossref_primary_10_1016_j_mattod_2025_03_011 crossref_primary_10_3390_polym13030459 crossref_primary_10_1049_nde2_12073 crossref_primary_10_1002_pc_28077 crossref_primary_10_1088_2053_1591_ab99e8 crossref_primary_10_1063_5_0160602 crossref_primary_10_1016_j_polymertesting_2024_108633 crossref_primary_10_1063_5_0020409 crossref_primary_10_1016_j_coco_2022_101258 crossref_primary_10_1016_j_ceramint_2023_01_129 crossref_primary_10_1016_j_compscitech_2021_109087 crossref_primary_10_1016_j_polymer_2021_123975 crossref_primary_10_1038_s41598_020_71745_w crossref_primary_10_1039_D4TA08215J crossref_primary_10_1016_j_coco_2020_100601 crossref_primary_10_1016_j_compositesa_2021_106685 crossref_primary_10_1016_j_polymer_2024_127531 crossref_primary_10_1016_j_mtcomm_2023_106996 crossref_primary_10_1007_s42464_024_00235_9 crossref_primary_10_1080_10407790_2024_2349709 crossref_primary_10_1016_j_mtcomm_2023_107842 crossref_primary_10_1002_admi_202001910 crossref_primary_10_1016_j_compositesb_2022_110033 crossref_primary_10_1002_smll_202502291 crossref_primary_10_1016_j_cej_2025_166441 crossref_primary_10_1039_D5MH00070J crossref_primary_10_1016_j_ceramint_2024_03_001 crossref_primary_10_1177_07316844231201479 crossref_primary_10_1016_j_compscitech_2022_109590 crossref_primary_10_3390_ma15134632 crossref_primary_10_1016_j_coco_2020_100609 crossref_primary_10_1016_j_est_2024_113211 crossref_primary_10_1080_00222348_2024_2342193 crossref_primary_10_1016_j_icheatmasstransfer_2024_108170 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127037 crossref_primary_10_1016_j_compositesa_2023_107816 crossref_primary_10_3390_polym17050691 crossref_primary_10_1002_pc_29346 crossref_primary_10_1063_5_0209636 crossref_primary_10_1016_j_cej_2023_145297 crossref_primary_10_3390_inventions9050111 crossref_primary_10_1016_j_inoche_2024_113482 crossref_primary_10_3390_jcs6120376 crossref_primary_10_1177_15280837231166393 crossref_primary_10_1016_j_polymer_2023_126147 crossref_primary_10_1016_j_pmatsci_2024_101362 crossref_primary_10_1016_j_compositesa_2021_106586 crossref_primary_10_1002_adma_202419563 crossref_primary_10_1016_j_ijsolstr_2025_113615 crossref_primary_10_1016_j_pmatsci_2025_101524 crossref_primary_10_1039_D4GC05569A crossref_primary_10_1016_j_heliyon_2024_e25381 crossref_primary_10_3390_polym13234074 crossref_primary_10_1007_s42114_021_00321_1 crossref_primary_10_1007_s10853_024_09658_6 crossref_primary_10_1002_app_49791 crossref_primary_10_1016_j_compscitech_2022_109259 crossref_primary_10_1016_j_compositesb_2021_108913 crossref_primary_10_1016_j_resconrec_2022_106743 crossref_primary_10_3390_polym17111507 crossref_primary_10_1002_smtd_202300969 crossref_primary_10_1016_j_compositesa_2022_106893 crossref_primary_10_3390_jcs7070290 crossref_primary_10_1016_j_mtphys_2022_100812 crossref_primary_10_1002_marc_202500078 crossref_primary_10_1007_s42114_022_00584_2 crossref_primary_10_1016_j_compositesa_2024_108197 crossref_primary_10_1016_j_ceramint_2024_03_107 crossref_primary_10_1039_D2NR06551G crossref_primary_10_1088_1361_6528_ac2100 crossref_primary_10_1002_pc_28273 crossref_primary_10_1002_pc_28394 crossref_primary_10_1155_2023_7484634 crossref_primary_10_1016_j_foodchem_2021_129957 crossref_primary_10_1016_j_surfin_2025_107291 crossref_primary_10_1002_pc_28275 crossref_primary_10_1007_s10570_024_06275_z crossref_primary_10_1021_acsapm_4c03385 crossref_primary_10_1080_14328917_2025_2458873 crossref_primary_10_1016_j_ijbiomac_2025_147127 crossref_primary_10_1016_j_polymdegradstab_2024_111035 |
| Cites_doi | 10.1016/j.jmst.2018.09.016 10.1007/s00231-016-1963-6 10.1021/jp101857w 10.1016/j.compscitech.2017.07.019 10.1002/pat.4119 10.1016/j.jallcom.2019.151950 10.1016/j.compositesa.2018.05.023 10.1038/s41467-019-09697-7 10.1021/acsami.8b03522 10.1016/j.compscitech.2019.04.028 10.1063/1.4976946 10.1016/j.carbon.2017.12.110 10.1016/j.compositesa.2019.105517 10.1016/j.compositesa.2019.105511 10.1016/j.compscitech.2018.07.007 10.1016/j.carbon.2017.01.103 10.1039/C6RA04513H 10.1016/j.carbon.2011.01.023 10.1016/j.compscitech.2019.107944 10.1016/j.compositesb.2020.107784 10.1021/acssuschemeng.9b00051 10.1021/acs.iecr.8b01070 10.1016/j.compositesa.2018.06.010 10.1063/1.4929426 10.1016/j.compscitech.2019.02.017 10.1016/j.compscitech.2018.03.016 10.1115/1.4038003 10.1038/nnano.2010.27 10.1016/j.compscitech.2013.09.017 10.1016/j.polymer.2013.06.027 10.1007/BF00353168 10.1111/jace.12768 10.1016/j.polymertesting.2013.05.007 10.1016/j.compositesa.2005.07.006 10.1016/j.polymer.2017.02.024 10.1016/j.applthermaleng.2014.02.044 10.1007/s00289-017-1974-6 10.1016/0032-3861(77)90179-3 10.1016/j.compscitech.2016.12.015 10.1021/acsami.9b19844 10.1016/j.compositesb.2008.01.002 10.1021/ja065043f 10.1002/app.27934 10.1021/acsami.8b16209 10.1016/j.compscitech.2019.107713 10.1016/j.compositesa.2016.12.014 10.1002/adfm.201201221 10.1002/adma.201400954 10.1126/science.aat8982 10.1021/acsami.5b07188 10.1007/s10853-018-2306-4 10.1016/j.compscitech.2018.05.046 10.1016/j.cej.2018.04.199 10.1016/j.compositesb.2019.02.029 10.3390/polym10101088 10.1039/C6RA10397A 10.1126/sciadv.aav0129 10.1016/j.carbon.2018.09.073 10.1039/C5NR04995D 10.1103/PhysRevB.79.144305 10.1016/j.polymer.2012.02.003 10.1016/j.compositesa.2017.01.019 10.1016/j.apmt.2018.04.004 10.1016/j.carbon.2016.08.059 10.1002/app.46397 10.1002/adfm.201604754 10.1039/C9CC02889G 10.1002/app.46454 10.1021/acs.analchem.7b02008 10.1016/j.compscitech.2019.02.005 10.1016/j.compscitech.2018.11.032 10.1016/j.compositesb.2019.107070 10.1016/0032-3861(77)90002-7 10.1016/j.polymer.2011.12.040 10.1016/j.apsusc.2019.05.070 10.1111/jace.16616 10.1016/j.carbon.2017.07.057 10.1016/j.carbon.2019.04.043 10.1002/admi.201900275 10.1016/j.compscitech.2017.05.008 10.1016/j.compositesa.2017.07.030 10.1016/j.solmat.2018.12.014 10.1016/j.jiec.2018.06.001 10.1038/nmat4141 10.1007/s00231-019-02572-7 10.1016/j.compscitech.2019.03.017 10.1016/j.matdes.2016.11.010 10.1007/s10853-010-4938-x 10.1016/j.compositesa.2019.105506 10.1007/s10853-019-03539-z 10.1295/polymj.2.509 10.1016/j.compositesb.2016.11.050 10.1166/sam.2016.2652 10.1063/1.365209 10.1016/j.compositesa.2015.08.004 10.1021/acs.jpcb.7b01377 10.1016/j.ceramint.2019.05.194 10.1016/j.progpolymsci.2010.11.004 10.1016/j.compositesa.2016.11.002 10.1016/j.matdes.2019.107835 10.1063/1.4804237 10.1039/C5RA03284A 10.1016/j.compositesa.2017.06.005 10.1002/adfm.201805365 10.1038/nnano.2014.44 10.1103/PhysRevB.30.2090 10.1002/adfm.201900412 10.1016/j.carbon.2019.01.073 10.1002/pc.25169 10.1115/1.4003503 10.1016/j.carbon.2010.06.044 10.1039/C4TA02429J 10.1007/s10853-019-03826-9 10.1002/app.47054 10.1002/adfm.201805053 10.1016/j.ijheatmasstransfer.2017.06.116 10.1002/app.35089 10.1002/adma.201900199 10.1016/j.compositesa.2019.05.015 10.1016/j.compscitech.2018.11.036 10.1016/j.compscitech.2017.08.010 10.1557/jmr.2018.362 10.1016/j.carbon.2019.04.055 10.1016/j.compositesa.2019.105530 10.1016/j.compscitech.2017.03.020 10.1021/acs.nanolett.6b04756 10.1002/pc.750070302 10.1016/j.polymer.2019.05.044 10.1002/pc.20151 10.1002/adma.200800401 10.1299/jtst.2017jtst0013 10.1016/j.compscitech.2018.03.021 10.1016/j.cej.2019.03.057 10.1016/j.mser.2018.06.002 10.1080/03602559.2014.986802 10.1016/j.carbon.2018.05.033 10.3390/ma2042467 10.1103/PhysRevB.61.12551 10.1016/j.compositesb.2012.05.015 10.1016/j.physleta.2014.04.035 10.1021/acsami.7b07947 10.1016/j.apmt.2018.09.007 10.1016/j.ijheatmasstransfer.2019.07.002 10.1039/C4RA01761G 10.1016/j.progpolymsci.2016.05.001 10.1021/am507416y 10.1016/j.carbon.2009.08.047 10.1007/s42114-018-0031-8 10.1016/j.eurpolymj.2016.08.003 10.1016/j.ijthermalsci.2015.09.013 10.1038/nmat3207 10.1016/j.compositesa.2019.105484 10.1016/j.polymer.2006.05.062 10.1080/01457630701850851 10.1063/1.2834370 10.1016/j.compscitech.2018.05.001 10.1103/PhysRevB.83.064303 10.1007/s10853-019-03525-5 10.1016/j.compositesa.2015.09.005 10.1016/j.compositesa.2019.02.004 10.1016/j.porgcoat.2019.03.042 10.1016/j.compositesa.2018.10.023 10.1016/j.polymertesting.2016.11.015 10.1016/j.compositesa.2019.03.044 10.1021/acsami.9b07313 10.3390/coatings9020117 10.1016/j.carbon.2018.10.003 10.1007/BFb0021279 10.1021/acsami.9b10207 10.1002/pol.1980.180180603 10.1039/C8TC04309D 10.1021/acs.nanolett.6b00722 10.3390/polym9090437 10.1016/j.compscitech.2019.05.019 10.1016/j.ijheatmasstransfer.2013.12.017 10.1016/j.compscitech.2016.04.033 10.1002/adma.201600642 10.1016/j.carbon.2011.12.046 10.1016/j.applthermaleng.2016.11.041 10.1016/j.compscitech.2017.12.008 10.1016/j.carbon.2019.04.038 10.1039/C9TC01804B 10.1016/j.compositesa.2019.05.002 10.1016/j.polymer.2015.11.027 10.1016/j.compscitech.2019.04.026 10.1016/j.compositesa.2011.11.024 10.1016/j.carbon.2018.08.029 10.1016/j.ijheatmasstransfer.2015.08.081 10.1016/j.polymer.2019.121760 10.1063/1.119976 10.1021/acsami.9b10161 10.1016/j.compscitech.2018.05.038 10.1016/j.compscitech.2018.06.015 10.1016/j.compscitech.2017.03.035 10.1088/0022-3727/40/10/020 10.1016/j.carbon.2018.02.002 10.1039/C6RA25841G 10.1002/adfm.201901383 10.1016/j.progpolymsci.2016.03.001 10.1002/app.32673 10.1039/C8TC05955A 10.1016/j.cej.2019.03.217 10.1016/j.compositesb.2019.107569 10.1179/1433075X11Y.0000000030 10.1016/j.compositesb.2018.11.005 10.1016/j.compscitech.2018.11.008 10.1016/j.compositesa.2019.02.026 10.1126/sciadv.aar3031 10.1021/jp071761s 10.1002/adma.201705544 10.1021/am400615z 10.1016/j.compscitech.2019.02.006 10.1002/aelm.201800548 10.1021/acs.nanolett.8b00555 10.1016/j.compositesb.2019.01.100 10.1016/j.ijheatmasstransfer.2007.10.017 10.1016/j.carbon.2011.06.095 10.1080/00218464.2018.1451331 10.1021/acsami.8b18232 10.3390/polym11071156 10.1088/0022-3719/8/19/012 10.1016/j.compositesa.2018.11.006 10.1080/01495739.2016.1218745 10.3390/nano8040264 10.1016/j.polymer.2012.07.065 10.1016/j.jallcom.2019.04.051 10.1021/acsami.9b06062 10.1038/nmat3303 10.1007/s10853-012-6862-8 10.1016/j.ceramint.2016.11.108 10.1016/j.compositesa.2019.02.019 10.1016/j.coco.2018.07.003 10.3390/polym11010148 10.1039/C8NR08760A 10.3390/ma12142225 10.1021/ma0615046 10.1016/j.compositesb.2019.01.099 10.1016/j.compositesb.2019.04.015 10.1021/acsami.6b16586 10.1039/C8TC00452H 10.1021/acsnano.8b06290 10.1016/j.compositesa.2019.105670 10.1002/anie.201812112 10.1002/app.47951 10.1038/nmat996 10.1016/j.compositesa.2019.03.030 10.1016/j.ijggc.2011.07.009 10.1039/C5RA18519J 10.1016/j.coco.2018.04.009 10.1016/j.commatsci.2015.06.006 10.1039/C9TC02845E 10.1021/acs.jpcb.5b09955 10.1016/j.diamond.2008.03.037 10.1002/app.12489 10.1021/acsami.6b03723 10.1002/pc.22756 10.1021/jp3026545 10.1016/j.compositesa.2018.02.006 10.1021/acsami.9b09398 10.1016/j.compscitech.2018.03.028 10.1002/pat.2063 10.1063/1.4813505 10.1016/j.apsusc.2018.02.125 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jun 16, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jun 16, 2020 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.compscitech.2020.108134 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2020_108134 S0266353819333998 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- .-4 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ ~HD 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c415t-a5d4e07cbc89333b4b498047996914458b7a1cbe8af3b1076a09edf0f9ead1953 |
| ISICitedReferencesCount | 693 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527648600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-3538 |
| IngestDate | Sun Nov 09 07:33:12 EST 2025 Tue Nov 18 20:40:36 EST 2025 Sat Nov 29 07:22:53 EST 2025 Fri Feb 23 02:50:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal properties Functional composites Polymer-matrix composites (PMCs) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c415t-a5d4e07cbc89333b4b498047996914458b7a1cbe8af3b1076a09edf0f9ead1953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2440490482 |
| PQPubID | 2045270 |
| ParticipantIDs | proquest_journals_2440490482 crossref_primary_10_1016_j_compscitech_2020_108134 crossref_citationtrail_10_1016_j_compscitech_2020_108134 elsevier_sciencedirect_doi_10_1016_j_compscitech_2020_108134 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-16 |
| PublicationDateYYYYMMDD | 2020-06-16 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ji, Yan, Wang, Xiong, Zhou, Li, Sun, Wong (bib106) 2019; 163 Tabarraei (bib144) 2015; 108 Xing, Sun, Wang, Yang, Wang, Liu (bib173) 2019; 54 Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lv, Feng (bib31) 2019; 29 Zhou, Zuo, Ren (bib148) 2012; 43 Gu, Zhang, Dang, Yin, Chen (bib192) 2012; 124 Zhang, Du, Zou, Li, Zhang (bib49) 2017; 148 Liu, Li, Guo, Zhang, Zhang (bib256) 2019; 120 Zhu, Ma, Wu, Yung, Xie (bib149) 2010; 118 Guo, Pan, Yang, Ruan, Han, Kong, Gu (bib48) 2019; 124 Zhang, Zha, Li, Li, Wang, Wen, Dang (bib129) 2018; 156 Song, Zhang (bib163) 2019; 141 Li, Ding, Meng, Zhou, Zhu, Liu, Dresselhaus, Chen (bib57) 2017; 17 Takahata, Iguchi, Tanaka, Itoh, Terasaki (bib135) 2000; 61 Shi, Ma, Wu, Hu, Mo, Yang, Zhang, Zhang (bib122) 2019; 136 Suh, Moon, Kim, Baik (bib33) 2016; 28 Hassan, Yang, Elagib, Ge, Lv, Zhou, Yu, Zhu (bib212) 2019; 171 Ma, Tian (bib65) 2019; 34 Xu, Zhou, Chen (bib81) 2019 Chen, Huang, Sun, Jiang (bib111) 2019; 13 Dong, Long, Peng, Peng, Guo (bib9) 2019; 54 Jiang, Cao, Xiao, Zhu, Lu (bib185) 2017; 7 Wen, Sun, Su, Shen, Li, Guo (bib242) 2012; 53 Burger, Laachachi, Ferriol, Lutz, Toniazzo, Ruch (bib15) 2016; 61 Evans, Prasher, Fish, Meakin, Phelan, Keblinski (bib206) 2008; 51 Huang, Qian, Yang (bib23) 2018; 132 Xu, Kraemer, Song, Jiang, Zhou, Loomis, Wang, Li, Ghasemi, Huang, Li, Chen (bib70) 2019; 10 dos Santos, de Sousa, Gregorio (bib88) 2013; 32 Mehra, Li, Yang, Li, Kashfipour, Gu, Zhu (bib43) 2019; 166 Zhang, Keblinski, Wang, Li (bib217) 2011; 83 Giri, Hopkins (bib164) 2019 Liu, Peng, Liu, Fang, Zhou, Liu, Liu (bib267) 2018; 165 An, Chen, Lu, Li, Chen, Fan, Wang, Wu (bib131) 2019; 11 Luo, Huang, Huang (bib63) 2018; 140 Kidalov, Shakhov (bib138) 2009; 2 Kikugawa, Desai, Keblinski, Ohara (bib78) 2013; 114 Vu, Bae, Yu, Choi, Islam, Kim (bib224) 2019; 95 Song, Katagi, Takezawa (bib85) 2012; 53 Jiang, Cui, Song, Shi, Ding (bib11) 2018; 10 Yang, Tang, Guo, Liang, Zhang, Kou, Gu (bib55) 2017; 101 Lo, He, Biswas, Kanatzidis, Dravid (bib133) 2012; 22 Wang, Chen, Liu, Duan, Xu, Zhou, Xu, Lei, Li (bib178) 2019; 7 Tian, Ren (bib2) 2019; 58 Losego, Grady, Sottos, Cahill, Braun (bib218) 2012; 11 Wang, Wu (bib126) 2019; 11 Fang, Bai, Wong (bib95) 2018; 112 Yu, France, Routbort, Choi (bib147) 2008; 29 Yang, Kong, Ni, Gao, Yang, Zhu, Zhang (bib124) 2019; 124 Gu, Xie, Li, Dang, Geng, Zhang (bib34) 2014; 35 Holman (bib21) 2010 You, Choi, Lee, Cho, Park, Lee, Park (bib105) 2019; 164 Li, Xu, Guo, Ma, Zhong, Zhang, Gu (bib238) 2018; 107 Wang, Qiu, Liang, Song, Han, Han, Gu, Kong, Pan, Guo (bib6) 2019; 141 Song, Zhang (bib203) 2017; 123 Guan, Wan, Gong, Yan, Tang, Wu, Jiang, Lai (bib221) 2014; 2 Jia, He, Geng, Huang, Peng (bib258) 2017; 145 Kunanuruksapong, Sirivat (bib263) 2012; 16 Zhang, Wu, Liu, Yu, Zhang, Chen, Fu (bib29) 2019; 175 Choy, Young (bib25) 1977; 18 Gu, Zhang, Dang, Xie (bib188) 2012; 23 Zhang, Shi, Tang, Liu, Zhang, Guo, Gu (bib89) 2020 Li, Yin, Hu, Zhang, Guo, Chen, Sun, Du, Shu, Yu, Zhang (bib232) 2019; 54 Ngo, Vattikuti, Byon (bib128) 2017; 114 Guo, Ruan, Yang, Ma, Kong, Wu, Zhang, Gu, Guo (bib108) 2019; 7 Tessema, Zhao, Moll, Xu, Yang, Li, Kumar, Kidane (bib92) 2017; 57 Mehra, Mu, Ji, Li, Zhu (bib274) 2017; 151 Yang, Fan, Li, Guo, Li, Ruan, Zhang, Zhang, Kong, Gu (bib254) 2020; 128 Wernik, Meguid (bib204) 2011; 63 Zhang, Shen, Wu, Guo (bib244) 2013; 89 Zheng, Kim, Park (bib200) 2019; 121 Tanimoto, Yamagata, Miyata, Ando (bib205) 2013; 5 Phuong, Tran, Plamondon, Tuduri, Vo, Nanda, Mishra, Chao, Bajpai (bib183) 2019; 132 Yang, Ni, Liang, Li, Ma, Zhang (bib186) 2019; 180 Gu, Lv, Yang, Wang, Zhang (bib190) 2016; 8 Gu, Lv, Wu, Zhao, Tian, Zhang (bib236) 2015; 79 Ren, Zeng, Zhang, Sun, Tian, Zeng, Xu, Wong (bib194) 2019; 119 Huxtable, Cahill, Shenogin, Xue, Ozisik, Barone, Usrey, Strano, Siddons, Shim, Keblinski (bib215) 2003; 2 Shen, Wang, Zhang, Zeng (bib114) 2019; 35 Liu, Chen, Yu (bib195) 2019; 192 Jeong, Lee, Seo, Kim (bib223) 2014; 71 Moses, Denenstein (bib61) 1984; 30 Yu, Ramesh, Sun, Bekyarova, Itkis, Haddon (bib137) 2008; 20 Yang, Liang, Ma, Guo, Kong, Gu, Chen, Zhu (bib42) 2018; 1 Guo, Yang, Ruan, Kong, Dong, Zhang, Gu, Guo (bib103) 2019; 11 Dong, Sun, Tang, Hayashi, Li, Shang, Miyazaki, Li (bib130) 2019; 11 Yu, Ramesh, Itkis, Bekyarova, Haddon (bib156) 2007; 111 Layek, Nandi (bib226) 2013; 54 Han, Fina (bib53) 2011; 36 Rivière, Lonjon, Dantras, Lacabanne, Olivier, Gleizes (bib154) 2016; 85 Zhang, Tan, Ma, Wang, Yang (bib119) 2018; 162 Xiao, Tang, Chen, Zhang, Zheng, Tian (bib96) 2019; 121 Wen, Zheng (bib272) 2019; 174 Li, Wilhelmsen, Lv, Wang, Yan (bib18) 2011; 5 Wang, Wang, Lu, Li, Gu, Zhang, Zhang (bib174) 2018; 442 Lin, Pei, Zhang (bib136) 2018; 135 Gu, Yang, Lv, Li, Liang, Zhang (bib160) 2016; 92 Yang, Ma, Teng, Huang, Liao, Huang, Tien, Lee, Chiou (bib176) 2010; 48 Watari, Ishizaki, Tsuchiya (bib134) 1993; 28 Yuan, Li, Cao, Tang, Zhang (bib125) 2019; 45 Chen, Li, Wen, Liu, Li, Zeng, Xue, Zhou, Xie (bib202) 2019; 125 Zou, Liu, Hu, Ning, Jiang, Xu, Fu, Li, Zhou, Yan (bib140) 2019; 149 Feng, Ni, Chen, Yang (bib248) 2016; 8 Li, Zhang, Zhang (bib27) 2017; 9 Xiao, Chen, Tang, Zhang, Zheng, Tian (bib170) 2019; 116 Qin, Xu, Cao, Feng, Chen (bib255) 2018; 28 Wensel, Wright, Thomas, Douglas, Mannhalter, Cross, Hong, Kellar, Smith, Roy (bib208) 2008; 92 Xiao, Chen, Tang, Zhang, Zheng, Tian (bib123) 2019; 124 Yuan, Qian, Meng, Yang, Liu (bib269) 2019; 11 Owais, Zhao, Imani, Wang, Zhang, Zhang (bib198) 