Factors affecting thermal conductivities of the polymers and polymer composites: A review

It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer composites. Limited understanding of heat transfer in polymers and polymer composites imposes restrictions on the designing and fabricating better ther...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Composites science and technology Ročník 193; s. 108134
Hlavní autoři: Guo, Yongqiang, Ruan, Kunpeng, Shi, Xuetao, Yang, Xutong, Gu, Junwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Barking Elsevier Ltd 16.06.2020
Elsevier BV
Témata:
ISSN:0266-3538, 1879-1050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer composites. Limited understanding of heat transfer in polymers and polymer composites imposes restrictions on the designing and fabricating better thermally conductive polymers and polymer composites. This review attempts to help understand the thermal conduction mechanisms by analyzing the effects of different components in polymers and polymer composites on heat transfer. Factors of micro- and macro-characteristics, such as chain structures, interfaces, functionalization and processing techniques, etc., are all illustrated to elucidate their impacts on the thermal conductivities. In general, chain structures of polymers, intrinsic λ values of thermally conductive fillers and interfacial thermal resistances are the main and internal factors to determine the λ values of polymers and polymer composites. Meantime, processing and environmental factors are only auxiliary factors to improve the thermal conductivities. We expect this review will give some guidance to the future studies in thermally conductive polymers and polymer composites.
AbstractList It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer composites. Limited understanding of heat transfer in polymers and polymer composites imposes restrictions on the designing and fabricating better thermally conductive polymers and polymer composites. This review attempts to help understand the thermal conduction mechanisms by analyzing the effects of different components in polymers and polymer composites on heat transfer. Factors of micro- and macro-characteristics, such as chain structures, interfaces, functionalization and processing techniques, etc., are all illustrated to elucidate their impacts on the thermal conductivities. In general, chain structures of polymers, intrinsic λ values of thermally conductive fillers and interfacial thermal resistances are the main and internal factors to determine the λ values of polymers and polymer composites. Meantime, processing and environmental factors are only auxiliary factors to improve the thermal conductivities. We expect this review will give some guidance to the future studies in thermally conductive polymers and polymer composites.
ArticleNumber 108134
Author Yang, Xutong
Guo, Yongqiang
Shi, Xuetao
Gu, Junwei
Ruan, Kunpeng
Author_xml – sequence: 1
  givenname: Yongqiang
  surname: Guo
  fullname: Guo, Yongqiang
  organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China
– sequence: 2
  givenname: Kunpeng
  surname: Ruan
  fullname: Ruan, Kunpeng
  organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China
– sequence: 3
  givenname: Xuetao
  surname: Shi
  fullname: Shi, Xuetao
  organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China
– sequence: 4
  givenname: Xutong
  surname: Yang
  fullname: Yang, Xutong
  organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China
– sequence: 5
  givenname: Junwei
  surname: Gu
  fullname: Gu, Junwei
  email: gjw@nwpu.edu.cn, nwpugjw@163.com
  organization: Shaanxi Key Laboratory of Macromolecule Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China
BookMark eNqNkE9LAzEQxYNUsK1-hxXPWye72T_xIqVYFQpe9OApZLOzNku7qUla6bc3yyqIp56GmXnvzfCbkFFnOiTkmsKMAs1v25ky251T2qNazxJI-nlJU3ZGxrQseEwhgxEZQ5LncZql5QWZONcCQJHxZEzel1J5Y10kmwaV191H5Ndot3ITKdPV-zA6aK_RRabpN9HObI5b7A1d_dtE_Q_GhR_cXTSPLB40fl2S80ZuHF791Cl5Wz68Lp7i1cvj82K-ihWjmY9lVjOEQlWq5GmaVqxivARWcJ5zylhWVoWkqsJSNmlFocglcKwbaDjKmvIsnZKbIXdnzecenRet2dsunBQJY8A4sDIJKj6olDXOWWzEzuqttEdBQfQkRSv-kBQ9STGQDN77f94gkl6bzlupNyclLIYEDCACHCuCCjuFtbaBuqiNPiHlG7OXmuM
CitedBy_id crossref_primary_10_3390_polym16162315
crossref_primary_10_1016_j_compositesa_2022_107212
crossref_primary_10_1016_j_diamond_2023_110340
crossref_primary_10_1016_j_trac_2024_118062
crossref_primary_10_1007_s42114_022_00423_4
crossref_primary_10_1002_app_57962
crossref_primary_10_1007_s40820_022_00868_8
crossref_primary_10_1039_D4SE00171K
crossref_primary_10_1002_mame_202200311
crossref_primary_10_3390_membranes11070536
crossref_primary_10_3390_polym16060772
crossref_primary_10_1002_pc_29431
crossref_primary_10_1016_j_compositesb_2025_112531
crossref_primary_10_1016_j_compscitech_2022_109310