2019; 117 Oluwalowo, Nguyen, Zhang, Park, Liang (bib35) 2019; 146 Soga, Saito, Kawaguchi, Satoh (bib28) 2017; 12 Gu, Guo, Yang, Liang, Geng, Tang, Li, Zhang (bib54) 2017; 95 Choy, Greig (bib87) 1975; 8 Yang, Zhu, Yang, Zhang, Guo, Zhong, Kong, Gu (bib252) 2020; 185 Li, Li, Liu, Wang, Zhang, Liu, Yang (bib228) 2019; 8 Fu, Yan, Ren, Zeng, Du, Sun, Xu, Wong (bib7) 2019; 177 Chen, Wu, Mishra, Kang, Zhang, Cho, Cai, Balandin, Ruoff (bib20) 2012; 11 Lule, Kim (bib113) 2019; 11 Huang, Iizuka, Jiang, Ohki, Tanaka (bib172) 2012; 116 You, Kim, Seo, Huh, Park, Lee (bib167) 2018; 66 Zhang (bib16) 2007 Yang, Kong, Ni, Gao, Yang, Zhu, Zhang (bib177) 2019; 124 Burk, Gliem, Lais, Nutz, Retsch, Mulhaupt (bib165) 2018; 10 Askadskii, Petunova, Markov (bib58) 2013; 55 Rashidi, Coyle, Sebeck, Kieffer, Pipe (bib220) 2017; 121 Mortazavi, Baniassadi, Bardon, Ahzi (bib155) 2013; 45 Li, Zheng, Lv, Liu, Wang, Huang, Cahill, Lv (bib1) 2018; 361 Abyzov, Kidalov, Shakhov (bib139) 2011; 46 Zhuang, Cao, Zhang, Ma, Shang, Lu, Yang, Zheng, Ma (bib104) 2019; 120 Lin, Pei, Zhang (bib118) 2018; 135 T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang, Y. Guo, X. Yang, J. Kong, J. Gu, Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures, ACS Appl. Mater. Interfaces 12(1) 2020 1677-1686. Paszkiewicz, Szymczyk, Pawlikowska, Subocz, Zenker, Masztak (bib46) 2018; 8 Liu, Lu, Wu, Yao, Du, Chen, Zhang, Liang, Lu (bib107) 2019; 174 Yang, Guo, Luo, Zheng, Ma, Tan, Li, Zhang, Gu (bib8) 2018; 164 Yan, Yu, Ji, Kang, Wang, Sun, Wong (bib112) 2019; 5 Saucedo-Espinosa, Lapizco-Encinas (bib264) 2017; 89 Ma, Tian (bib66) 2015; 107 Wang, Wu, Zhuo, Zhang, Zheng (bib116) 2018; 57 Gu, Du, Dang, Geng, Hu, Zhang (bib189) 2014; 4 Fu, He, Mo, Lu (bib99) 2014; 66 Yan, Yu, Ji, Zeng, Lu, Sun, Wong (bib110) 2019; 136 Yang, Li, Bai, Wang (bib94) 2019; 11 Sohn, Han, Han (bib145) 2019; 149 Yan, Liu, Li, Zhang, Shang, Xiao, Ao (bib199) 2019; 125 Fu, Feng, Lauke, Mai (bib209) 2008; 39 Ma, Zhang, Mayo, Ni, Yi, Chen, Mu, Bellan, Li (bib75) 2015; 7 Kim, Kim (bib271) 2016; 100 Michio, Kang (bib141) 2014 Huang, Liu, Chen, Zheng, Feng, Chen, Yang, Yang (bib277) 2019; 171 Ho, Powell, Liley (bib19) 1974 Chen, Ginzburg, Yang, Yang, Liu, Huang, Du, Chen (bib60) 2016; 59 Nan, Birringer, Clarke, Gleiter (bib210) 1997; 81 Deng, Lin, Xu, Lin, Du (bib69) 2015; 54 Bigg (bib40) 1995; 119 Waheed, Cabot, Smejkal, Farajikhah, Sayyar, Innis, Beirne, Barnsley, Lewis, Breadmore, Paull (bib257) 2019; 11 Mehra, Kashfipour, Zhu (bib80) 2018; 13 Su, Li, Weng (bib37) 2018; 137 Maira, Takeuchi, Chammingkwan, Terano, Taniike (bib47) 2018; 165 Li, Guo, Tian, Tian (bib39) 2017; 40 Shen, Wang, Wu, Liu, He, Kim (bib157) 2016; 16 Mehra, Mu, Ji, Yang, Kong, Gu, Zhu (bib52) 2018; 12 Wang, Xie, Xin, Li (bib166) 2010; 48 Badard, Combessis, Allais, Flandin (bib262) 2016; 82 Chen, Feng, Qin, Ji, Feng (bib191) 2017; 116 Cai, Scullion, Gan, Falin, Zhang, Watanabe, Taniguchi, Chen, Santos, Li (bib93) 2019; 5 Sun, Zhang, Jobbins, Guo, Zhang, Zheng, Tang, Ptasinska, Luo (bib219) 2014; 26 Teng, Ma, Lu, Yang, Lee, Hsiao, Yen, Chiou, Lee (bib227) 2011; 49 Chen, Huang, Zhu, Jiang (bib4) 2017; 27 Li, Hsu (bib197) 2010; 114 Han, Du, Gao, Bai (bib253) 2019; 29 Xu, Chen, Zhou, Li (bib3) 2018; 30 Khan, Tahir, Baloch, Koc (bib184) 2019; 9 You, Choi, Cho, Son, Park, Lee, Park (bib168) 2018; 160 Li, Xing, Geng, Liu, He, Wang, Zhang, Qu (bib51) 2018; 29 Ji, Feng, Qin, Li, Zhang, Lv, Feng (bib12) 2018; 131 Wei, Shi, Jiang, Zhang, Chen, Zhang, Zhang, Gong (bib201) 2019; 810 Tong, Huang, Wu (bib115) 2018; 348 Ng, Lu, Lau (bib150) 2005; 26 Choy (bib86) 1977; 18 Choy, Chen, Luk (bib24) 1980; 18 Guiney, Mansukhani, Jakus, Wallace, Shah, Hersam (bib120) 2018; 18 Hussain, Alahyari, Eastman, Thibaud-Erkey, Johnston, Sobkowicz (bib230) 2017; 113 Zheng, Sun, Tian, Zhu, Ma, Tang, Wang (bib216) 2015; 7 Xiao, Fan, Fan, Li (bib59) 2017; 74 Lee, Park, Kim, Lee, Yoon (bib101) 2006; 37 Lu, Chiang, Du, Li, Gan, Zhang, Chu, Yao, Li, Kang (bib74) 2017; 115 Yang, Guo, Han, Li, Ma, Chen, Kong, Zhu, Gu (bib234) 2019; 175 Hossain, Pahlevani, Cholake, Privat, Sahajwalla (bib181) 2019; 7 Bigg (bib41) 1986; 7 Yu, Gong, Tian, Zhang, Xu, Lin, Hu, Fan, Yao (bib240) 2018; 160 Singh, Bougher, Weathers, Cai, Bi, Pettes, McMenamin, Lv, Resler, Gattuso, Altman, Sandhage, Shi, Henry, Cola (bib72) 2014; 9 Feng, Yu, Xu, Zou (bib207) 2007; 40 Li, Wang, Li, Feng, Feng (bib90) 2019; 179 Gu, Liang, Dang, Meng, Tang, Li, Zhang (bib171) 2016; 6 Bubke, Gnewuch, Hempstead, Hammer, Green (bib260) 1997; 71 Haggenmueller, Guthy, Lukes, Fischer, Winey (bib45) 2007; 40 Ramezanzadeh, Bahlakeh, Ramezanzadeh (bib180) 2019; 792 Wang, Zhu, Yan, Wei, Zhang, Qin (10.1016/j.compscitech.2020.108134_bib255) 2018; 28 Bigg (10.1016/j.compscitech.2020.108134_bib41) 1986; 7 Phuong (10.1016/j.compscitech.2020.108134_bib183) 2019; 132 Wang (10.1016/j.compscitech.2020.108134_bib166) 2010; 48 Feng (10.1016/j.compscitech.2020.108134_bib231) 2016; 109 Wang (10.1016/j.compscitech.2020.108134_bib178) 2019; 7 Mehra (10.1016/j.compscitech.2020.108134_bib52) 2018; 12 Li (10.1016/j.compscitech.2020.108134_bib18) 2011; 5 Ho (10.1016/j.compscitech.2020.108134_bib19) 1974 Zhou (10.1016/j.compscitech.2020.108134_bib148) 2012; 43 Xu (10.1016/j.compscitech.2020.108134_bib3) 2018; 30 Yu (10.1016/j.compscitech.2020.108134_bib229) 2012; 53 Zhu (10.1016/j.compscitech.2020.108134_bib149) 2010; 118 Huxtable (10.1016/j.compscitech.2020.108134_bib215) 2003; 2 Wang (10.1016/j.compscitech.2020.108134_bib126) 2019; 11 Gu (10.1016/j.compscitech.2020.108134_bib100) 2015; 5 10.1016/j.compscitech.2020.108134_bib239 Wen (10.1016/j.compscitech.2020.108134_bib242) 2012; 53 Zhang (10.1016/j.compscitech.2020.108134_bib79) 2015; 5 Xu (10.1016/j.compscitech.2020.108134_bib81) 2019 Liu (10.1016/j.compscitech.2020.108134_bib107) 2019; 174 Kim (10.1016/j.compscitech.2020.108134_bib22) 2014; 14 Gu (10.1016/j.compscitech.2020.108134_bib56) 2017; 92 Luo (10.1016/j.compscitech.2020.108134_bib63) 2018; 140 Jiang (10.1016/j.compscitech.2020.108134_bib185) 2017; 7 Akatsuka (10.1016/j.compscitech.2020.108134_bib84) 2003; 89 Guan (10.1016/j.compscitech.2020.108134_bib221) 2014; 2 Huang (10.1016/j.compscitech.2020.108134_bib277) 2019; 171 Fang (10.1016/j.compscitech.2020.108134_bib95) 2018; 112 Ji (10.1016/j.compscitech.2020.108134_bib12) 2018; 131 Chen (10.1016/j.compscitech.2020.108134_bib60) 2016; 59 Wei (10.1016/j.compscitech.2020.108134_bib201) 2019; 810 Ren (10.1016/j.compscitech.2020.108134_bib151) 2019; 370 Feng (10.1016/j.compscitech.2020.108134_bib248) 2016; 8 Cho (10.1016/j.compscitech.2020.108134_bib268) 2016; 129 Rashidi (10.1016/j.compscitech.2020.108134_bib220) 2017; 121 Han (10.1016/j.compscitech.2020.108134_bib253) 2019; 29 Moses (10.1016/j.compscitech.2020.108134_bib61) 1984; 30 Gu (10.1016/j.compscitech.2020.108134_bib189) 2014; 4 Tan (10.1016/j.compscitech.2020.108134_bib225) 2014; 378 Zhang (10.1016/j.compscitech.2020.108134_bib244) 2013; 89 Li (10.1016/j.compscitech.2020.108134_bib238) 2018; 107 Ma (10.1016/j.compscitech.2020.108134_bib64) 2017; 110 Shen (10.1016/j.compscitech.2020.108134_bib71) 2010; 5 Maira (10.1016/j.compscitech.2020.108134_bib47) 2018; 165 Zhang (10.1016/j.compscitech.2020.108134_bib67) 2016; 120 Gu (10.1016/j.compscitech.2020.108134_bib171) 2016; 6 Badard (10.1016/j.compscitech.2020.108134_bib262) 2016; 82 Choy (10.1016/j.compscitech.2020.108134_bib24) 1980; 18 You (10.1016/j.compscitech.2020.108134_bib168) 2018; 160 Kakade (10.1016/j.compscitech.2020.108134_bib73) 2007; 129 Song (10.1016/j.compscitech.2020.108134_bib163) 2019; 141 Huang (10.1016/j.compscitech.2020.108134_bib127) 2019; 123 Tichit (10.1016/j.compscitech.2020.108134_bib182) 2019; 369 Lee (10.1016/j.compscitech.2020.108134_bib101) 2006; 37 Li (10.1016/j.compscitech.2020.108134_bib57) 2017; 17 Feng (10.1016/j.compscitech.2020.108134_bib207) 2007; 40 You (10.1016/j.compscitech.2020.108134_bib105) 2019; 164 An (10.1016/j.compscitech.2020.108134_bib131) 2019; 11 Li (10.1016/j.compscitech.2020.108134_bib1) 2018; 361 Ngo (10.1016/j.compscitech.2020.108134_bib128) 2017; 114 Gu (10.1016/j.compscitech.2020.108134_bib54) 2017; 95 Yan (10.1016/j.compscitech.2020.108134_bib112) 2019; 5 Chen (10.1016/j.compscitech.2020.108134_bib191) 2017; 116 Shen (10.1016/j.compscitech.2020.108134_bib250) 2019; 170 Guo (10.1016/j.compscitech.2020.108134_bib48) 2019; 124 Yan (10.1016/j.compscitech.2020.108134_bib110) 2019; 136 Abyzov (10.1016/j.compscitech.2020.108134_bib139) 2011; 46 Gu (10.1016/j.compscitech.2020.108134_bib188) 2012; 23 Choy (10.1016/j.compscitech.2020.108134_bib25) 1977; 18 Gu (10.1016/j.compscitech.2020.108134_bib161) 2016; 6 Tabarraei (10.1016/j.compscitech.2020.108134_bib144) 2015; 108 Zhou (10.1016/j.compscitech.2020.108134_bib247) 2017; 9 Henry (10.1016/j.compscitech.2020.108134_bib76) 2009; 79 Wang (10.1016/j.compscitech.2020.108134_bib246) 2018; 162 Pang (10.1016/j.compscitech.2020.108134_bib261) 2011; 49 Ikramullah (10.1016/j.compscitech.2020.108134_bib213) 2019; 12 Liang (10.1016/j.compscitech.2020.108134_bib179) 2017; 102 Naji (10.1016/j.compscitech.2020.108134_bib50) 2019; 40 Kim (10.1016/j.compscitech.2020.108134_bib271) 2016; 100 Lin (10.1016/j.compscitech.2020.108134_bib5) 2019; 175 Liang (10.1016/j.compscitech.2020.108134_bib109) 2019; 7 Wang (10.1016/j.compscitech.2020.108134_bib132) 2019; 55 Aradhana (10.1016/j.compscitech.2020.108134_bib36) 2019; 169 Zhang (10.1016/j.compscitech.2020.108134_bib259) 2018; 9 Su (10.1016/j.compscitech.2020.108134_bib37) 2018; 137 Gu (10.1016/j.compscitech.2020.108134_bib236) 2015; 79 Yang (10.1016/j.compscitech.2020.108134_bib124) 2019; 124 Takahata (10.1016/j.compscitech.2020.108134_bib135) 2000; 61 Shen (10.1016/j.compscitech.2020.108134_bib157) 2016; 16 Choy (10.1016/j.compscitech.2020.108134_bib86) 1977; 18 Arani (10.1016/j.compscitech.2020.108134_bib193) 2019; 55 Li (10.1016/j.compscitech.2020.108134_bib90) 2019; 179 Suh (10.1016/j.compscitech.2020.108134_bib33) 2016; 28 Bai (10.1016/j.compscitech.2020.108134_bib68) 2018; 53 Lo (10.1016/j.compscitech.2020.108134_bib133) 2012; 22 Evans (10.1016/j.compscitech.2020.108134_bib206) 2008; 51 Song (10.1016/j.compscitech.2020.108134_bib275) 2018; 6 Qiu (10.1016/j.compscitech.2020.108134_bib97) 2019; 141 Chen (10.1016/j.compscitech.2020.108134_bib4) 2017; 27 Song (10.1016/j.compscitech.2020.108134_bib85) 2012; 53 Teng (10.1016/j.compscitech.2020.108134_bib227) 2011; 49 Zheng (10.1016/j.compscitech.2020.108134_bib200) 2019; 121 Huang (10.1016/j.compscitech.2020.108134_bib172) 2012; 116 Gu (10.1016/j.compscitech.2020.108134_bib192) 2012; 124 Ramezanzadeh (10.1016/j.compscitech.2020.108134_bib180) 2019; 792 Kidalov (10.1016/j.compscitech.2020.108134_bib138) 2009; 2 Zhang (10.1016/j.compscitech.2020.108134_bib49) 2017; 148 Li (10.1016/j.compscitech.2020.108134_bib27) 2017; 9 Xiao (10.1016/j.compscitech.2020.108134_bib59) 2017; 74 Hauser (10.1016/j.compscitech.2020.108134_bib83) 2008; 109 Gu (10.1016/j.compscitech.2020.108134_bib159) 2015; 78 Shen (10.1016/j.compscitech.2020.108134_bib241) 2015; 7 Guo (10.1016/j.compscitech.2020.108134_bib121) 2018; 6 Zhang (10.1016/j.compscitech.2020.108134_bib31) 2019; 29 Zou (10.1016/j.compscitech.2020.108134_bib140) 2019; 149 Mehra (10.1016/j.compscitech.2020.108134_bib80) 2018; 13 Rai (10.1016/j.compscitech.2020.108134_bib153) 2017; 144 Yang (10.1016/j.compscitech.2020.108134_bib252) 2020; 185 Hong (10.1016/j.compscitech.2020.108134_bib175) 2008; 17 Zhao (10.1016/j.compscitech.2020.108134_bib62) 2013; 113 Saucedo-Espinosa (10.1016/j.compscitech.2020.108134_bib264) 2017; 89 Liu (10.1016/j.compscitech.2020.108134_bib256) 2019; 120 Lule (10.1016/j.compscitech.2020.108134_bib10) 2019; 124 Zhang (10.1016/j.compscitech.2020.108134_bib129) 2018; 156 Wen (10.1016/j.compscitech.2020.108134_bib272) 2019; 174 Askadskii (10.1016/j.compscitech.2020.108134_bib58) 2013; 55 Wang (10.1016/j.compscitech.2020.108134_bib273) 2020; 180 Owais (10.1016/j.compscitech.2020.108134_bib198) 2019; 117 Li (10.1016/j.compscitech.2020.108134_bib232) 2019; 54 Yang (10.1016/j.compscitech.2020.108134_bib177) 2019; 124 Moradi (10.1016/j.compscitech.2020.108134_bib146) 2019; 11 Yu (10.1016/j.compscitech.2020.108134_bib156) 2007; 111 Burk (10.1016/j.compscitech.2020.108134_bib165) 2018; 10 Tanimoto (10.1016/j.compscitech.2020.108134_bib205) 2013; 5 Dong (10.1016/j.compscitech.2020.108134_bib9) 2019; 54 Cai (10.1016/j.compscitech.2020.108134_bib93) 2019; 5 Khaliq (10.1016/j.compscitech.2020.108134_bib265) 2017; 43 Singh (10.1016/j.compscitech.2020.108134_bib72) 2014; 9 Yuan (10.1016/j.compscitech.2020.108134_bib187) 2018; 164 Liu (10.1016/j.compscitech.2020.108134_bib195) 2019; 192 Mehra (10.1016/j.compscitech.2020.108134_bib43) 2019; 166 Michio (10.1016/j.compscitech.2020.108134_bib141) 2014 Yang (10.1016/j.compscitech.2020.108134_bib234) 2019; 175 Paszkiewicz (10.1016/j.compscitech.2020.108134_bib46) 2018; 8 Soga (10.1016/j.compscitech.2020.108134_bib28) 2017; 12 Xu (10.1016/j.compscitech.2020.108134_bib70) 2019; 10 Song (10.1016/j.compscitech.2020.108134_bib98) 2020 Yu (10.1016/j.compscitech.2020.108134_bib147) 2008; 29 Gu (10.1016/j.compscitech.2020.108134_bib160) 2016; 92 Bigg (10.1016/j.compscitech.2020.108134_bib40) 1995; 119 dos Santos (10.1016/j.compscitech.2020.108134_bib88) 2013; 32 Zhang (10.1016/j.compscitech.2020.108134_bib29) 2019; 175 Ma (10.1016/j.compscitech.2020.108134_bib75) 2015; 7 Gu (10.1016/j.compscitech.2020.108134_bib32) 2017; 139 Liu (10.1016/j.compscitech.2020.108134_bib267) 2018; 165 Li (10.1016/j.compscitech.2020.108134_bib197) 2010; 114 Min (10.1016/j.compscitech.2020.108134_bib251) 2018; 28 Yang (10.1016/j.compscitech.2020.108134_bib42) 2018; 1 Sun (10.1016/j.compscitech.2020.108134_bib219) 2014; 26 Zhang (10.1016/j.compscitech.2020.108134_bib162) 2019; 177 Ma (10.1016/j.compscitech.2020.108134_bib66) 2015; 107 Kunanuruksapong (10.1016/j.compscitech.2020.108134_bib263) 2012; 16 Xiao (10.1016/j.compscitech.2020.108134_bib96) 2019; 121 Yu (10.1016/j.compscitech.2020.108134_bib137) 2008; 20 Xiao (10.1016/j.compscitech.2020.108134_bib170) 2019; 116 Wang (10.1016/j.compscitech.2020.108134_bib6) 2019; 141 Tian (10.1016/j.compscitech.2020.108134_bib2) 2019; 58 Tessema (10.1016/j.compscitech.2020.108134_bib92) 2017; 57 Guo (10.1016/j.compscitech.2020.108134_bib233) 2019; 164 Tong (10.1016/j.compscitech.2020.108134_bib115) 2018; 348 Chen (10.1016/j.compscitech.2020.108134_bib276) 2018; 112 Shi (10.1016/j.compscitech.2020.108134_bib122) 2019; 136 Rivière (10.1016/j.compscitech.2020.108134_bib154) 2016; 85 Sohn (10.1016/j.compscitech.2020.108134_bib145) 2019; 149 Yang (10.1016/j.compscitech.2020.108134_bib186) 2019; 180 Ma (10.1016/j.compscitech.2020.108134_bib65) 2019; 34 Lv (10.1016/j.compscitech.2020.108134_bib196) 2019; 149 Li (10.1016/j.compscitech.2020.108134_bib117) 2018; 135 Lin (1 |
| References_xml | – volume: 165 start-page: 39 year: 2018 end-page: 47 ident: bib267 article-title: Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties publication-title: Compos. Sci. Technol. – volume: 35 start-page: 1087 year: 2014 end-page: 1092 ident: bib34 article-title: Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites publication-title: Polym. Compos. – volume: 29 start-page: 432 year: 2008 end-page: 460 ident: bib147 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements publication-title: Heat Tran. Eng. – volume: 11 start-page: 28221 year: 2019 end-page: 28227 ident: bib130 article-title: Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 68 year: 2018 end-page: 72 ident: bib235 article-title: Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique publication-title: Compos. Commun. – volume: 11 start-page: 27788 year: 2019 end-page: 27797 ident: bib131 article-title: Low thermal conductivity and optimized thermoelectric properties of p-Type Te-Sb publication-title: ACS Appl. Mater. Interfaces – volume: 100 start-page: 29 year: 2016 end-page: 36 ident: bib271 article-title: Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field publication-title: Int. J. Therm. Sci. – volume: 66 start-page: 493 year: 2014 end-page: 498 ident: bib99 article-title: Thermal conductivity enhancement with different fillers for epoxy resin adhesives publication-title: Appl. Therm. Eng. – volume: 78 start-page: 95 year: 2015 end-page: 101 ident: bib159 article-title: Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 49 start-page: 1980 year: 2011 end-page: 1988 ident: bib261 article-title: The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets publication-title: Carbon – volume: 810 start-page: 151950 year: 2019 ident: bib201 article-title: High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes publication-title: J. Alloys Compd. – reference: T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang, Y. Guo, X. Yang, J. Kong, J. Gu, Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures, ACS Appl. Mater. Interfaces 12(1) 2020 1677-1686. – volume: 6 start-page: 1900275 year: 2019 ident: bib214 article-title: Interfacial thermal contact conductance inside the graphene-Bi publication-title: Adv. Mater. Interfaces – volume: 97 start-page: 442 year: 2014 end-page: 450 ident: bib17 article-title: Effective thermal conductivity of soda-lime silicate glassmelts with different iron contents between 1100°C and 1500°C publication-title: J. Am. Ceram. Soc. – volume: 4 start-page: 22101 year: 2014 end-page: 22105 ident: bib189 article-title: Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites publication-title: RSC Adv. – volume: 11 start-page: 502 year: 2012 ident: bib218 article-title: Effects of chemical bonding on heat transport across interfaces publication-title: Nat. Mater. – volume: 165 start-page: 259 year: 2018 end-page: 265 ident: bib47 article-title: Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology publication-title: Compos. Sci. Technol. – volume: 101 start-page: 237 year: 2017 end-page: 242 ident: bib55 article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 26 start-page: 6093 year: 2014 end-page: 6099 ident: bib219 article-title: Molecule bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces publication-title: Adv. Mater. – volume: 79 start-page: 8 year: 2015 end-page: 13 ident: bib236 article-title: Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique publication-title: Compos. Appl. Sci. Manuf. – volume: 163 start-page: 363 year: 2019 end-page: 370 ident: bib106 article-title: Thermal conductivity enhancement of CNT/MoS publication-title: Compos. B Eng. – volume: 11 start-page: 28943 year: 2019 end-page: 28952 ident: bib126 article-title: 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite publication-title: ACS Appl. Mater. Interfaces – volume: 192 start-page: 72 year: 2019 end-page: 80 ident: bib195 article-title: Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler publication-title: Sol. Energy Mater. Sol. Cells – volume: 18 start-page: 984 year: 1977 end-page: 1004 ident: bib86 article-title: Thermal conductivity of polymers publication-title: Polymer – volume: 108 start-page: 66 year: 2015 end-page: 71 ident: bib144 article-title: Thermal conductivity of monolayer hexagonal boron nitride nanoribbons publication-title: Comput. Mater. Sci. – volume: 95 start-page: 887 year: 2019 end-page: 910 ident: bib224 article-title: Thermally conductive adhesives from covalent-bonding of reduced graphene oxide to acrylic copolymer publication-title: J. Adhes. – volume: 175 start-page: 85 year: 2019 end-page: 91 ident: bib5 article-title: Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets publication-title: Compos. Sci. Technol. – volume: 43 start-page: 658 year: 2012 end-page: 664 ident: bib148 article-title: Thermal conductivity and dielectric properties of Al/PVDF composites publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 82 start-page: 198 year: 2016 end-page: 205 ident: bib262 article-title: Electric field as a tuning key to process carbon nanotube suspensions with controlled conductivity publication-title: Polymer – volume: 9 start-page: 117 year: 2019 ident: bib184 article-title: Review of micro-nanoscale surface coatings application for sustaining dropwise condensation publication-title: Coatings – volume: 123 start-page: 158 year: 2017 end-page: 167 ident: bib203 article-title: Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber publication-title: Carbon – volume: 156 start-page: 1 year: 2018 end-page: 7 ident: bib129 article-title: Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning publication-title: Compos. Sci. Technol. – volume: 7 start-page: 9018 year: 2019 end-page: 9024 ident: bib178 article-title: Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications publication-title: J. Mater. Chem. C – volume: 128 start-page: 105670 year: 2020 ident: bib254 article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework publication-title: Compos. Appl. Sci. Manuf. – start-page: 1904704 year: 2019 ident: bib81 article-title: Thermal transport in conductive polymer-based materials publication-title: Adv. Funct. Mater. – volume: 60 start-page: 2650 year: 2009 end-page: 2655 ident: bib30 article-title: Properties and heat-conduction mechanism of thermally conductive polymer composites publication-title: J. Chem. Ind. Eng. – volume: 37 start-page: 727 year: 2006 end-page: 734 ident: bib101 article-title: Enhanced thermal conductivity of polymer composites filled with hybrid filler publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 123 start-page: 79 year: 2019 end-page: 85 ident: bib127 article-title: Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene composites publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 145 start-page: 55 year: 2017 end-page: 61 ident: bib258 article-title: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing publication-title: Compos. Sci. Technol. – volume: 119 start-page: 299 year: 2019 end-page: 309 ident: bib194 article-title: Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity publication-title: Compos. Appl. Sci. Manuf. – volume: 57 start-page: 10967 year: 2018 end-page: 10976 ident: bib116 article-title: Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties via incorporation of low graphene content publication-title: Ind. Eng. Chem. Res. – volume: 139 start-page: 83 year: 2017 end-page: 89 ident: bib32 article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities publication-title: Compos. Sci. Technol. – year: 2020 ident: bib98 article-title: Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance publication-title: Sustain. Mater. Technol. – volume: 32 start-page: 987 year: 2013 end-page: 994 ident: bib88 article-title: Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures publication-title: Polym. Test. – volume: 442 start-page: 170 year: 2018 end-page: 177 ident: bib174 article-title: Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification publication-title: Appl. Surf. Sci. – volume: 7 start-page: 125 year: 1986 end-page: 140 ident: bib41 article-title: Thermally conductive polymer compositions publication-title: Polym. Compos. – volume: 177 start-page: 118 year: 2019 end-page: 126 ident: bib7 article-title: Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles publication-title: Compos. Sci. Technol. – volume: 370 start-page: 166 year: 2019 end-page: 175 ident: bib151 article-title: Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity publication-title: Chem. Eng. J. – volume: 121 start-page: 330 year: 2019 end-page: 340 ident: bib96 article-title: Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 29 start-page: 1901383 year: 2019 ident: bib31 article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite publication-title: Adv. Funct. Mater. – volume: 47 start-page: 5990 year: 2006 end-page: 5996 ident: bib222 article-title: Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites publication-title: Polymer – volume: 141 start-page: 1049 year: 2019 end-page: 1055 ident: bib163 article-title: Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites publication-title: Int. J. Heat Mass Tran. – volume: 5 start-page: 251 year: 2010 ident: bib71 article-title: Polyethylene nanofibres with very high thermal conductivities publication-title: Nat. Nanotechnol. – volume: 53 start-page: 1602 year: 2012 end-page: 1610 ident: bib242 article-title: The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion publication-title: Polymer – volume: 9 start-page: 437 year: 2017 ident: bib27 article-title: Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications publication-title: Polymers – year: 2010 ident: bib21 article-title: Heat Transfer – volume: 5 start-page: 1800548 year: 2019 ident: bib112 article-title: Tailoring highly thermal conductive properties of Te/MoS publication-title: Adv. Electron. Mater. – volume: 7 start-page: 5701 year: 2015 end-page: 5708 ident: bib241 article-title: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 41 year: 2016 end-page: 85 ident: bib60 article-title: Thermal conductivity of polymer-based composites: fundamentals and applications publication-title: Prog. Polym. Sci. – volume: 171 start-page: 70 year: 2019 end-page: 77 ident: bib212 article-title: Synergistic effect of hydrogen bonding and pi-pi stacking in interface of CF/PEEK composites publication-title: Compos. B Eng. – volume: 792 start-page: 375 year: 2019 end-page: 388 ident: bib180 article-title: Development of a nanostructured Ce(III)-Pr(III) film for excellently corrosion resistance improvement of epoxy/polyamide coating on carbon steel publication-title: J. Alloys Compd. – volume: 94 start-page: 209 year: 2017 end-page: 216 ident: bib237 article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method publication-title: Compos. Appl. Sci. Manuf. – volume: 63 year: 2011 ident: bib204 article-title: Recent developments in multifunctional nanocomposites using carbon nanotubes publication-title: Appl. Mech. Rev. – volume: 164 start-page: 153 year: 2018 end-page: 159 ident: bib187 article-title: Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire publication-title: Compos. Sci. Technol. – volume: 125 year: 2019 ident: bib202 article-title: Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: a promising strategy for enhancing thermal conductivity of epoxy composites publication-title: Compos. Appl. Sci. Manuf. – volume: 40 start-page: 389 year: 2017 end-page: 401 ident: bib39 article-title: Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock publication-title: J. Therm. Stresses – volume: 66 start-page: 356 year: 2018 end-page: 361 ident: bib167 article-title: Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite publication-title: J. Ind. Eng. Chem. – volume: 89 start-page: 8459 year: 2017 end-page: 8467 ident: bib264 article-title: Exploiting particle mutual interactions to enable challenging dielectrophoretic processes publication-title: Anal. Chem. – volume: 54 start-page: 5087 year: 2013 end-page: 5103 ident: bib226 article-title: A review on synthesis and properties of polymer functionalized graphene publication-title: Polymer – volume: 113 start-page: 1118 year: 2017 end-page: 1127 ident: bib230 article-title: Review of polymers for heat exchanger applications: factors concerning thermal conductivity publication-title: Appl. Therm. Eng. – volume: 71 start-page: 1906 year: 1997 end-page: 1908 ident: bib260 article-title: Optical anisotropy of dispersed carbon nanotubes induced by an electric field publication-title: Appl. Phys. Lett. – volume: 5 year: 2018 ident: bib158 article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes publication-title: Front. Mater. – volume: 10 start-page: 1088 year: 2018 ident: bib165 article-title: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity publication-title: Polymers – volume: 30 start-page: 1705544 year: 2018 ident: bib3 article-title: Thermal conductivity of polymers and their nanocomposites publication-title: Adv. Mater. – volume: 85 start-page: 115 year: 2016 end-page: 125 ident: bib154 article-title: Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites publication-title: Eur. Polym. J. – volume: 162 start-page: 7 year: 2018 end-page: 13 ident: bib246 article-title: Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites publication-title: Compos. Sci. Technol. – volume: 2 start-page: 509 year: 1971 ident: bib77 article-title: Thermal conductivity of cross-linked polymers publication-title: Polym. J. – volume: 179 start-page: 10 year: 2019 end-page: 40 ident: bib90 article-title: Carbon-based functional nanomaterials: preparation, properties and applications publication-title: Compos. Sci. Technol. – volume: 7 start-page: 23644 year: 2015 end-page: 23649 ident: bib216 article-title: Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 7035 year: 2019 end-page: 7044 ident: bib108 article-title: Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites publication-title: J. Mater. Chem. C – volume: 378 start-page: 1952 year: 2014 end-page: 1955 ident: bib225 article-title: Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms publication-title: Phys. Lett. – volume: 149 start-page: 152 year: 2019 end-page: 164 ident: bib145 article-title: Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites publication-title: Carbon – volume: 111 start-page: 83 year: 2017 end-page: 90 ident: bib169 article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent publication-title: Compos. B Eng. – volume: 34 start-page: 126 year: 2019 end-page: 133 ident: bib65 article-title: Chain rotation significantly reduces thermal conductivity of single-chain polymers publication-title: J. Mater. Res. – volume: 130 start-page: 295 year: 2018 end-page: 303 ident: bib142 article-title: Effect of defects on thermal conductivity of graphene/epoxy nanocomposites publication-title: Carbon – volume: 181 start-page: 107713 year: 2019 ident: bib91 article-title: High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance publication-title: Compos. Sci. Technol. – volume: 148 start-page: 1 year: 2017 end-page: 8 ident: bib49 article-title: MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite publication-title: Compos. Sci. Technol. – volume: 9 start-page: 33 year: 2018 end-page: 41 ident: bib259 article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications publication-title: Compos. Commun. – volume: 22 start-page: 5175 year: 2012 end-page: 5184 ident: bib133 article-title: Phonon scattering and thermal conductivity in p-Type nanostructured PbTe-BaTe bulk thermoelectric materials publication-title: Adv. Funct. Mater. – volume: 114 start-page: 355 year: 2017 end-page: 363 ident: bib266 article-title: Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane publication-title: Mater. Des. – volume: 89 start-page: 2464 year: 2003 end-page: 2467 ident: bib84 article-title: Study of high thermal conductive epoxy resins containing controlled high-order structures publication-title: J. Appl. Polym. Sci. – volume: 40 start-page: 3189 year: 2019 end-page: 3198 ident: bib50 article-title: Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications publication-title: Polym. Compos. – volume: 102 start-page: 126 year: 2017 end-page: 136 ident: bib179 article-title: Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites publication-title: Compos. Appl. Sci. Manuf. – volume: 11 start-page: 25465 year: 2019 end-page: 25473 ident: bib103 article-title: Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites publication-title: ACS Appl. Mater. Interfaces – volume: 361 start-page: 579 year: 2018 end-page: 581 ident: bib1 article-title: High thermal conductivity in cubic boron arsenide crystals publication-title: Science – volume: 125 start-page: 105530 year: 2019 ident: bib199 article-title: One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial for properties of epoxy composites publication-title: Compos. Appl. Sci. Manuf. – year: 2007 ident: bib16 article-title: Nano/microscale Heat Transfer – volume: 111 start-page: 7565 year: 2007 end-page: 7569 ident: bib156 article-title: Graphite nanoplatelet-epoxy composite thermal interface materials publication-title: J. Phys. Chem. C – volume: 48 start-page: 1214 year: 2013 end-page: 1224 ident: bib243 article-title: In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion publication-title: J. Mater. Sci. – volume: 124 start-page: 105506 year: 2019 ident: bib10 article-title: Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 11 start-page: 3388 year: 2019 end-page: 3399 ident: bib94 article-title: Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 10543 year: 2018 end-page: 10553 ident: bib68 article-title: Effect of temperature, crystallinity and molecule chain orientation on the thermal conductivity of polymers: a case study of PLLA publication-title: J. Mater. Sci. – volume: 5 year: 2019 ident: bib93 article-title: High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion publication-title: Sci. Adv. – volume: 146 start-page: 224 year: 2019 end-page: 231 ident: bib35 article-title: Electrical and thermal conductivity improvement of carbon nanotube and silver composites publication-title: Carbon – volume: 58 start-page: 5824 year: 2019 end-page: 5831 ident: bib2 article-title: High thermal conductivity in boron arsenide: from prediction to reality publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 222 year: 2018 end-page: 233 ident: bib37 article-title: Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance publication-title: Carbon – volume: 8 start-page: 55 year: 2019 end-page: 61 ident: bib228 article-title: Thermal behavior of silica aerogel/PMMA composite reinforced by non-covalent interaction publication-title: Emerg. Mater. Res. – volume: 114 year: 2013 ident: bib78 article-title: Effect of crosslink formation on heat conduction in amorphous polymers publication-title: J. Appl. Phys. – volume: 7 start-page: 16899 year: 2015 end-page: 16908 ident: bib75 article-title: Thermal conductivity of electrospun polyethylene nanofibers publication-title: Nanoscale – volume: 45 start-page: 16569 year: 2019 end-page: 16576 ident: bib125 article-title: Modification of Si publication-title: Ceram. Int. – volume: 141 start-page: 506 year: 2019 end-page: 514 ident: bib6 article-title: Electromagnetic interference shielding MWCNT-Fe publication-title: Carbon – start-page: 1903857 year: 2019 ident: bib164 article-title: A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces publication-title: Adv. Funct. Mater. – volume: 369 start-page: 302 year: 2019 end-page: 332 ident: bib182 article-title: Synthesis of layered double hydroxides through continuous flow processes: a review publication-title: Chem. Eng. J. – volume: 43 start-page: 2774 year: 2017 end-page: 2779 ident: bib265 article-title: Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites publication-title: Ceram. Int. – volume: 7 start-page: 9228 year: 2019 end-page: 9236 ident: bib181 article-title: Innovative surface engineering of high-carbon steel through formation of ceramic surface and diffused subsurface hybrid layering publication-title: ACS Sustain. Chem. Eng. – volume: 132 start-page: 1 year: 2018 end-page: 22 ident: bib23 article-title: Thermal conductivity of polymers and polymer nanocomposites publication-title: Mater. Sci. Eng. R