crossref_primary_10_1038_s41427_024_00554_8
crossref_primary_10_3390_nano11102654
crossref_primary_10_1016_j_coco_2022_101101
crossref_primary_10_1016_j_coco_2021_101044
crossref_primary_10_1016_j_polymer_2023_126499
crossref_primary_10_1002_mame_202100715
crossref_primary_10_3390_polym16060778
crossref_primary_10_1016_j_mtcomm_2022_105239
crossref_primary_10_3390_nano11020373
crossref_primary_10_52711_2231_5713_2024_00015
crossref_primary_10_1007_s10854_021_07269_4
crossref_primary_10_1002_adfm_202415921
crossref_primary_10_1002_marc_202300335
crossref_primary_10_1002_smll_202412447
crossref_primary_10_1007_s11595_024_2890_x
crossref_primary_10_1088_1742_6596_3006_1_012022
crossref_primary_10_1016_j_carbon_2021_12_067
crossref_primary_10_1016_j_compositesb_2022_109613
crossref_primary_10_1016_j_surfin_2022_102375
crossref_primary_10_1007_s10692_021_10236_8
crossref_primary_10_3390_polym13020258
crossref_primary_10_1016_j_matchemphys_2022_126325
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126495
crossref_primary_10_1007_s13233_024_00288_0
crossref_primary_10_1016_j_ceramint_2023_08_133
crossref_primary_10_1016_j_ceramint_2025_04_111
crossref_primary_10_1007_s10853_021_06664_w
crossref_primary_10_1007_s11431_022_2168_3
crossref_primary_10_1039_D3MH01796F
crossref_primary_10_1016_j_compscitech_2021_109253
crossref_primary_10_1038_s41699_021_00231_2
crossref_primary_10_1016_j_icheatmasstransfer_2025_109672
crossref_primary_10_1016_j_compscitech_2021_109152
crossref_primary_10_3390_molecules26123555
crossref_primary_10_1038_s41467_024_49354_2
crossref_primary_10_1002_ange_202117433
crossref_primary_10_3390_polym14132707
crossref_primary_10_1016_j_compositesa_2025_109142
crossref_primary_10_1177_09673911221106686
crossref_primary_10_1002_pssa_202400256
crossref_primary_10_1016_j_reactfunctpolym_2023_105687
crossref_primary_10_1016_j_apsusc_2021_149255
crossref_primary_10_1016_j_compositesb_2024_111396
crossref_primary_10_1038_s41598_025_03474_x
crossref_primary_10_1016_j_compscitech_2021_109026
crossref_primary_10_1007_s42464_024_00286_y
crossref_primary_10_1016_j_compositesa_2023_107533
crossref_primary_10_1016_j_pnsc_2022_03_007
crossref_primary_10_1016_j_jcis_2022_03_115
crossref_primary_10_1016_j_polymer_2024_127935
crossref_primary_10_1016_j_polymer_2025_128191
crossref_primary_10_1002_app_55586
crossref_primary_10_1016_j_cej_2020_128206
crossref_primary_10_1016_j_cej_2023_143963
crossref_primary_10_1002_adfm_202215168
crossref_primary_10_1016_j_compositesb_2024_111357
crossref_primary_10_1080_00222348_2022_2085486
crossref_primary_10_1007_s13204_021_01799_3
crossref_primary_10_3390_su16156482
crossref_primary_10_1016_j_icheatmasstransfer_2024_107908
crossref_primary_10_1021_acsapm_5c01320
crossref_primary_10_3390_ma14144050
crossref_primary_10_1088_1361_6528_acae2b
crossref_primary_10_1002_app_53289
crossref_primary_10_1002_pc_28666
crossref_primary_10_1007_s10118_023_3057_5
crossref_primary_10_3103_S1068799823030212
crossref_primary_10_1016_j_ceramint_2020_09_038
crossref_primary_10_3390_su16052166
crossref_primary_10_1016_j_jallcom_2021_159332
crossref_primary_10_1016_j_coco_2023_101764
crossref_primary_10_1515_rams_2024_0026
crossref_primary_10_1002_app_56321
crossref_primary_10_1016_j_polymer_2023_126218
crossref_primary_10_1016_j_surfin_2022_102246
crossref_primary_10_1080_25740881_2022_2116343
crossref_primary_10_1016_j_compositesa_2025_109289
crossref_primary_10_3390_ma17102400
crossref_primary_10_3390_app15063207
crossref_primary_10_3390_polym17121604
crossref_primary_10_1016_j_compositesb_2021_109163
crossref_primary_10_1016_j_jallcom_2022_167123
crossref_primary_10_1039_D4QM00520A
crossref_primary_10_3390_nano11112891
crossref_primary_10_1109_TIA_2022_3186286
crossref_primary_10_1016_j_mtcomm_2024_109116
crossref_primary_10_1002_pc_28534
crossref_primary_10_1002_pc_29985
crossref_primary_10_1016_j_cryogenics_2022_103423
crossref_primary_10_3390_polym15020450
crossref_primary_10_1016_j_eurpolymj_2024_113083
crossref_primary_10_1016_j_coco_2021_101035
crossref_primary_10_1016_j_compositesa_2022_107117
crossref_primary_10_1063_5_0254207
crossref_primary_10_1016_j_compositesa_2023_107998
crossref_primary_10_1016_j_polymer_2023_126663
crossref_primary_10_1080_09276440_2024_2320482
crossref_primary_10_1007_s42114_023_00816_z
crossref_primary_10_1016_j_compscitech_2023_109934
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123429
crossref_primary_10_3390_polym12091954
crossref_primary_10_1002_smll_202309338
crossref_primary_10_3390_polym16050616
crossref_primary_10_1002_pc_28326
crossref_primary_10_1016_j_compscitech_2022_109890
crossref_primary_10_1007_s10163_024_01956_0
crossref_primary_10_1002_app_53077
crossref_primary_10_3390_sym14122597
crossref_primary_10_3390_jcs4040180