Rep. – volume: 124 start-page: 132 year: 2012 end-page: 137 ident: bib192 article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites publication-title: J. Appl. Polym. Sci. – year: 1974 ident: bib19 article-title: Thermal Conductivity of the Elements: a Comprehensive Review – volume: 79 start-page: 144305 year: 2009 ident: bib76 article-title: Anomalous heat conduction in polyethylene chains: theory and molecule dynamics simulations publication-title: Phys. Rev. B – volume: 39 start-page: 933 year: 2008 end-page: 961 ident: bib209 article-title: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites publication-title: Compos. B Eng. – volume: 5 start-page: 1119 year: 2011 end-page: 1139 ident: bib18 article-title: Viscosities, thermal conductivities and diffusion coefficient of CO publication-title: Int. J. Greenh. Gas Control – volume: 117 start-page: 11 year: 2019 end-page: 22 ident: bib198 article-title: Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites publication-title: Compos. Appl. Sci. Manuf. – volume: 121 start-page: 449 year: 2019 end-page: 456 ident: bib200 article-title: Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles publication-title: Compos. Appl. Sci. Manuf. – volume: 8 start-page: 264 year: 2018 ident: bib46 article-title: Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/Graphene nanoplatelets with improved thermo-oxidative stability publication-title: Nanomaterials – volume: 114 start-page: 6825 year: 2010 end-page: 6829 ident: bib197 article-title: Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride publication-title: J. Phys. Chem. B – volume: 61 start-page: 12551 year: 2000 end-page: 12555 ident: bib135 article-title: Low thermal conductivity of the layered oxide (Na,Ca)Co publication-title: Phys. Rev. B – volume: 54 start-page: 10041 year: 2019 end-page: 10054 ident: bib173 article-title: Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin publication-title: J. Mater. Sci. – volume: 28 start-page: 1805365 year: 2018 ident: bib251 article-title: Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion publication-title: Adv. Funct. Mater. – volume: 119 start-page: 1 year: 1995 end-page: 30 ident: bib40 article-title: Thermal-conductivity of heterophase polymer compositions publication-title: Adv. Polym. Sci. – volume: 164 start-page: 59 year: 2018 end-page: 64 ident: bib8 article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization publication-title: Compos. Sci. Technol. – volume: 12 year: 2017 ident: bib28 article-title: Percolation effect on thermal conductivity of filler-dispersed polymer composites publication-title: J. Therm. Sci. Technol. – volume: 7 start-page: 2725 year: 2019 end-page: 2733 ident: bib109 article-title: Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity publication-title: J. Mater. Chem. C – volume: 35 start-page: 36 year: 2019 end-page: 43 ident: bib114 article-title: Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites publication-title: J. Mater. Sci. Technol. – volume: 18 start-page: 1187 year: 1980 end-page: 1207 ident: bib24 article-title: Thermal-conductivity of oriented crystalline polymers publication-title: J. Polym. Sci., Polym. Phys. Ed. – volume: 348 start-page: 693 year: 2018 end-page: 703 ident: bib115 article-title: Simultaneously facilitating dispersion and thermal reduction of graphene oxide to enhance thermal conductivity of poly(vinylidene fluoride)/graphene nanocomposites by water in continuous extrusion publication-title: Chem. Eng. J. – volume: 18 start-page: 3488 year: 2018 end-page: 3493 ident: bib120 article-title: Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites publication-title: Nano Lett. – volume: 12 start-page: 92 year: 2018 end-page: 130 ident: bib52 article-title: Thermal transport in polymeric materials and across composite interfaces publication-title: Appl. Mater. Today – volume: 10 start-page: 16812 year: 2018 end-page: 16821 ident: bib11 article-title: Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites publication-title: ACS Appl. Mater. Interfaces – volume: 136 start-page: 47054 year: 2019 ident: bib110 article-title: 3D interconnected high aspect ratio tellurium nanowires in epoxy nanocomposites: serving as thermal conductive expressway publication-title: J. Appl. Polym. Sci. – volume: 17 start-page: 1577 year: 2008 end-page: 1581 ident: bib175 article-title: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes publication-title: Diam. Relat. Mater. – volume: 110 year: 2017 ident: bib64 article-title: Effects of polymer topology and morphology on thermal transport: a molecule dynamics study of bottlebrush polymers publication-title: Appl. Phys. Lett. – volume: 121 start-page: 4600 year: 2017 end-page: 4609 ident: bib220 article-title: Thermal conductance in cross-linked polymers: effects of non-bonding interactions publication-title: J. Phys. Chem. B – volume: 175 start-page: 107070 year: 2019 ident: bib234 article-title: Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology publication-title: Compos. B Eng. – volume: 10 start-page: 1771 year: 2019 ident: bib70 article-title: Nanostructured polymer films with metal-like thermal conductivity publication-title: Nat. Commun. – volume: 7 start-page: 7531 year: 2017 end-page: 7539 ident: bib185 article-title: A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates publication-title: RSC Adv. – volume: 115 start-page: 52 year: 2017 end-page: 59 ident: bib74 article-title: Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO) publication-title: Polymer – volume: 8 start-page: 19732 year: 2016 end-page: 19738 ident: bib248 article-title: Facile method to fabricate highly thermally conductive graphite/PP composite with network structures publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 1424 year: 2011 end-page: 1438 ident: bib139 article-title: High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix publication-title: J. Mater. Sci. – volume: 95 start-page: 267 year: 2017 end-page: 273 ident: bib54 article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 28 start-page: 7220 year: 2016 end-page: 7227 ident: bib33 article-title: Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits publication-title: Adv. Mater. – volume: 124 year: 2019 ident: bib177 article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 27 year: 2017 ident: bib4 article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2225 year: 2019 ident: bib213 article-title: Evaluation of interfacial fracture toughness and interfacial shear strength of typha Spp. fiber/polymer composite by double shear test method publication-title: Materials – volume: 11 start-page: 148 year: 2019 ident: bib113 article-title: Surface modification of aluminum nitride to fabricate thermally conductive poly(butylene succinate) nanocomposite publication-title: Polymers – volume: 31 start-page: 1900199 year: 2019 ident: bib38 article-title: Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites publication-title: Adv. Mater. – volume: 8 start-page: 3121 year: 1975 end-page: 3130 ident: bib87 article-title: The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate publication-title: J. Phys. C Solid State Phys. – volume: 48 start-page: 592 year: 2010 end-page: 603 ident: bib176 article-title: Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites publication-title: Carbon – volume: 53 start-page: 4489 year: 2012 end-page: 4492 ident: bib85 article-title: Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure publication-title: Polymer – volume: 120 start-page: 49 year: 2019 end-page: 55 ident: bib104 article-title: Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 57 start-page: 101 year: 2017 end-page: 106 ident: bib92 article-title: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites publication-title: Polym. Test. – volume: 160 start-page: 245 year: 2018 end-page: 254 ident: bib168 article-title: Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment publication-title: Compos. Sci. Technol. – volume: 6 start-page: 3004 year: 2018 end-page: 3015 ident: bib121 article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology publication-title: J. Mater. Chem. C – volume: 54 start-page: 13135 year: 2019 end-page: 13146 ident: bib9 article-title: Effect of coatings on thermal conductivity and tribological properties of aluminum foam/polyoxymethylene interpenetrating composites publication-title: J. Mater. Sci. – volume: 11 start-page: 203 year: 2012 end-page: 207 ident: bib20 article-title: Thermal conductivity of isotopically modified graphene publication-title: Nat. Mater. – volume: 160 start-page: 199 year: 2018 end-page: 207 ident: bib240 article-title: Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm publication-title: Compos. Sci. Technol. – volume: 175 start-page: 135 year: 2019 end-page: 142 ident: bib29 article-title: Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites publication-title: Compos. Sci. Technol. – volume: 17 start-page: 1587 year: 2017 end-page: 1594 ident: bib57 article-title: Nonperturbative quantum nature of the dislocation phonon interaction publication-title: Nano Lett. – volume: 6 start-page: 13108 year: 2018 end-page: 13113 ident: bib275 article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity publication-title: J. Mater. Chem. C – volume: 169 start-page: 86 year: 2019 end-page: 94 ident: bib36 article-title: Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity publication-title: Compos. Sci. Technol. – volume: 51 start-page: 1431 year: 2008 end-page: 1438 ident: bib206 article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids publication-title: Int. J. Heat Mass Tran. – volume: 8 start-page: 972 year: 2016 end-page: 979 ident: bib190 article-title: Fabrication and properties of thermally conductive epoxy resin nanocomposites filled with f GNPs/PNBRs hybrid fillers publication-title: Sci. Adv. Mater. – volume: 53 start-page: 2199 year: 2017 end-page: 2209 ident: bib211 article-title: Review of interfacial layer's effect on thermal conductivity in nanofluid publication-title: Heat Mass Tran. – volume: 11 start-page: 3656 year: 2019 end-page: 3664 ident: bib14 article-title: Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance publication-title: Nanoscale – volume: 18 start-page: 769 year: 1977 end-page: 776 ident: bib25 article-title: Thermal-conductivity of semicrystalline polymers-model publication-title: Polymer – volume: 112 start-page: 18 year: 2018 end-page: 24 ident: bib276 article-title: Anisotropic thermally conductive composite with wood-derived carbon scaffolds publication-title: Compos. Appl. Sci. Manuf. – volume: 55 start-page: 2329 year: 2019 end-page: 2339 ident: bib193 article-title: Experimental investigation of thermal conductivity behavior of MWCNTS-Al publication-title: Heat Mass Tran. – volume: 2 start-page: 731 year: 2003 end-page: 734 ident: bib215 article-title: Interfacial heat flow in carbon nanotube suspensions publication-title: Nat. Mater. – volume: 140 start-page: 24 year: 2018 end-page: 29 ident: bib270 article-title: Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment publication-title: Carbon – volume: 164 start-page: 732 year: 2019 end-page: 739 ident: bib233 article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites publication-title: Compos. B Eng. – volume: 124 start-page: 105484 year: 2019 ident: bib48 article-title: Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 116 start-page: 98 year: 2019 end-page: 105 ident: bib170 article-title: Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 40 start-page: 3164 year: 2007 end-page: 3171 ident: bib207 article-title: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles publication-title: J. Phys. D Appl. Phys. – volume: 5 start-page: 4374 year: 2013 end-page: 4382 ident: bib205 article-title: Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity publication-title: ACS Appl. Mater. Interfaces – volume: 149 start-page: 173 year: 2019 end-page: 180 ident: bib140 article-title: Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity publication-title: Carbon – volume: 55 start-page: 772 year: 2013 end-page: 777 ident: bib58 article-title: Calculation scheme for the evaluation of polymer thermal conductivity publication-title: Polym. Sci. – volume: 166 start-page: 509 year: 2019 end-page: 515 ident: bib43 article-title: Engineering molecule interaction in polymeric hybrids: effect of thermal linker and polymer chain structure on thermal conduction publication-title: Compos. B Eng. – volume: 109 start-page: 575 year: 2016 end-page: 597 ident: bib231 article-title: Toward highly thermally conductive all-carbon composites: structure control publication-title: Carbon – volume: 92 year: 2008 ident: bib208 article-title: Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes publication-title: Appl. Phys. Lett. – volume: 1 start-page: 207 year: 2018 end-page: 230 ident: bib42 article-title: A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods publication-title: Adv. Compos. Hybrid. Mater. – volume: 23 start-page: 1025 year: 2012 end-page: 1028 ident: bib188 article-title: Thermal conductivity epoxy resin composites filled with boron nitride publication-title: Polym. Adv. Technol. – volume: 487 start-page: 379 year: 2019 end-page: 388 ident: bib102 article-title: Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes publication-title: Appl. Surf. Sci. – volume: 174 start-page: 1 year: 2019 end-page: 10 ident: bib107 article-title: Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe publication-title: Compos. Sci. Technol. – volume: 11 start-page: 4353 year: 2019 end-page: 4363 ident: bib257 article-title: Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 5107 year: 2011 end-page: 5116 ident: bib227 article-title: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites publication-title: Carbon – volume: 5 start-page: 87981 year: 2015 end-page: 87986 ident: bib79 article-title: Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding publication-title: RSC Adv. – volume: 112 start-page: 216 year: 2018 end-page: 238 ident: bib95 article-title: Microstructure engineering of graphene towards highly thermal conductive composites publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 28 start-page: 1805053 year: 2018 ident: bib255 article-title: Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge publication-title: Adv. Funct. Mater. – volume: 109 start-page: 2145 year: 2008 end-page: 2155 ident: bib83 article-title: Effects of carbon fillers on the thermal conductivity of highly filled liquid-crystal polymer based resins publication-title: J. Appl. Polym. Sci. – volume: 187 start-page: 107944 year: 2020 ident: bib82 article-title: Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers publication-title: Compos. Sci. Technol. – year: 2014 ident: bib141 article-title: Materials Science and Engineering of Carbon: Fundamentals – volume: 180 start-page: 121760 year: 2019 ident: bib44 article-title: Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecule weight polyethylene bulk material publication-title: Polymer – volume: 11 start-page: 1156 year: 2019 ident: bib146 article-title: Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface publication-title: Polymers – volume: 113 start-page: 184304 year: 2013 ident: bib62 article-title: Thermal conductivity dependence on chain length in amorphous polymers publication-title: J. Appl. Phys. – volume: 9 start-page: 7637 year: 2017 end-page: 7647 ident: bib249 article-title: Design and preparation of a unique segregated double network with excellent thermal conductive property publication-title: ACS Appl. Mater. Interfaces – volume: 102 start-page: 7533 year: 2019 end-page: 7542 ident: bib143 article-title: Impact of irradiation induced dislocation loops on thermal conductivity in ceramics publication-title: J. Am. Ceram. Soc. – volume: 92 start-page: 15 year: 2016 end-page: 22 ident: bib160 article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity publication-title: Int. J. Heat Mass Tran. – volume: 26 start-page: 778 year: 2005 end-page: 790 ident: bib150 article-title: Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions publication-title: Polym. Compos. – volume: 92 start-page: 27 year: 2017 end-page: 32 ident: bib56 article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 61 start-page: 1 year: 2016 end-page: 28 ident: bib15 article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory publication-title: Prog. Polym. Sci. – volume: 16 start-page: 3585 year: 2016 end-page: 3593 ident: bib157 article-title: Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites publication-title: Nano Lett. – volume: 144 start-page: 70 year: 2017 end-page: 78 ident: bib153 article-title: Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites publication-title: Compos. Sci. Technol. – volume: 71 start-page: 245 year: 2014 end-page: 250 ident: bib223 article-title: Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving publication-title: Int. J. Heat Mass Tran. – volume: 83 year: 2011 ident: bib217 article-title: Interfacial thermal transport in atomic junctions publication-title: Phys. Rev. B – volume: 89 start-page: 24 year: 2013 end-page: 28 ident: bib244 article-title: Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion publication-title: Compos. Sci. Technol. – volume: 140 year: 2018 ident: bib63 article-title: Decreased thermal conductivity of polyethylene chain influenced by short chain branching publication-title: J. Heat Tran. – volume: 48 start-page: 3979 year: 2010 end-page: 3986 ident: bib166 article-title: Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes publication-title: Carbon – volume: 55 start-page: 5805 year: 2019 end-page: 5808 ident: bib132 article-title: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation publication-title: Chem. Commun. – volume: 180 start-page: 107569 year: 2020 ident: bib273 article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management publication-title: Compos. B Eng. – volume: 6 start-page: 35809 year: 2016 end-page: 35814 ident: bib161 article-title: Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride publication-title: RSC Adv. – volume: 131 start-page: 149 year: 2018 end-page: 159 ident: bib12 article-title: Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes publication-title: Carbon – volume: 129 start-page: 2777 year: 2007 end-page: 2782 ident: bib73 article-title: Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 9025 year: 2019 end-page: 9033 ident: bib232 article-title: Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries publication-title: J. Mater. Sci. – volume: 5 start-page: 36334 year: 2015 end-page: 36339 ident: bib100 article-title: High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites publication-title: RSC Adv. – volume: 40 start-page: 2417 year: 2007 end-page: 2421 ident: bib45 article-title: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity publication-title: Macromolecules – volume: 20 start-page: 4740 year: 2008 end-page: 4744 ident: bib137 article-title: Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites publication-title: Adv. Mater. – volume: 29 start-page: 337 year: 2018 end-page: 346 ident: bib51 article-title: Surface modification of boron nitride via poly(dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity publication-title: Polym. Adv. Technol. – volume: 6 start-page: 57357 year: 2016 end-page: 57362 ident: bib171 article-title: Fabrication of modified bismaleimide resins by hyperbranched phenyl polysiloxane and improvement of their thermal conductivities publication-title: RSC Adv. – volume: 120 start-page: 140 year: 2019 end-page: 146 ident: bib256 article-title: Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing publication-title: Compos. Appl. Sci. Manuf. – volume: 13 start-page: 207 year: 2018 end-page: 216 ident: bib80 article-title: Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers publication-title: Appl. Mater. Today – volume: 13 start-page: 337 year: 2019 end-page: 345 ident: bib111 article-title: Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability publication-title: ACS Nano – volume: 136 start-page: 47951 year: 2019 ident: bib122 article-title: Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites publication-title: J. Appl. Polym. Sci. – volume: 45 start-page: 1117 year: 2013 end-page: 1125 ident: bib155 article-title: Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods publication-title: Compos. B Eng. – volume: 150 start-page: 217 year: 2017 end-page: 226 ident: bib245 article-title: Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC publication-title: Compos. Sci. Technol. – volume: 2 start-page: 15058 year: 2014 end-page: 15069 ident: bib221 article-title: Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide publication-title: J. Mater. Chem. – volume: 170 start-page: 135 year: 2019 end-page: 140 ident: bib250 article-title: Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement publication-title: Compos. Sci. Technol. – volume: 135 start-page: 46454 year: 2018 ident: bib117 article-title: Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties publication-title: J. Appl. Polym. Sci. – volume: 11 start-page: 17915 year: 2019 end-page: 17924 ident: bib269 article-title: Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation publication-title: ACS Appl. Mater. Interfaces – volume: 176 start-page: 110 year: 2019 end-page: 117 ident: bib26 article-title: Theoretical analysis and development of thermally conductive polymer composites publication-title: Polymer – volume: 50 start-page: 2083 year: 2012 end-page: 2090 ident: bib152 article-title: Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization publication-title: Carbon – volume: 135 start-page: 46397 year: 2018 ident: bib118 article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid publication-title: J. Appl. Polym. Sci. – year: 2020 ident: bib89 article-title: Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and BN fillers publication-title: Chin. J. Polym. Sci. – volume: 53 start-page: 471 year: 2012 end-page: 480 ident: bib229 article-title: Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties publication-title: Polymer – volume: 177 start-page: 107835 year: 2019 ident: bib162 article-title: Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH publication-title: Mater. Des. – volume: 149 start-page: 281 year: 2019 end-page: 289 ident: bib196 article-title: High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite publication-title: Carbon – volume: 118 start-page: 2754 year: 2010 end-page: 2764 ident: bib149 article-title: Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles publication-title: J. Appl. Polym. Sci. – volume: 124 start-page: 105511 year: 2019 ident: bib123 article-title: Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 180 start-page: 86 year: 2019 end-page: 93 ident: bib186 article-title: Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al publication-title: Compos. Sci. Technol. – volume: 14 start-page: 295 year: 2014 ident: bib22 article-title: High thermal conductivity in amorphous polymer blends by engineered interchain interactions publication-title: Nat. Mater. – volume: 164 start-page: 710 year: 2019 end-page: 719 ident: bib105 article-title: Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties publication-title: Compos. B Eng. – volume: 36 start-page: 914 year: 2011 end-page: 944 ident: bib53 article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review publication-title: Prog. Polym. Sci. – volume: 120 start-page: 803 year: 2016 end-page: 812 ident: bib67 article-title: Role of chain morphology and stiffness in thermal conductivity of amorphous polymers publication-title: J. Phys. Chem. B – volume: 114 start-page: 727 year: 2017 end-page: 734 ident: bib128 article-title: A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers publication-title: Int. J. Heat Mass Tran. – volume: 135 start-page: 46397 year: 2018 ident: bib136 article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid publication-title: J. Appl. Polym. Sci. – volume: 74 start-page: 4561 year: 2017 end-page: 4575 ident: bib59 article-title: High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films publication-title: Polym. Bull. – volume: 30 start-page: 2090 year: 1984 end-page: 2097 ident: bib61 article-title: Experimental determination of the thermal conductivity of a conducting polymer: pure and heavily doped polyacetylene publication-title: Phys. Rev. B – volume: 116 start-page: 84 year: 2017 end-page: 93 ident: bib191 article-title: Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes publication-title: Carbon – volume: 81 start-page: 6692 year: 1997 end-page: 6699 ident: bib210 article-title: Effective thermal conductivity of particulate composites with interfacial thermal resistance publication-title: J. Appl. Phys. – volume: 54 start-page: 1017 year: 2015 end-page: 1024 ident: bib69 article-title: Effects of carbon fillers on crystallization properties and thermal conductivity of poly(phenylene sulfide) publication-title: Polym. Plast. Technol. Eng. – volume: 162 start-page: 180 year: 2018 end-page: 187 ident: bib119 article-title: BaTiO publication-title: Compos. Sci. Technol. – volume: 16 start-page: 135 year: 2012 end-page: 142 ident: bib263 article-title: Dielectrophoresis force of poly(p-phenylene)/acrylic elastomer under ac electric field publication-title: Mater. Res. Innovat. – volume: 185 start-page: 107784 year: 2020 ident: bib252 article-title: High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers publication-title: Compos. B Eng. – volume: 2 start-page: 2467 year: 2009 end-page: 2495 ident: bib138 article-title: Thermal conductivity of diamond composites publication-title: Materials – volume: 141 start-page: 497 year: 2019 end-page: 505 ident: bib97 article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity publication-title: Carbon – volume: 132 start-page: 235 year: 2019 end-page: 256 ident: bib183 article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review publication-title: Prog. Org. Coating – volume: 174 start-page: 68 year: 2019 end-page: 75 ident: bib272 article-title: Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend publication-title: Compos. Sci. Technol. – volume: 129 start-page: 205 year: 2016 end-page: 213 ident: bib268 article-title: Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets publication-title: Compos. Sci. Technol. – volume: 171 start-page: 127 year: 2019 end-page: 134 ident: bib277 article-title: Highly anisotropic functional conductors fabricated by multi-melt multi-injection molding ((MIM)-I-3): a synergetic role of multiple melt flows and confined interface publication-title: Compos. Sci. Technol. – volume: 4 year: 2018 ident: bib13 article-title: Molecular engineered conjugated polymer with high thermal conductivity publication-title: Sci. Adv. – volume: 29 start-page: 1900412 year: 2019 ident: bib253 article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network publication-title: Adv. Funct. Mater. – volume: 107 start-page: 570 year: 2018 end-page: 578 ident: bib238 article-title: Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers publication-title: Compos. Appl. Sci. Manuf. – volume: 28 start-page: 3709 year: 1993 end-page: 3714 ident: bib134 article-title: Phonon-scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics publication-title: J. Mater. Sci. – volume: 116 start-page: 13629 year: 2012 end-page: 13639 ident: bib172 article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites publication-title: J. Phys. Chem. C – volume: 107 year: 2015 ident: bib66 article-title: Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films publication-title: Appl. Phys. Lett. – volume: 9 start-page: 384 year: 2014 end-page: 390 ident: bib72 article-title: High thermal conductivity of chain-oriented amorphous polythiophene publication-title: Nat. Nanotechnol. – volume: 151 start-page: 115 year: 2017 end-page: 123 ident: bib274 article-title: Moisture driven thermal conduction in polymer and polymer blends publication-title: Compos. Sci. Technol. – volume: 124 start-page: 105447 year: 2019 ident: bib124 article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 9 start-page: 29071 year: 2017 end-page: 29081 ident: bib247 article-title: Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 36 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib114 article-title: Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.016 – volume: 53 start-page: 2199 issue: 6 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib211 article-title: Review of interfacial layer's effect on thermal conductivity in nanofluid publication-title: Heat Mass Tran. doi: 10.1007/s00231-016-1963-6 – volume: 114 start-page: 6825 issue: 20 year: 2010 ident: 10.1016/j.compscitech.2020.108134_bib197 article-title: Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride publication-title: J. Phys. Chem. B doi: 10.1021/jp101857w – volume: 150 start-page: 217 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib245 article-title: Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.07.019 – volume: 29 start-page: 337 issue: 1 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib51 article-title: Surface modification of boron nitride via poly(dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4119 – volume: 810 start-page: 151950 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib201 article-title: High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.151950 – volume: 112 start-page: 18 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib276 article-title: Anisotropic thermally conductive composite with wood-derived carbon scaffolds publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.05.023 – volume: 10 start-page: 1771 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib70 article-title: Nanostructured polymer films with metal-like thermal conductivity publication-title: Nat. Commun. doi: 10.1038/s41467-019-09697-7 – volume: 10 start-page: 16812 issue: 19 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib11 article-title: Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03522 – volume: 179 start-page: 10 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib90 article-title: Carbon-based functional nanomaterials: preparation, properties and applications publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.028 – volume: 110 issue: 9 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib64 article-title: Effects of polymer topology and morphology on thermal transport: a molecule dynamics study of bottlebrush polymers publication-title: Appl. Phys. Lett. doi: 10.1063/1.4976946 – volume: 130 start-page: 295 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib142 article-title: Effect of defects on thermal conductivity of graphene/epoxy nanocomposites publication-title: Carbon doi: 10.1016/j.carbon.2017.12.110 – volume: 125 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib202 article-title: Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: a promising strategy for enhancing thermal conductivity of epoxy composites publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.105517 – volume: 124 start-page: 105511 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib123 article-title: Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.105511 – volume: 165 start-page: 259 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib47 article-title: Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.07.007 – year: 2020 ident: 10.1016/j.compscitech.2020.108134_bib98 article-title: Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance publication-title: Sustain. Mater. Technol. – volume: 116 start-page: 84 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib191 article-title: Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2017.01.103 – volume: 6 start-page: 35809 issue: 42 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib161 article-title: Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride publication-title: RSC Adv. doi: 10.1039/C6RA04513H – volume: 49 start-page: 1980 issue: 6 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib261 article-title: The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets publication-title: Carbon doi: 10.1016/j.carbon.2011.01.023 – volume: 187 start-page: 107944 year: 2020 ident: 10.1016/j.compscitech.2020.108134_bib82 article-title: Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107944 – volume: 185 start-page: 107784 year: 2020 ident: 10.1016/j.compscitech.2020.108134_bib252 article-title: High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.107784 – volume: 7 start-page: 9228 issue: 10 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib181 article-title: Innovative surface engineering of high-carbon steel through formation of ceramic surface and diffused subsurface hybrid layering publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00051 – volume: 57 start-page: 10967 issue: 32 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib116 article-title: Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties via incorporation of low graphene content publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01070 – volume: 112 start-page: 216 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib95 article-title: Microstructure engineering of graphene towards highly thermal conductive composites publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2018.06.010 – volume: 107 issue: 7 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib66 article-title: Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4929426 – volume: 174 start-page: 68 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib272 article-title: Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.02.017 – volume: 162 start-page: 7 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib246 article-title: Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.03.016 – volume: 140 issue: 3 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib63 article-title: Decreased thermal conductivity of polyethylene chain influenced by short chain branching publication-title: J. Heat Tran. doi: 10.1115/1.4038003 – volume: 5 start-page: 251 year: 2010 ident: 10.1016/j.compscitech.2020.108134_bib71 article-title: Polyethylene nanofibres with very high thermal conductivities publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.27 – volume: 89 start-page: 24 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib244 article-title: Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.09.017 – volume: 54 start-page: 5087 issue: 19 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib226 article-title: A review on synthesis and properties of polymer functionalized graphene publication-title: Polymer doi: 10.1016/j.polymer.2013.06.027 – volume: 28 start-page: 3709 issue: 14 year: 1993 ident: 10.1016/j.compscitech.2020.108134_bib134 article-title: Phonon-scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics publication-title: J. Mater. Sci. doi: 10.1007/BF00353168 – volume: 97 start-page: 442 issue: 2 