crossref_primary_10_3390_molecules27228066
crossref_primary_10_1016_j_nxmate_2025_100499
crossref_primary_10_1016_j_mtphys_2021_100594
crossref_primary_10_18586_msufbd_1617726
crossref_primary_10_1002_macp_202200305
crossref_primary_10_3390_nano11081898
crossref_primary_10_1016_j_compscitech_2022_109769
crossref_primary_10_1002_pc_27342
crossref_primary_10_1002_sstr_202500102
crossref_primary_10_3390_ijms24087606
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127576
crossref_primary_10_1007_s10854_024_12794_z
crossref_primary_10_1002_pc_28433
crossref_primary_10_1007_s11664_022_09465_2
crossref_primary_10_1016_j_compscitech_2022_109400
crossref_primary_10_1016_j_cej_2025_164502
crossref_primary_10_1016_j_compositesb_2021_108666
crossref_primary_10_1016_j_surfin_2025_105787
crossref_primary_10_3390_nano11061511
crossref_primary_10_1016_j_colsurfa_2024_134195
crossref_primary_10_1002_cphc_202100645
crossref_primary_10_1016_j_compositesa_2025_109074
crossref_primary_10_1002_adfm_202510818
crossref_primary_10_1002_pc_27531
crossref_primary_10_1007_s42114_021_00414_x
crossref_primary_10_1016_j_indcrop_2024_119714
crossref_primary_10_1016_j_cej_2025_163651
crossref_primary_10_3390_polym17030373
crossref_primary_10_1016_j_ijmecsci_2025_110452
crossref_primary_10_1038_s41524_025_01671_w
crossref_primary_10_1016_j_arabjc_2024_105997
crossref_primary_10_1016_j_matchemphys_2025_131140
crossref_primary_10_1515_polyeng_2023_0182
crossref_primary_10_1002_pc_27522
crossref_primary_10_1007_s42114_023_00709_1
crossref_primary_10_1002_pc_27767
crossref_primary_10_1177_08927057211059754
crossref_primary_10_1016_j_icheatmasstransfer_2024_107726
crossref_primary_10_1016_j_polymertesting_2022_107868
crossref_primary_10_3390_app11125663
crossref_primary_10_1016_j_matchemphys_2021_125151
crossref_primary_10_1021_acsami_5c03517
crossref_primary_10_1038_s41528_021_00113_z
crossref_primary_10_1016_j_coco_2024_102007
crossref_primary_10_1515_ipp_2024_0047
crossref_primary_10_3390_jcs8100399
crossref_primary_10_1002_pc_29612
crossref_primary_10_1038_s41598_021_81925_x
crossref_primary_10_1002_pc_28521
crossref_primary_10_1016_j_compscitech_2021_108681
crossref_primary_10_1002_pc_29613
crossref_primary_10_1016_j_matdes_2025_114662
crossref_primary_10_1002_pc_29728
crossref_primary_10_1016_j_radphyschem_2023_110966
crossref_primary_10_1016_j_ceramint_2022_12_124
crossref_primary_10_1007_s10118_020_2466_y
crossref_primary_10_1016_j_polymer_2024_126810
crossref_primary_10_1016_j_memsci_2023_121664
crossref_primary_10_1002_app_55618
crossref_primary_10_1016_j_ceramint_2025_01_580
crossref_primary_10_1002_pc_26570
crossref_primary_10_3390_photonics10070824
crossref_primary_10_1039_D2PY00432A
crossref_primary_10_1007_s10853_023_09190_z
crossref_primary_10_3390_nano13152154
crossref_primary_10_1021_polymscitech_5c00056
crossref_primary_10_1016_j_icheatmasstransfer_2025_108716
crossref_primary_10_1016_j_jallcom_2025_182630
crossref_primary_10_1016_j_polymertesting_2021_107325
crossref_primary_10_1039_D4NR03175J
crossref_primary_10_1016_j_compscitech_2024_110590
crossref_primary_10_1016_j_compscitech_2024_110592
crossref_primary_10_1002_pen_27084
crossref_primary_10_1016_j_coco_2024_102183
crossref_primary_10_1016_j_compscitech_2021_108788
crossref_primary_10_1088_1361_6501_ad9e17
crossref_primary_10_1007_s10853_022_07005_1
crossref_primary_10_1016_j_compscitech_2021_108668
crossref_primary_10_3390_en18071647
crossref_primary_10_1016_j_ceramint_2022_05_132
crossref_primary_10_1002_pat_5858
crossref_primary_10_1016_j_apmt_2025_102727
crossref_primary_10_1016_j_jmst_2024_07_053
crossref_primary_10_1016_j_ceramint_2024_09_398
crossref_primary_10_1016_j_compositesb_2021_109203
crossref_primary_10_1016_j_eurpolymj_2024_113368
crossref_primary_10_1016_j_compositesb_2021_109207
crossref_primary_10_1134_S0018151X23050139
crossref_primary_10_1039_D2NR02421G
crossref_primary_10_1016_j_cej_2025_164719
crossref_primary_10_1007_s42114_024_01076_1
crossref_primary_10_1016_j_compscitech_2022_109904
crossref_primary_10_1016_j_jmst_2022_10_077
crossref_primary_10_1049_hve2_12261
crossref_primary_10_1016_j_compscitech_2021_108799
crossref_primary_10_1016_j_coco_2024_102196
crossref_primary_10_1016_j_susmat_2023_e00765
crossref_primary_10_1002_sus2_128
crossref_primary_10_1002_smtd_202500453
crossref_primary_10_1016_j_jallcom_2023_171072
crossref_primary_10_3390_polym17141929
crossref_primary_10_1016_j_polymer_2021_124168
crossref_primary_10_1016_j_compositesa_2023_107598
crossref_primary_10_1080_00218464_2022_2158084
crossref_primary_10_1002_pen_27057
crossref_primary_10_1016_j_mtsust_2022_100269
crossref_primary_10_1016_j_diamond_2023_109856
crossref_primary_10_1016_j_mser_2020_100577
crossref_primary_10_1016_j_mtcomm_2022_103507
crossref_primary_10_1002_pc_70349
crossref_primary_10_1002_pat_5751
crossref_primary_10_1007_s42823_024_00814_1
crossref_primary_10_1016_j_cej_2025_160443
crossref_primary_10_1016_j_compscitech_2020_108242
crossref_primary_10_1016_j_jeurceramsoc_2024_01_089
crossref_primary_10_1007_s10965_023_03454_7
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126777
crossref_primary_10_1016_j_polymertesting_2022_107835
crossref_primary_10_1016_j_cej_2020_127764
crossref_primary_10_1016_j_jmst_2021_03_084
crossref_primary_10_1016_j_molstruc_2022_133656
crossref_primary_10_1016_j_coco_2021_100693
crossref_primary_10_1016_j_compositesb_2021_109468
crossref_primary_10_3390_polym13010147
crossref_primary_10_1016_j_surfcoat_2023_130185
crossref_primary_10_3390_polym15010002
crossref_primary_10_1016_j_jmst_2021_01_018
crossref_primary_10_1002_adfm_202510822
crossref_primary_10_1016_j_jmst_2021_01_017
crossref_primary_10_1016_j_apsusc_2025_162493
crossref_primary_10_1002_inf2_12568
crossref_primary_10_1016_j_ceramint_2025_01_263
crossref_primary_10_1002_pc_27980
crossref_primary_10_1016_j_compscitech_2021_108779
crossref_primary_10_3390_polym13162797
crossref_primary_10_1016_j_jmst_2022_04_059
crossref_primary_10_1016_j_compscitech_2022_109800
crossref_primary_10_1007_s10853_024_10518_6
crossref_primary_10_1002_pc_25877
crossref_primary_10_1177_09540083251358876
crossref_primary_10_3390_nano12203574
crossref_primary_10_1016_j_carbpol_2021_117929
crossref_primary_10_1016_j_compscitech_2020_108590
crossref_primary_10_1016_j_jclepro_2024_141657
crossref_primary_10_1007_s11664_024_11285_5
crossref_primary_10_1016_j_cej_2022_138332
crossref_primary_10_1016_j_est_2025_116401
crossref_primary_10_1080_02533839_2022_2101538
crossref_primary_10_1364_JOSAB_564930
crossref_primary_10_1002_adem_202000989
crossref_primary_10_1016_j_apsusc_2023_159140
crossref_primary_10_1016_j_ceramint_2022_10_006
crossref_primary_10_1016_j_applthermaleng_2025_125687
crossref_primary_10_1016_j_polymer_2024_127175
crossref_primary_10_1002_mame_202100267
crossref_primary_10_1080_1023666X_2025_2547895
crossref_primary_10_1007_s42823_025_00908_4
crossref_primary_10_1016_j_cej_2022_140891
crossref_primary_10_1007_s42114_025_01308_y
crossref_primary_10_1016_j_matdes_2025_114600
crossref_primary_10_1016_j_ceramint_2025_09_198
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121306
crossref_primary_10_1002_macp_202400365
crossref_primary_10_1088_1742_6596_2478_12_122050
crossref_primary_10_1007_s10965_022_03052_z
crossref_primary_10_1016_j_compscitech_2023_110268
crossref_primary_10_1016_j_mtcomm_2022_103735
crossref_primary_10_1016_j_enconman_2021_114957
crossref_primary_10_1016_j_cej_2021_131540
crossref_primary_10_1016_j_cej_2024_153160
crossref_primary_10_1016_j_cej_2024_153162
crossref_primary_10_1016_j_compscitech_2024_110440
crossref_primary_10_1016_j_porgcoat_2020_105722
crossref_primary_10_3390_polym17010111
crossref_primary_10_1016_j_ijbiomac_2024_133690
crossref_primary_10_1016_j_mser_2020_100580
crossref_primary_10_1016_j_jallcom_2024_178209
crossref_primary_10_1007_s12221_023_00053_7
crossref_primary_10_1002_pc_25865
crossref_primary_10_1002_app_56099
crossref_primary_10_1016_j_coco_2021_100661
crossref_primary_10_1007_s10853_021_05923_0
crossref_primary_10_1016_j_surfin_2024_105569
crossref_primary_10_1016_j_compositesa_2020_106260
crossref_primary_10_1007_s42114_022_00463_w
crossref_primary_10_1016_j_coco_2020_100584
crossref_primary_10_1016_j_compscitech_2024_110698
crossref_primary_10_1016_j_polymer_2022_125652
crossref_primary_10_1016_j_compositesa_2020_106026
crossref_primary_10_1016_j_compositesa_2020_106265
crossref_primary_10_1016_j_ijrefrig_2024_07_004
crossref_primary_10_1002_app_56094
crossref_primary_10_1039_D1ME00182E
crossref_primary_10_1002_app_52615
crossref_primary_10_1016_j_cej_2024_156789
crossref_primary_10_1016_j_mtla_2023_101915
crossref_primary_10_1007_s10163_023_01701_z
crossref_primary_10_1016_j_cej_2023_145364
crossref_primary_10_1002_smll_202304886
crossref_primary_10_1016_j_compscitech_2020_108322
crossref_primary_10_1016_j_fuel_2025_135101
crossref_primary_10_1016_j_icheatmasstransfer_2024_107331
crossref_primary_10_1007_s40820_021_00624_4
crossref_primary_10_1016_j_coco_2021_100650
crossref_primary_10_3390_nano12193473
crossref_primary_10_1016_j_mtphys_2025_101808
crossref_primary_10_1021_acs_macromol_4c01794
crossref_primary_10_1063_5_0225850
crossref_primary_10_1007_s00289_023_04789_3
crossref_primary_10_1016_j_mtcomm_2025_112190
crossref_primary_10_3390_polym15132818
crossref_primary_10_1002_macp_202400020
crossref_primary_10_1016_j_triboint_2024_110359
crossref_primary_10_1016_j_polymdegradstab_2023_110480
crossref_primary_10_1016_j_ceramint_2022_10_260
crossref_primary_10_1002_app_50324
crossref_primary_10_1016_j_jechem_2021_08_027
crossref_primary_10_1016_j_conbuildmat_2024_136552
crossref_primary_10_1016_j_carbon_2021_07_048
crossref_primary_10_1016_j_matchemphys_2023_128360
crossref_primary_10_3390_polym13050681
crossref_primary_10_1016_j_jmst_2021_02_009
crossref_primary_10_1002_adem_202401709
crossref_primary_10_3390_polym16202859
crossref_primary_10_1016_j_polymer_2020_122763
crossref_primary_10_1016_j_jpcs_2025_113041
crossref_primary_10_1016_j_progpolymsci_2025_102025
crossref_primary_10_3390_jcs8050183
crossref_primary_10_1016_j_molstruc_2024_139801
crossref_primary_10_1039_D4RA03653K
crossref_primary_10_1007_s10338_024_00498_0
crossref_primary_10_1016_j_polymer_2022_124662
crossref_primary_10_1016_j_autcon_2025_106311
crossref_primary_10_1016_j_jmrt_2025_03_138
crossref_primary_10_1016_j_jmst_2024_02_070
crossref_primary_10_1002_app_50575
crossref_primary_10_1016_j_cej_2024_153499
crossref_primary_10_1016_j_mtcomm_2021_102792
crossref_primary_10_3390_electronics13214287
crossref_primary_10_1016_j_coco_2021_100719
crossref_primary_10_1016_j_compscitech_2020_108429
crossref_primary_10_1016_j_compscitech_2021_108945
crossref_primary_10_1088_1361_648X_ad7086
crossref_primary_10_3390_pr11041184
crossref_primary_10_1080_14658011_2023_2231286
crossref_primary_10_1039_D4TC05170J
crossref_primary_10_1007_s11664_021_09079_0
crossref_primary_10_1016_j_surfcoat_2024_130417
crossref_primary_10_1002_admi_202200610
crossref_primary_10_1016_j_coco_2022_101093
crossref_primary_10_3390_polym13183185
crossref_primary_10_1007_s10853_023_08241_9
crossref_primary_10_1080_08927022_2022_2071874
crossref_primary_10_1016_j_surfin_2025_106946
crossref_primary_10_3390_polym15163489
crossref_primary_10_1016_j_coco_2020_04_016
crossref_primary_10_3390_polym16030365
crossref_primary_10_1016_j_compscitech_2023_110348
crossref_primary_10_1007_s10853_022_07551_8
crossref_primary_10_1016_j_pmatsci_2022_101054
crossref_primary_10_1039_D2QM00090C
crossref_primary_10_1002_app_51679
crossref_primary_10_1016_j_jmst_2021_10_052
crossref_primary_10_3390_coatings13020444
crossref_primary_10_1002_adfm_202420708
crossref_primary_10_1002_pat_6537
crossref_primary_10_1016_j_polymertesting_2023_108274
crossref_primary_10_1002_adma_202311335
crossref_primary_10_1007_s12274_023_6257_y
crossref_primary_10_3390_nano14040331
crossref_primary_10_1016_j_compositesa_2022_106944
crossref_primary_10_1016_j_ceramint_2023_11_137
crossref_primary_10_3390_molecules29153572
crossref_primary_10_1016_j_compscitech_2024_110652
crossref_primary_10_3390_polym15061505
crossref_primary_10_1016_j_compscitech_2023_110375
crossref_primary_10_1016_j_polymdegradstab_2024_110902
crossref_primary_10_1016_j_nanoms_2021_08_002
crossref_primary_10_1039_D2NR06360C
crossref_primary_10_1016_j_optlastec_2024_110687
crossref_primary_10_3390_polym14061092
crossref_primary_10_1016_j_coco_2020_100427
crossref_primary_10_1016_j_coco_2021_100986
crossref_primary_10_1002_app_51327
crossref_primary_10_3390_ijms23020842
crossref_primary_10_1016_j_compositesa_2021_106738
crossref_primary_10_1002_app_51683
crossref_primary_10_1007_s11664_024_11140_7
crossref_primary_10_1063_5_0248917
crossref_primary_10_1016_j_polymertesting_2023_108126
crossref_primary_10_1016_S1872_5805_21_60089_6
crossref_primary_10_1002_adfm_202301549
crossref_primary_10_1016_j_psep_2022_12_011
crossref_primary_10_1016_j_coco_2020_100430
crossref_primary_10_1016_j_commatsci_2024_112864
crossref_primary_10_1016_j_compositesb_2020_108599
crossref_primary_10_1002_macp_202400060
crossref_primary_10_1016_j_cej_2024_151170
crossref_primary_10_1007_s42114_024_00934_2
crossref_primary_10_1016_j_nanoms_2024_10_007
crossref_primary_10_1016_j_compscitech_2020_108638
crossref_primary_10_1016_j_compscitech_2021_108934
crossref_primary_10_3390_nano11051236
crossref_primary_10_3390_polym16233231
crossref_primary_10_1016_j_reactfunctpolym_2023_105804
crossref_primary_10_1177_09540083211069039
crossref_primary_10_1002_adem_202100662
crossref_primary_10_1002_app_53756
crossref_primary_10_1016_j_est_2023_109877
crossref_primary_10_1016_j_mtchem_2022_101305
crossref_primary_10_1016_j_cej_2023_145791
crossref_primary_10_1016_j_cej_2021_128647
crossref_primary_10_1016_j_cej_2025_168666
crossref_primary_10_1007_s10118_021_2620_1
crossref_primary_10_1016_j_mtphys_2021_100449
crossref_primary_10_1016_j_compositesb_2021_109072
crossref_primary_10_1016_j_coco_2020_100528
crossref_primary_10_1016_j_compscitech_2021_108907
crossref_primary_10_1016_j_ceramint_2020_07_340
crossref_primary_10_1177_09540083221106058
crossref_primary_10_1016_j_coco_2020_100518
crossref_primary_10_1016_j_applthermaleng_2025_125845
crossref_primary_10_1016_j_jcis_2021_04_123
crossref_primary_10_1016_j_apmt_2022_101672
crossref_primary_10_4028_www_scientific_net_KEM_869_7
crossref_primary_10_1088_1402_4896_ad8d37
crossref_primary_10_4028_www_scientific_net_KEM_869_1
crossref_primary_10_1002_app_56242
crossref_primary_10_1016_j_tca_2021_179141
crossref_primary_10_1016_j_mtphys_2021_100456
crossref_primary_10_1039_D2PY00272H
crossref_primary_10_1002_marc_202300060
crossref_primary_10_1002_pat_6101
crossref_primary_10_1002_adma_202413618
crossref_primary_10_1002_sstr_202300090
crossref_primary_10_1016_j_matdes_2020_109003
crossref_primary_10_1038_s41528_025_00429_0
crossref_primary_10_1515_polyeng_2022_0005
crossref_primary_10_1016_j_polymer_2025_128942
crossref_primary_10_1016_j_jaap_2022_105819
crossref_primary_10_1002_smll_202305104
crossref_primary_10_1007_s10765_021_02898_7
crossref_primary_10_1002_prep_202300311
crossref_primary_10_1007_s42114_024_00979_3
crossref_primary_10_1016_j_apsusc_2023_156711
crossref_primary_10_1016_j_jallcom_2023_169519
crossref_primary_10_1016_j_ceramint_2022_01_188
crossref_primary_10_1002_anie_202117433
crossref_primary_10_1016_j_porgcoat_2025_109065
crossref_primary_10_1016_j_compscitech_2025_111064
crossref_primary_10_1016_j_jallcom_2022_166046
crossref_primary_10_3390_polym14030433
crossref_primary_10_4028_www_scientific_net_MSF_1026_129
crossref_primary_10_1016_S1872_5805_23_60774_7
crossref_primary_10_1080_10407782_2025_2520808
crossref_primary_10_1007_s42114_025_01243_y
crossref_primary_10_1002_pen_26723
crossref_primary_10_1016_j_compositesa_2024_108045
crossref_primary_10_3390_polym16152139
crossref_primary_10_1016_j_cej_2025_160804
crossref_primary_10_1016_j_polymertesting_2023_108209
crossref_primary_10_1016_j_coco_2024_101845
crossref_primary_10_1007_s10965_022_02981_z
crossref_primary_10_1016_j_compscitech_2023_110323
crossref_primary_10_1016_j_compscitech_2024_110865
crossref_primary_10_1016_j_compositesa_2022_106855
crossref_primary_10_1002_macp_202200199
crossref_primary_10_1002_pen_25865
crossref_primary_10_1016_j_mattod_2025_03_011
crossref_primary_10_3390_polym13030459
crossref_primary_10_1049_nde2_12073
crossref_primary_10_1002_pc_28077
crossref_primary_10_1088_2053_1591_ab99e8
crossref_primary_10_1063_5_0160602
crossref_primary_10_1016_j_polymertesting_2024_108633
crossref_primary_10_1063_5_0020409
crossref_primary_10_1016_j_coco_2022_101258
crossref_primary_10_1016_j_ceramint_2023_01_129
crossref_primary_10_1016_j_compscitech_2021_109087
crossref_primary_10_1016_j_polymer_2021_123975
crossref_primary_10_1038_s41598_020_71745_w
crossref_primary_10_1039_D4TA08215J
crossref_primary_10_1016_j_coco_2020_100601
crossref_primary_10_1016_j_compositesa_2021_106685
crossref_primary_10_1016_j_polymer_2024_127531
crossref_primary_10_1016_j_mtcomm_2023_106996
crossref_primary_10_1007_s42464_024_00235_9
crossref_primary_10_1080_10407790_2024_2349709
crossref_primary_10_1016_j_mtcomm_2023_107842
crossref_primary_10_1002_admi_202001910
crossref_primary_10_1016_j_compositesb_2022_110033
crossref_primary_10_1002_smll_202502291
crossref_primary_10_1016_j_cej_2025_166441
crossref_primary_10_1039_D5MH00070J
crossref_primary_10_1016_j_ceramint_2024_03_001
crossref_primary_10_1177_07316844231201479
crossref_primary_10_1016_j_compscitech_2022_109590
crossref_primary_10_3390_ma15134632
crossref_primary_10_1016_j_coco_2020_100609
crossref_primary_10_1016_j_est_2024_113211
crossref_primary_10_1080_00222348_2024_2342193
crossref_primary_10_1016_j_icheatmasstransfer_2024_108170
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127037
crossref_primary_10_1016_j_compositesa_2023_107816
crossref_primary_10_3390_polym17050691
crossref_primary_10_1002_pc_29346
crossref_primary_10_1063_5_0209636
crossref_primary_10_1016_j_cej_2023_145297
crossref_primary_10_3390_inventions9050111
crossref_primary_10_1016_j_inoche_2024_113482
crossref_primary_10_3390_jcs6120376
crossref_primary_10_1177_15280837231166393
crossref_primary_10_1016_j_polymer_2023_126147
crossref_primary_10_1016_j_pmatsci_2024_101362
crossref_primary_10_1016_j_compositesa_2021_106586
crossref_primary_10_1002_adma_202419563
crossref_primary_10_1016_j_ijsolstr_2025_113615
crossref_primary_10_1016_j_pmatsci_2025_101524
crossref_primary_10_1039_D4GC05569A
crossref_primary_10_1016_j_heliyon_2024_e25381
crossref_primary_10_3390_polym13234074
crossref_primary_10_1007_s42114_021_00321_1
crossref_primary_10_1007_s10853_024_09658_6
crossref_primary_10_1002_app_49791
crossref_primary_10_1016_j_compscitech_2022_109259
crossref_primary_10_1016_j_compositesb_2021_108913
crossref_primary_10_1016_j_resconrec_2022_106743
crossref_primary_10_3390_polym17111507
crossref_primary_10_1002_smtd_202300969
crossref_primary_10_1016_j_compositesa_2022_106893
crossref_primary_10_3390_jcs7070290
crossref_primary_10_1016_j_mtphys_2022_100812
crossref_primary_10_1002_marc_202500078
crossref_primary_10_1007_s42114_022_00584_2
crossref_primary_10_1016_j_compositesa_2024_108197
crossref_primary_10_1016_j_ceramint_2024_03_107
crossref_primary_10_1039_D2NR06551G
crossref_primary_10_1088_1361_6528_ac2100
crossref_primary_10_1002_pc_28273
crossref_primary_10_1002_pc_28394
crossref_primary_10_1155_2023_7484634
crossref_primary_10_1016_j_foodchem_2021_129957
crossref_primary_10_1016_j_surfin_2025_107291
crossref_primary_10_1002_pc_28275
crossref_primary_10_1007_s10570_024_06275_z
crossref_primary_10_1021_acsapm_4c03385
crossref_primary_10_1080_14328917_2025_2458873
crossref_primary_10_1016_j_ijbiomac_2025_147127
crossref_primary_10_1016_j_polymdegradstab_2024_111035
Cites_doi 10.1016/j.jmst.2018.09.016
10.1007/s00231-016-1963-6
10.1021/jp101857w
10.1016/j.compscitech.2017.07.019
10.1002/pat.4119
10.1016/j.jallcom.2019.151950
10.1016/j.compositesa.2018.05.023
10.1038/s41467-019-09697-7
10.1021/acsami.8b03522
10.1016/j.compscitech.2019.04.028
10.1063/1.4976946
10.1016/j.carbon.2017.12.110
10.1016/j.compositesa.2019.105517
10.1016/j.compositesa.2019.105511
10.1016/j.compscitech.2018.07.007
10.1016/j.carbon.2017.01.103
10.1039/C6RA04513H
10.1016/j.carbon.2011.01.023
10.1016/j.compscitech.2019.107944
10.1016/j.compositesb.2020.107784
10.1021/acssuschemeng.9b00051
10.1021/acs.iecr.8b01070
10.1016/j.compositesa.2018.06.010
10.1063/1.4929426
10.1016/j.compscitech.2019.02.017
10.1016/j.compscitech.2018.03.016
10.1115/1.4038003
10.1038/nnano.2010.27
10.1016/j.compscitech.2013.09.017
10.1016/j.polymer.2013.06.027
10.1007/BF00353168
10.1111/jace.12768
10.1016/j.polymertesting.2013.05.007
10.1016/j.compositesa.2005.07.006
10.1016/j.polymer.2017.02.024
10.1016/j.applthermaleng.2014.02.044
10.1007/s00289-017-1974-6
10.1016/0032-3861(77)90179-3
10.1016/j.compscitech.2016.12.015
10.1021/acsami.9b19844
10.1016/j.compositesb.2008.01.002
10.1021/ja065043f
10.1002/app.27934
10.1021/acsami.8b16209
10.1016/j.compscitech.2019.107713
10.1016/j.compositesa.2016.12.014
10.1002/adfm.201201221
10.1002/adma.201400954
10.1126/science.aat8982
10.1021/acsami.5b07188
10.1007/s10853-018-2306-4
10.1016/j.compscitech.2018.05.046
10.1016/j.cej.2018.04.199
10.1016/j.compositesb.2019.02.029
10.3390/polym10101088
10.1039/C6RA10397A
10.1126/sciadv.aav0129
10.1016/j.carbon.2018.09.073
10.1039/C5NR04995D
10.1103/PhysRevB.79.144305
10.1016/j.polymer.2012.02.003
10.1016/j.compositesa.2017.01.019
10.1016/j.apmt.2018.04.004
10.1016/j.carbon.2016.08.059
10.1002/app.46397
10.1002/adfm.201604754
10.1039/C9CC02889G
10.1002/app.46454
10.1021/acs.analchem.7b02008
10.1016/j.compscitech.2019.02.005
10.1016/j.compscitech.2018.11.032
10.1016/j.compositesb.2019.107070
10.1016/0032-3861(77)90002-7
10.1016/j.polymer.2011.12.040
10.1016/j.apsusc.2019.05.070
10.1111/jace.16616
10.1016/j.carbon.2017.07.057
10.1016/j.carbon.2019.04.043
10.1002/admi.201900275
10.1016/j.compscitech.2017.05.008
10.1016/j.compositesa.2017.07.030
10.1016/j.solmat.2018.12.014
10.1016/j.jiec.2018.06.001
10.1038/nmat4141
10.1007/s00231-019-02572-7
10.1016/j.compscitech.2019.03.017
10.1016/j.matdes.2016.11.010
10.1007/s10853-010-4938-x
10.1016/j.compositesa.2019.105506
10.1007/s10853-019-03539-z
10.1295/polymj.2.509
10.1016/j.compositesb.2016.11.050
10.1166/sam.2016.2652
10.1063/1.365209
10.1016/j.compositesa.2015.08.004
10.1021/acs.jpcb.7b01377
10.1016/j.ceramint.2019.05.194
10.1016/j.progpolymsci.2010.11.004
10.1016/j.compositesa.2016.11.002
10.1016/j.matdes.2019.107835
10.1063/1.4804237
10.1039/C5RA03284A
10.1016/j.compositesa.2017.06.005
10.1002/adfm.201805365
10.1038/nnano.2014.44
10.1103/PhysRevB.30.2090
10.1002/adfm.201900412
10.1016/j.carbon.2019.01.073
10.1002/pc.25169
10.1115/1.4003503
10.1016/j.carbon.2010.06.044
10.1039/C4TA02429J
10.1007/s10853-019-03826-9
10.1002/app.47054
10.1002/adfm.201805053
10.1016/j.ijheatmasstransfer.2017.06.116
10.1002/app.35089
10.1002/adma.201900199
10.1016/j.compositesa.2019.05.015
10.1016/j.compscitech.2018.11.036
10.1016/j.compscitech.2017.08.010
10.1557/jmr.2018.362
10.1016/j.carbon.2019.04.055
10.1016/j.compositesa.2019.105530
10.1016/j.compscitech.2017.03.020
10.1021/acs.nanolett.6b04756
10.1002/pc.750070302
10.1016/j.polymer.2019.05.044
10.1002/pc.20151
10.1002/adma.200800401
10.1299/jtst.2017jtst0013
10.1016/j.compscitech.2018.03.021
10.1016/j.cej.2019.03.057
10.1016/j.mser.2018.06.002
10.1080/03602559.2014.986802
10.1016/j.carbon.2018.05.033
10.3390/ma2042467
10.1103/PhysRevB.61.12551
10.1016/j.compositesb.2012.05.015
10.1016/j.physleta.2014.04.035
10.1021/acsami.7b07947
10.1016/j.apmt.2018.09.007
10.1016/j.ijheatmasstransfer.2019.07.002
10.1039/C4RA01761G
10.1016/j.progpolymsci.2016.05.001
10.1021/am507416y
10.1016/j.carbon.2009.08.047
10.1007/s42114-018-0031-8
10.1016/j.eurpolymj.2016.08.003
10.1016/j.ijthermalsci.2015.09.013
10.1038/nmat3207
10.1016/j.compositesa.2019.105484
10.1016/j.polymer.2006.05.062
10.1080/01457630701850851
10.1063/1.2834370
10.1016/j.compscitech.2018.05.001
10.1103/PhysRevB.83.064303
10.1007/s10853-019-03525-5
10.1016/j.compositesa.2015.09.005
10.1016/j.compositesa.2019.02.004
10.1016/j.porgcoat.2019.03.042
10.1016/j.compositesa.2018.10.023
10.1016/j.polymertesting.2016.11.015
10.1016/j.compositesa.2019.03.044
10.1021/acsami.9b07313
10.3390/coatings9020117
10.1016/j.carbon.2018.10.003
10.1007/BFb0021279
10.1021/acsami.9b10207
10.1002/pol.1980.180180603
10.1039/C8TC04309D
10.1021/acs.nanolett.6b00722
10.3390/polym9090437
10.1016/j.compscitech.2019.05.019
10.1016/j.ijheatmasstransfer.2013.12.017
10.1016/j.compscitech.2016.04.033
10.1002/adma.201600642
10.1016/j.carbon.2011.12.046
10.1016/j.applthermaleng.2016.11.041
10.1016/j.compscitech.2017.12.008
10.1016/j.carbon.2019.04.038
10.1039/C9TC01804B
10.1016/j.compositesa.2019.05.002
10.1016/j.polymer.2015.11.027
10.1016/j.compscitech.2019.04.026
10.1016/j.compositesa.2011.11.024
10.1016/j.carbon.2018.08.029
10.1016/j.ijheatmasstransfer.2015.08.081
10.1016/j.polymer.2019.121760
10.1063/1.119976
10.1021/acsami.9b10161
10.1016/j.compscitech.2018.05.038
10.1016/j.compscitech.2018.06.015
10.1016/j.compscitech.2017.03.035
10.1088/0022-3727/40/10/020
10.1016/j.carbon.2018.02.002
10.1039/C6RA25841G
10.1002/adfm.201901383
10.1016/j.progpolymsci.2016.03.001
10.1002/app.32673
10.1039/C8TC05955A
10.1016/j.cej.2019.03.217
10.1016/j.compositesb.2019.107569
10.1179/1433075X11Y.0000000030
10.1016/j.compositesb.2018.11.005
10.1016/j.compscitech.2018.11.008
10.1016/j.compositesa.2019.02.026
10.1126/sciadv.aar3031
10.1021/jp071761s
10.1002/adma.201705544
10.1021/am400615z
10.1016/j.compscitech.2019.02.006
10.1002/aelm.201800548
10.1021/acs.nanolett.8b00555
10.1016/j.compositesb.2019.01.100
10.1016/j.ijheatmasstransfer.2007.10.017
10.1016/j.carbon.2011.06.095
10.1080/00218464.2018.1451331
10.1021/acsami.8b18232
10.3390/polym11071156
10.1088/0022-3719/8/19/012
10.1016/j.compositesa.2018.11.006
10.1080/01495739.2016.1218745
10.3390/nano8040264
10.1016/j.polymer.2012.07.065
10.1016/j.jallcom.2019.04.051
10.1021/acsami.9b06062
10.1038/nmat3303
10.1007/s10853-012-6862-8
10.1016/j.ceramint.2016.11.108
10.1016/j.compositesa.2019.02.019
10.1016/j.coco.2018.07.003
10.3390/polym11010148
10.1039/C8NR08760A
10.3390/ma12142225
10.1021/ma0615046
10.1016/j.compositesb.2019.01.099
10.1016/j.compositesb.2019.04.015
10.1021/acsami.6b16586
10.1039/C8TC00452H
10.1021/acsnano.8b06290
10.1016/j.compositesa.2019.105670
10.1002/anie.201812112
10.1002/app.47951
10.1038/nmat996
10.1016/j.compositesa.2019.03.030
10.1016/j.ijggc.2011.07.009
10.1039/C5RA18519J
10.1016/j.coco.2018.04.009
10.1016/j.commatsci.2015.06.006
10.1039/C9TC02845E
10.1021/acs.jpcb.5b09955
10.1016/j.diamond.2008.03.037
10.1002/app.12489
10.1021/acsami.6b03723
10.1002/pc.22756
10.1021/jp3026545
10.1016/j.compositesa.2018.02.006
10.1021/acsami.9b09398
10.1016/j.compscitech.2018.03.028
10.1002/pat.2063
10.1063/1.4813505
10.1016/j.apsusc.2018.02.125
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jun 16, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 16, 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.compscitech.2020.108134
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-1050
ExternalDocumentID 10_1016_j_compscitech_2020_108134
S0266353819333998
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
.-4
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
T9H
VH1
WUQ
~HD
7SR
8FD
JG9
ID FETCH-LOGICAL-c415t-a5d4e07cbc89333b4b498047996914458b7a1cbe8af3b1076a09edf0f9ead1953
ISICitedReferencesCount 693
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527648600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-3538
IngestDate Sun Nov 09 07:33:12 EST 2025
Tue Nov 18 20:40:36 EST 2025
Sat Nov 29 07:22:53 EST 2025
Fri Feb 23 02:50:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal properties
Functional composites
Polymer-matrix composites (PMCs)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-a5d4e07cbc89333b4b498047996914458b7a1cbe8af3b1076a09edf0f9ead1953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440490482
PQPubID 2045270
ParticipantIDs proquest_journals_2440490482
crossref_primary_10_1016_j_compscitech_2020_108134
crossref_citationtrail_10_1016_j_compscitech_2020_108134
elsevier_sciencedirect_doi_10_1016_j_compscitech_2020_108134
PublicationCentury 2000
PublicationDate 2020-06-16
PublicationDateYYYYMMDD 2020-06-16
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Composites science and technology
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ji, Yan, Wang, Xiong, Zhou, Li, Sun, Wong (bib106) 2019; 163
Tabarraei (bib144) 2015; 108
Xing, Sun, Wang, Yang, Wang, Liu (bib173) 2019; 54
Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lv, Feng (bib31) 2019; 29
Zhou, Zuo, Ren (bib148) 2012; 43
Gu, Zhang, Dang, Yin, Chen (bib192) 2012; 124
Zhang