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib17 article-title: Effective thermal conductivity of soda-lime silicate glassmelts with different iron contents between 1100°C and 1500°C publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12768 – volume: 32 start-page: 987 issue: 5 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib88 article-title: Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2013.05.007 – volume: 37 start-page: 727 issue: 5 year: 2006 ident: 10.1016/j.compscitech.2020.108134_bib101 article-title: Enhanced thermal conductivity of polymer composites filled with hybrid filler publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2005.07.006 – volume: 115 start-page: 52 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib74 article-title: Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO) publication-title: Polymer doi: 10.1016/j.polymer.2017.02.024 – volume: 66 start-page: 493 issue: 1 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib99 article-title: Thermal conductivity enhancement with different fillers for epoxy resin adhesives publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.02.044 – volume: 74 start-page: 4561 issue: 11 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib59 article-title: High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films publication-title: Polym. Bull. doi: 10.1007/s00289-017-1974-6 – start-page: 1904704 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib81 article-title: Thermal transport in conductive polymer-based materials publication-title: Adv. Funct. Mater. – volume: 18 start-page: 769 issue: 8 year: 1977 ident: 10.1016/j.compscitech.2020.108134_bib25 article-title: Thermal-conductivity of semicrystalline polymers-model publication-title: Polymer doi: 10.1016/0032-3861(77)90179-3 – volume: 139 start-page: 83 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib32 article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.12.015 – ident: 10.1016/j.compscitech.2020.108134_bib239 doi: 10.1021/acsami.9b19844 – volume: 39 start-page: 933 issue: 6 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib209 article-title: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2008.01.002 – volume: 129 start-page: 2777 issue: 10 year: 2007 ident: 10.1016/j.compscitech.2020.108134_bib73 article-title: Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065043f – volume: 109 start-page: 2145 issue: 4 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib83 article-title: Effects of carbon fillers on the thermal conductivity of highly filled liquid-crystal polymer based resins publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.27934 – volume: 11 start-page: 3388 issue: 3 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib94 article-title: Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16209 – volume: 181 start-page: 107713 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib91 article-title: High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107713 – volume: 94 start-page: 209 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib237 article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.12.014 – volume: 22 start-page: 5175 issue: 24 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib133 article-title: Phonon scattering and thermal conductivity in p-Type nanostructured PbTe-BaTe bulk thermoelectric materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201221 – volume: 26 start-page: 6093 issue: 35 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib219 article-title: Molecule bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces publication-title: Adv. Mater. doi: 10.1002/adma.201400954 – volume: 361 start-page: 579 issue: 6402 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib1 article-title: High thermal conductivity in cubic boron arsenide crystals publication-title: Science doi: 10.1126/science.aat8982 – volume: 7 start-page: 23644 issue: 42 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib216 article-title: Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07188 – volume: 53 start-page: 10543 issue: 14 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib68 article-title: Effect of temperature, crystallinity and molecule chain orientation on the thermal conductivity of polymers: a case study of PLLA publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2306-4 – volume: 164 start-page: 153 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib187 article-title: Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.05.046 – volume: 348 start-page: 693 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib115 article-title: Simultaneously facilitating dispersion and thermal reduction of graphene oxide to enhance thermal conductivity of poly(vinylidene fluoride)/graphene nanocomposites by water in continuous extrusion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.199 – volume: 166 start-page: 509 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib43 article-title: Engineering molecule interaction in polymeric hybrids: effect of thermal linker and polymer chain structure on thermal conduction publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.02.029 – volume: 10 start-page: 1088 issue: 10 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib165 article-title: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity publication-title: Polymers doi: 10.3390/polym10101088 – volume: 6 start-page: 57357 issue: 62 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib171 article-title: Fabrication of modified bismaleimide resins by hyperbranched phenyl polysiloxane and improvement of their thermal conductivities publication-title: RSC Adv. doi: 10.1039/C6RA10397A – volume: 5 issue: 6 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib93 article-title: High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion publication-title: Sci. Adv. doi: 10.1126/sciadv.aav0129 – volume: 141 start-page: 497 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib97 article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity publication-title: Carbon doi: 10.1016/j.carbon.2018.09.073 – volume: 7 start-page: 16899 issue: 40 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib75 article-title: Thermal conductivity of electrospun polyethylene nanofibers publication-title: Nanoscale doi: 10.1039/C5NR04995D – volume: 79 start-page: 144305 issue: 14 year: 2009 ident: 10.1016/j.compscitech.2020.108134_bib76 article-title: Anomalous heat conduction in polyethylene chains: theory and molecule dynamics simulations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.144305 – volume: 53 start-page: 1602 issue: 7 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib242 article-title: The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion publication-title: Polymer doi: 10.1016/j.polymer.2012.02.003 – volume: 95 start-page: 267 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib54 article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2017.01.019 – volume: 12 start-page: 92 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib52 article-title: Thermal transport in polymeric materials and across composite interfaces publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.04.004 – volume: 109 start-page: 575 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib231 article-title: Toward highly thermally conductive all-carbon composites: structure control publication-title: Carbon doi: 10.1016/j.carbon.2016.08.059 – volume: 135 start-page: 46397 issue: 26 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib118 article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46397 – volume: 27 issue: 5 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib4 article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604754 – volume: 55 start-page: 5805 issue: 41 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib132 article-title: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation publication-title: Chem. Commun. doi: 10.1039/C9CC02889G – volume: 135 start-page: 46454 issue: 27 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib117 article-title: Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46454 – volume: 89 start-page: 8459 issue: 16 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib264 article-title: Exploiting particle mutual interactions to enable challenging dielectrophoretic processes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02008 – volume: 174 start-page: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib107 article-title: Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.02.005 – volume: 171 start-page: 127 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib277 article-title: Highly anisotropic functional conductors fabricated by multi-melt multi-injection molding ((MIM)-I-3): a synergetic role of multiple melt flows and confined interface publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.11.032 – volume: 175 start-page: 107070 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib234 article-title: Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107070 – volume: 18 start-page: 984 issue: 10 year: 1977 ident: 10.1016/j.compscitech.2020.108134_bib86 article-title: Thermal conductivity of polymers publication-title: Polymer doi: 10.1016/0032-3861(77)90002-7 – volume: 53 start-page: 471 issue: 2 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib229 article-title: Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties publication-title: Polymer doi: 10.1016/j.polymer.2011.12.040 – volume: 487 start-page: 379 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib102 article-title: Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.070 – volume: 102 start-page: 7533 issue: 12 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib143 article-title: Impact of irradiation induced dislocation loops on thermal conductivity in ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16616 – volume: 123 start-page: 158 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib203 article-title: Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber publication-title: Carbon doi: 10.1016/j.carbon.2017.07.057 – volume: 149 start-page: 281 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib196 article-title: High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite publication-title: Carbon doi: 10.1016/j.carbon.2019.04.043 – volume: 6 start-page: 1900275 issue: 11 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib214 article-title: Interfacial thermal contact conductance inside the graphene-Bi2Te3 heterostructure publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900275 – volume: 148 start-page: 1 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib49 article-title: MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.05.008 – volume: 102 start-page: 126 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib179 article-title: Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.07.030 – volume: 192 start-page: 72 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib195 article-title: Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.12.014 – volume: 66 start-page: 356 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib167 article-title: Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.06.001 – volume: 14 start-page: 295 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib22 article-title: High thermal conductivity in amorphous polymer blends by engineered interchain interactions publication-title: Nat. Mater. doi: 10.1038/nmat4141 – volume: 55 start-page: 2329 issue: 8 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib193 article-title: Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/ethylene glycol hybrid Nanofluid: providing new thermal conductivity correlation publication-title: Heat Mass Tran. doi: 10.1007/s00231-019-02572-7 – volume: 175 start-page: 135 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib29 article-title: Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.03.017 – volume: 114 start-page: 355 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib266 article-title: Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.11.010 – volume: 46 start-page: 1424 issue: 5 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib139 article-title: High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-4938-x – volume: 124 start-page: 105506 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib10 article-title: Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.105506 – volume: 54 start-page: 9025 issue: 12 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib232 article-title: Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03539-z – volume: 2 start-page: 509 issue: 4 year: 1971 ident: 10.1016/j.compscitech.2020.108134_bib77 article-title: Thermal conductivity of cross-linked polymers publication-title: Polym. J. doi: 10.1295/polymj.2.509 – volume: 111 start-page: 83 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib169 article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.11.050 – volume: 8 start-page: 972 issue: 5 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib190 article-title: Fabrication and properties of thermally conductive epoxy resin nanocomposites filled with f GNPs/PNBRs hybrid fillers publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2016.2652 – volume: 81 start-page: 6692 issue: 10 year: 1997 ident: 10.1016/j.compscitech.2020.108134_bib210 article-title: Effective thermal conductivity of particulate composites with interfacial thermal resistance publication-title: J. Appl. Phys. doi: 10.1063/1.365209 – volume: 78 start-page: 95 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib159 article-title: Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2015.08.004 – volume: 121 start-page: 4600 issue: 17 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib220 article-title: Thermal conductance in cross-linked polymers: effects of non-bonding interactions publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b01377 – volume: 45 start-page: 16569 issue: 13 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib125 article-title: Modification of Si3N4 ceramic powders and fabrication of Si3N4/PTFE composite substrate with high thermal conductivity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.194 – volume: 36 start-page: 914 issue: 7 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib53 article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2010.11.004 – volume: 92 start-page: 27 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib56 article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2016.11.002 – volume: 177 start-page: 107835 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib162 article-title: Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107835 – volume: 113 start-page: 184304 issue: 18 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib62 article-title: Thermal conductivity dependence on chain length in amorphous polymers publication-title: J. Appl. Phys. doi: 10.1063/1.4804237 – volume: 5 start-page: 36334 issue: 46 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib100 article-title: High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites publication-title: RSC Adv. doi: 10.1039/C5RA03284A – volume: 124 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib177 article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. – volume: 101 start-page: 237 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib55 article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2017.06.005 – volume: 28 start-page: 1805365 issue: 51 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib251 article-title: Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805365 – volume: 9 start-page: 384 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib72 article-title: High thermal conductivity of chain-oriented amorphous polythiophene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.44 – volume: 30 start-page: 2090 issue: 4 year: 1984 ident: 10.1016/j.compscitech.2020.108134_bib61 article-title: Experimental determination of the thermal conductivity of a conducting polymer: pure and heavily doped polyacetylene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.30.2090 – volume: 29 start-page: 1900412 issue: 13 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib253 article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900412 – volume: 146 start-page: 224 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib35 article-title: Electrical and thermal conductivity improvement of carbon nanotube and silver composites publication-title: Carbon doi: 10.1016/j.carbon.2019.01.073 – volume: 40 start-page: 3189 issue: 8 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib50 article-title: Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications publication-title: Polym. Compos. doi: 10.1002/pc.25169 – volume: 63 issue: 5 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib204 article-title: Recent developments in multifunctional nanocomposites using carbon nanotubes publication-title: Appl. Mech. Rev. doi: 10.1115/1.4003503 – volume: 48 start-page: 3979 issue: 14 year: 2010 ident: 10.1016/j.compscitech.2020.108134_bib166 article-title: Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2010.06.044 – volume: 2 start-page: 15058 issue: 36 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib221 article-title: Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide publication-title: J. Mater. Chem. doi: 10.1039/C4TA02429J – volume: 54 start-page: 13135 issue: 20 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib9 article-title: Effect of coatings on thermal conductivity and tribological properties of aluminum foam/polyoxymethylene interpenetrating composites publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03826-9 – volume: 136 start-page: 47054 issue: 6 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib110 article-title: 3D interconnected high aspect ratio tellurium nanowires in epoxy nanocomposites: serving as thermal conductive expressway publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47054 – volume: 28 start-page: 1805053 issue: 45 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib255 article-title: Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805053 – volume: 114 start-page: 727 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib128 article-title: A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.06.116 – volume: 124 start-page: 132 issue: 1 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib192 article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.35089 – year: 1974 ident: 10.1016/j.compscitech.2020.108134_bib19 – volume: 31 start-page: 1900199 issue: 19 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib38 article-title: Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites publication-title: Adv. Mater. doi: 10.1002/adma.201900199 – volume: 124 start-page: 105447 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib124 article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.05.015 – volume: 170 start-page: 135 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib250 article-title: Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.11.036 – volume: 151 start-page: 115 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib274 article-title: Moisture driven thermal conduction in polymer and polymer blends publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.08.010 – volume: 34 start-page: 126 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib65 article-title: Chain rotation significantly reduces thermal conductivity of single-chain polymers publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.362 – volume: 149 start-page: 152 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib145 article-title: Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites publication-title: Carbon doi: 10.1016/j.carbon.2019.04.055 – volume: 125 start-page: 105530 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib199 article-title: One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial for properties of epoxy composites publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.105530 – volume: 144 start-page: 70 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib153 article-title: Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.03.020 – volume: 17 start-page: 1587 issue: 3 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib57 article-title: Nonperturbative quantum nature of the dislocation phonon interaction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04756 – volume: 7 start-page: 125 issue: 3 year: 1986 ident: 10.1016/j.compscitech.2020.108134_bib41 article-title: Thermally conductive polymer compositions publication-title: Polym. Compos. doi: 10.1002/pc.750070302 – volume: 176 start-page: 110 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib26 article-title: Theoretical analysis and development of thermally conductive polymer composites publication-title: Polymer doi: 10.1016/j.polymer.2019.05.044 – volume: 26 start-page: 778 issue: 6 year: 2005 ident: 10.1016/j.compscitech.2020.108134_bib150 article-title: Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions publication-title: Polym. Compos. doi: 10.1002/pc.20151 – volume: 20 start-page: 4740 issue: 24 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib137 article-title: Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites publication-title: Adv. Mater. doi: 10.1002/adma.200800401 – volume: 12 issue: 1 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib28 article-title: Percolation effect on thermal conductivity of filler-dispersed polymer composites publication-title: J. Therm. Sci. Technol. doi: 10.1299/jtst.2017jtst0013 – volume: 160 start-page: 245 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib168 article-title: Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.03.021 – volume: 369 start-page: 302 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib182 article-title: Synthesis of layered double hydroxides through continuous flow processes: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.057 – volume: 132 start-page: 1 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib23 article-title: Thermal conductivity of polymers and polymer nanocomposites publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2018.06.002 – volume: 54 start-page: 1017 issue: 10 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib69 article-title: Effects of carbon fillers on crystallization properties and thermal conductivity of poly(phenylene sulfide) publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2014.986802 – volume: 137 start-page: 222 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib37 article-title: Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance publication-title: Carbon doi: 10.1016/j.carbon.2018.05.033 – volume: 2 start-page: 2467 issue: 4 year: 2009 ident: 10.1016/j.compscitech.2020.108134_bib138 article-title: Thermal conductivity of diamond composites publication-title: Materials doi: 10.3390/ma2042467 – volume: 61 start-page: 12551 issue: 19 year: 2000 ident: 10.1016/j.compscitech.2020.108134_bib135 article-title: Low thermal conductivity of the layered oxide (Na,Ca)Co2O4: another example of a phonon glass and an electron crystal publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.12551 – volume: 45 start-page: 1117 issue: 1 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib155 article-title: Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2012.05.015 – volume: 378 start-page: 1952 issue: 28–29 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib225 article-title: Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms publication-title: Phys. Lett. doi: 10.1016/j.physleta.2014.04.035 – volume: 9 start-page: 29071 issue: 34 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib247 article-title: Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07947 – volume: 13 start-page: 207 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib80 article-title: Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.09.007 – volume: 141 start-page: 1049 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib163 article-title: Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.07.002 – volume: 4 start-page: 22101 issue: 42 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib189 article-title: Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites publication-title: RSC Adv. doi: 10.1039/C4RA01761G – volume: 61 start-page: 1 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib15 article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.05.001 – volume: 7 start-page: 5701 issue: 10 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib241 article-title: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507416y – volume: 48 start-page: 592 issue: 3 year: 2010 ident: 10.1016/j.compscitech.2020.108134_bib176 article-title: Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites publication-title: Carbon doi: 10.1016/j.carbon.2009.08.047 – volume: 1 start-page: 207 issue: 2 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib42 article-title: A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-018-0031-8 – volume: 85 start-page: 115 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib154 article-title: Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.08.003 – volume: 100 start-page: 29 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib271 article-title: Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.09.013 – volume: 8 start-page: 55 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib228 article-title: Thermal behavior of silica aerogel/PMMA composite reinforced by non-covalent interaction publication-title: Emerg. Mater. Res. – volume: 11 start-page: 203 issue: 3 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib20 article-title: Thermal conductivity of isotopically modified graphene publication-title: Nat. Mater. doi: 10.1038/nmat3207 – volume: 124 start-page: 105484 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib48 article-title: Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.105484 – volume: 47 start-page: 5990 issue: 16 year: 2006 ident: 10.1016/j.compscitech.2020.108134_bib222 article-title: Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites publication-title: Polymer doi: 10.1016/j.polymer.2006.05.062 – volume: 29 start-page: 432 issue: 5 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib147 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements publication-title: Heat Tran. Eng. doi: 10.1080/01457630701850851 – volume: 92 issue: 2 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib208 article-title: Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2834370 – volume: 162 start-page: 180 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib119 article-title: BaTiO3@carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.05.001 – volume: 83 issue: 6 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib217 article-title: Interfacial thermal transport in atomic junctions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.064303 – volume: 54 start-page: 10041 issue: 13 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib173 article-title: Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03525-5 – volume: 79 start-page: 8 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib236 article-title: Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.09.005 – volume: 119 start-page: 299 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib194 article-title: Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.02.004 – volume: 132 start-page: 235 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib183 article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2019.03.042 – volume: 116 start-page: 98 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib170 article-title: Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2018.10.023 – volume: 57 start-page: 101 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib92 article-title: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2016.11.015 – volume: 121 start-page: 330 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib96 article-title: Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.03.044 – volume: 11 start-page: 27788 issue: 31 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib131 article-title: Low thermal conductivity and optimized thermoelectric properties of p-Type Te-Sb2Se3: synergistic effect of doping and defect engineering publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07313 – volume: 9 start-page: 117 issue: 2 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib184 article-title: Review of micro-nanoscale surface coatings application for sustaining dropwise condensation publication-title: Coatings doi: 10.3390/coatings9020117 – volume: 141 start-page: 506 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib6 article-title: Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability publication-title: Carbon doi: 10.1016/j.carbon.2018.10.003 – volume: 119 start-page: 1 year: 1995 ident: 10.1016/j.compscitech.2020.108134_bib40 article-title: Thermal-conductivity of heterophase polymer compositions publication-title: Adv. Polym. Sci. doi: 10.1007/BFb0021279 – volume: 135 start-page: 46397 issue: 26 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib136 article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46397 – volume: 11 start-page: 28221 issue: 31 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib130 article-title: Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10207 – volume: 18 start-page: 1187 issue: 6 year: 1980 ident: 10.1016/j.compscitech.2020.108134_bib24 article-title: Thermal-conductivity of oriented crystalline polymers publication-title: J. Polym. Sci., Polym. Phys. Ed. doi: 10.1002/pol.1980.180180603 – volume: 6 start-page: 13108 issue: 48 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib275 article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04309D – volume: 16 start-page: 3585 issue: 6 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib157 article-title: Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00722 – volume: 9 start-page: 437 issue: 9 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib27 article-title: Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications publication-title: Polymers doi: 10.3390/polym9090437 – year: 2010 ident: 10.1016/j.compscitech.2020.108134_bib21 – volume: 180 start-page: 86 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib186 article-title: Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al2O3-PDA-Ag hybrid nanoparticles publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.05.019 – volume: 71 start-page: 245 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib223 article-title: Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2013.12.017 – volume: 129 start-page: 205 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib268 article-title: Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.04.033 – volume: 28 start-page: 7220 issue: 33 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib33 article-title: Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits publication-title: Adv. Mater. doi: 10.1002/adma.201600642 – volume: 50 start-page: 2083 issue: 6 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib152 article-title: Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization publication-title: Carbon doi: 10.1016/j.carbon.2011.12.046 – volume: 113 start-page: 1118 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib230 article-title: Review of polymers for heat exchanger applications: factors concerning thermal conductivity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.041 – volume: 156 start-page: 1 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib129 article-title: Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.12.008 – volume: 149 start-page: 173 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib140 article-title: Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity publication-title: Carbon doi: 10.1016/j.carbon.2019.04.038 – volume: 7 start-page: 7035 issue: 23 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib108 article-title: Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01804B – volume: 123 start-page: 79 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib127 article-title: Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene composites publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.05.002 – volume: 82 start-page: 198 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib262 article-title: Electric field as a tuning key to process carbon nanotube suspensions with controlled conductivity publication-title: Polymer doi: 10.1016/j.polymer.2015.11.027 – volume: 177 start-page: 118 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib7 article-title: Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.026 – volume: 43 start-page: 658 issue: 4 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib148 article-title: Thermal conductivity and dielectric properties of Al/PVDF composites publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2011.11.024 – volume: 140 start-page: 24 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib270 article-title: Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment publication-title: Carbon doi: 10.1016/j.carbon.2018.08.029 – volume: 92 start-page: 15 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib160 article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.08.081 – volume: 180 start-page: 121760 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib44 article-title: Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecule weight polyethylene bulk material publication-title: Polymer doi: 10.1016/j.polymer.2019.121760 – volume: 71 start-page: 1906 issue: 14 year: 1997 ident: 10.1016/j.compscitech.2020.108134_bib260 article-title: Optical anisotropy of dispersed carbon nanotubes induced by an electric field publication-title: Appl. Phys. Lett. doi: 10.1063/1.119976 – volume: 11 start-page: 25465 issue: 28 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib103 article-title: Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10161 – volume: 164 start-page: 59 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib8 article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.05.038 – volume: 165 start-page: 39 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib267 article-title: Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.06.015 – volume: 145 start-page: 55 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib258 article-title: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.03.035 – year: 2007 ident: 10.1016/j.compscitech.2020.108134_bib16 – year: 2020 ident: 10.1016/j.compscitech.2020.108134_bib89 article-title: Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and BN fillers publication-title: Chin. J. Polym. Sci. – volume: 40 start-page: 3164 issue: 10 year: 2007 ident: 10.1016/j.compscitech.2020.108134_bib207 article-title: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/10/020 – volume: 131 start-page: 149 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib12 article-title: Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2018.02.002 – volume: 7 start-page: 7531 issue: 13 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib185 article-title: A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates publication-title: RSC Adv. doi: 10.1039/C6RA25841G – volume: 29 start-page: 1901383 issue: 25 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib31 article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901383 – volume: 59 start-page: 41 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib60 article-title: Thermal conductivity of polymer-based composites: fundamentals and applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.03.001 – volume: 118 start-page: 2754 issue: 5 year: 2010 ident: 10.1016/j.compscitech.2020.108134_bib149 article-title: Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32673 – volume: 7 start-page: 2725 issue: 9 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib109 article-title: Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity publication-title: J. Mater. Chem. C doi: 10.1039/C8TC05955A – volume: 370 start-page: 166 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib151 article-title: Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.217 – volume: 180 start-page: 107569 year: 2020 ident: 10.1016/j.compscitech.2020.108134_bib273 article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107569 – volume: 16 start-page: 135 issue: 2 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib263 article-title: Dielectrophoresis force of poly(p-phenylene)/acrylic elastomer under ac electric field publication-title: Mater. Res. Innovat. doi: 10.1179/1433075X11Y.0000000030 – volume: 163 start-page: 363 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib106 article-title: Thermal conductivity enhancement of CNT/MoS2/graphene−epoxy nanocomposites based on structural synergistic effects and interpenetrating network publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.11.005 – volume: 169 start-page: 86 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib36 article-title: Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.11.008 – start-page: 1903857 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib164 article-title: A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces publication-title: Adv. Funct. Mater. – volume: 120 start-page: 140 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib256 article-title: Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.02.026 – volume: 4 issue: 3 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib13 article-title: Molecular engineered conjugated polymer with high thermal conductivity publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3031 – volume: 111 start-page: 7565 issue: 21 year: 2007 ident: 10.1016/j.compscitech.2020.108134_bib156 article-title: Graphite nanoplatelet-epoxy composite thermal interface materials publication-title: J. Phys. Chem. C doi: 10.1021/jp071761s – volume: 30 start-page: 1705544 issue: 17 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib3 article-title: Thermal conductivity of polymers and their nanocomposites publication-title: Adv. Mater. doi: 10.1002/adma.201705544 – volume: 5 start-page: 4374 issue: 10 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib205 article-title: Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400615z – volume: 175 start-page: 85 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib5 article-title: Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.02.006 – volume: 5 start-page: 1800548 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib112 article-title: Tailoring highly thermal conductive properties of Te/MoS2/Ag heterostructure nanocomposites using a bottom-up approach publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800548 – volume: 18 start-page: 3488 issue: 6 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib120 article-title: Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00555 – volume: 164 start-page: 710 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib105 article-title: Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.01.100 – volume: 51 start-page: 1431 issue: 5 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib206 article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2007.10.017 – volume: 49 start-page: 5107 issue: 15 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib227 article-title: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites publication-title: Carbon doi: 10.1016/j.carbon.2011.06.095 – volume: 95 start-page: 887 issue: 10 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib224 article-title: Thermally conductive adhesives from covalent-bonding of reduced graphene oxide to acrylic copolymer publication-title: J. Adhes. doi: 10.1080/00218464.2018.1451331 – volume: 11 start-page: 4353 issue: 4 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib257 article-title: Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18232 – volume: 11 start-page: 1156 issue: 7 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib146 article-title: Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface publication-title: Polymers doi: 10.3390/polym11071156 – volume: 8 start-page: 3121 issue: 19 year: 1975 ident: 10.1016/j.compscitech.2020.108134_bib87 article-title: The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/8/19/012 – volume: 55 start-page: 772 issue: 12 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib58 article-title: Calculation scheme for the evaluation of polymer thermal conductivity publication-title: Polym. Sci. – volume: 117 start-page: 11 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib198 article-title: Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.11.006 – volume: 40 start-page: 389 issue: 3 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib39 article-title: Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock publication-title: J. Therm. Stresses doi: 10.1080/01495739.2016.1218745 – volume: 8 start-page: 264 issue: 4 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib46 article-title: Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/Graphene nanoplatelets with improved thermo-oxidative stability publication-title: Nanomaterials doi: 10.3390/nano8040264 – year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib141 – volume: 53 start-page: 4489 issue: 20 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib85 article-title: Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure publication-title: Polymer doi: 10.1016/j.polymer.2012.07.065 – volume: 792 start-page: 375 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib180 article-title: Development of a nanostructured Ce(III)-Pr(III) film for excellently corrosion resistance improvement of epoxy/polyamide coating on carbon steel publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.051 – volume: 11 start-page: 17915 issue: 19 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib269 article-title: Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06062 – volume: 11 start-page: 502 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib218 article-title: Effects of chemical bonding on heat transport across interfaces publication-title: Nat. Mater. doi: 10.1038/nmat3303 – volume: 48 start-page: 1214 issue: 3 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib243 article-title: In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6862-8 – volume: 43 start-page: 2774 issue: 2 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib265 article-title: Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.11.108 – volume: 120 start-page: 49 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib104 article-title: Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S. doi: 10.1016/j.compositesa.2019.02.019 – volume: 10 start-page: 68 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib235 article-title: Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique publication-title: Compos. Commun. doi: 10.1016/j.coco.2018.07.003 – volume: 11 start-page: 148 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib113 article-title: Surface modification of aluminum nitride to fabricate thermally conductive poly(butylene succinate) nanocomposite publication-title: Polymers doi: 10.3390/polym11010148 – volume: 11 start-page: 3656 issue: 8 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib14 article-title: Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance publication-title: Nanoscale doi: 10.1039/C8NR08760A – volume: 12 start-page: 2225 issue: 14 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib213 article-title: Evaluation of interfacial fracture toughness and interfacial shear strength of typha Spp. fiber/polymer composite by double shear test method publication-title: Materials doi: 10.3390/ma12142225 – volume: 40 start-page: 2417 issue: 7 year: 2007 ident: 10.1016/j.compscitech.2020.108134_bib45 article-title: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity publication-title: Macromolecules doi: 10.1021/ma0615046 – volume: 164 start-page: 732 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib233 article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.01.099 – volume: 171 start-page: 70 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib212 article-title: Synergistic effect of hydrogen bonding and pi-pi stacking in interface of CF/PEEK composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.04.015 – volume: 9 start-page: 7637 issue: 8 year: 2017 ident: 10.1016/j.compscitech.2020.108134_bib249 article-title: Design and preparation of a unique segregated double network with excellent thermal conductive property publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16586 – volume: 6 start-page: 3004 issue: 12 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib121 article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00452H – volume: 13 start-page: 337 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib111 article-title: Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability publication-title: ACS Nano doi: 10.1021/acsnano.8b06290 – volume: 128 start-page: 105670 year: 2020 ident: 10.1016/j.compscitech.2020.108134_bib254 article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.105670 – volume: 58 start-page: 5824 issue: 18 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib2 article-title: High thermal conductivity in boron arsenide: from prediction to reality publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812112 – volume: 136 start-page: 47951 issue: 37 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib122 article-title: Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47951 – volume: 2 start-page: 731 issue: 11 year: 2003 ident: 10.1016/j.compscitech.2020.108134_bib215 article-title: Interfacial heat flow in carbon nanotube suspensions publication-title: Nat. Mater. doi: 10.1038/nmat996 – volume: 121 start-page: 449 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib200 article-title: Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.03.030 – volume: 60 start-page: 2650 issue: 10 year: 2009 ident: 10.1016/j.compscitech.2020.108134_bib30 article-title: Properties and heat-conduction mechanism of thermally conductive polymer composites publication-title: J. Chem. Ind. Eng. – volume: 5 start-page: 1119 issue: 5 year: 2011 ident: 10.1016/j.compscitech.2020.108134_bib18 article-title: Viscosities, thermal conductivities and diffusion coefficient of CO2 mixtures: review of experimental data and theoretical models publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2011.07.009 – volume: 5 start-page: 87981 issue: 107 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib79 article-title: Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding publication-title: RSC Adv. doi: 10.1039/C5RA18519J – volume: 9 start-page: 33 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib259 article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications publication-title: Compos. Commun. doi: 10.1016/j.coco.2018.04.009 – volume: 108 start-page: 66 year: 2015 ident: 10.1016/j.compscitech.2020.108134_bib144 article-title: Thermal conductivity of monolayer hexagonal boron nitride nanoribbons publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.06.006 – volume: 7 start-page: 9018 issue: 29 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib178 article-title: Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02845E – volume: 120 start-page: 803 issue: 4 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib67 article-title: Role of chain morphology and stiffness in thermal conductivity of amorphous polymers publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b09955 – volume: 17 start-page: 1577 issue: 7 year: 2008 ident: 10.1016/j.compscitech.2020.108134_bib175 article-title: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2008.03.037 – volume: 89 start-page: 2464 issue: 9 year: 2003 ident: 10.1016/j.compscitech.2020.108134_bib84 article-title: Study of high thermal conductive epoxy resins containing controlled high-order structures publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.12489 – volume: 8 start-page: 19732 issue: 30 year: 2016 ident: 10.1016/j.compscitech.2020.108134_bib248 article-title: Facile method to fabricate highly thermally conductive graphite/PP composite with network structures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03723 – volume: 35 start-page: 1087 issue: 6 year: 2014 ident: 10.1016/j.compscitech.2020.108134_bib34 article-title: Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites publication-title: Polym. Compos. doi: 10.1002/pc.22756 – volume: 116 start-page: 13629 issue: 25 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib172 article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites publication-title: J. Phys. Chem. C doi: 10.1021/jp3026545 – volume: 5 issue: 17 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib158 article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes publication-title: Front. Mater. – volume: 107 start-page: 570 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib238 article-title: Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.02.006 – volume: 11 start-page: 28943 issue: 32 year: 2019 ident: 10.1016/j.compscitech.2020.108134_bib126 article-title: 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09398 – volume: 160 start-page: 199 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib240 article-title: Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm−1 K−1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.03.028 – volume: 23 start-page: 1025 issue: 6 year: 2012 ident: 10.1016/j.compscitech.2020.108134_bib188 article-title: Thermal conductivity epoxy resin composites filled with boron nitride publication-title: Polym. Adv. Technol. doi: 10.1002/pat.2063 – volume: 114 issue: 3 year: 2013 ident: 10.1016/j.compscitech.2020.108134_bib78 article-title: Effect of crosslink formation on heat conduction in amorphous polymers publication-title: J. Appl. Phys. doi: 10.1063/1.4813505 – volume: 442 start-page: 170 year: 2018 ident: 10.1016/j.compscitech.2020.108134_bib174 article-title: Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.125 |
| SSID | ssj0007592 |
| Score | 2.7214696 |
| SecondaryResourceType | review_article |
| Snippet | It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108134 |
| SubjectTerms | Composite materials Conducting polymers Fillers Functional composites Heat conductivity Heat transfer Polymer matrix composites Polymer-matrix composites (PMCs) Polymers Studies Thermal conductivity Thermal properties |
| Title | Factors affecting thermal conductivities of the polymers and polymer composites: A review |
| URI | https://dx.doi.org/10.1016/j.compscitech.2020.108134 https://www.proquest.com/docview/2440490482 |
| Volume | 193 |
| WOSCitedRecordID | wos000527648600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZO_bxMLZuY926ocHeios_Y2nsJZR2X1AG7cB9MrIsh5ZgZ01cuof977vzSXa6UsgYezGREkux7ufT-Xz3O8beqVKmgTGxF0qlvdiUgSeg7WktkaBLjKvK74pNpEdHIsvkt9Hol8uFuZyldS2uruT8v4oa-kDYmDr7F-LuB4UO-AxChyOIHY5rCf7QVtBRXaSGzYYC9Ys8IDWyu2K5iDPimu3ypJrZT3ReE2UANbpIcwznooi5ic1wWbVk9_tf7LrUoC4Y84ar_mPbeWNPm3r6A7A47V_xtOR7_drWczN0H3dVhnez1ixV0-sk69XOWjBVp6ueihAL2niUSEnuM5dCM8QrLTrm17EXJUTxsmdIC4tUwv5AjLS9mqZKijdUPnkfzlFic7hevMw9nB2jJwPrKL3OqH2Mc-KUMGQEBpq4wzbDNJGgFDcnnw-yL_1WDp0hOenoP95jb4cAwVsmvM3A-WOr7-yXk8fskX3w4BMCzBM2MvUWu-_y0hdb7OEKNeVTdmphxHsYcQsjfh1GvKnwG-5gxAEFrsEHGL3nE04gesa-Hx6c7H_ybBkOT4N1t_RUUsbGT3WhBa5XERexFFiZQI4l3M6JKFIV6MIIVUVF4Kdj5UtTVn4lQUvhW9rnbKNuavOCcZkkooxMEqqgiiMwjoXUKorKwoDlW4TFNhNu7XJtOeqxVMosd8GI5_nKsue47Dkt-zYL-1PnRNSyzkkfnIBye6-QJZkDutY5fccJNbcaYJGHyLgpYWMMX_7b6K_Yg-Eu2mEby4vWvGZ39eXybHHxxkL1N5xuukQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+affecting+thermal+conductivities+of+the+polymers+and+polymer+composites%3A+A+review&rft.jtitle=Composites+science+and+technology&rft.au=Guo%2C+Yongqiang&rft.au=Ruan%2C+Kunpeng&rft.au=Shi%2C+Xuetao&rft.au=Yang%2C+Xutong&rft.date=2020-06-16&rft.pub=Elsevier+Ltd&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=193&rft_id=info:doi/10.1016%2Fj.compscitech.2020.108134&rft.externalDocID=S0266353819333998 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |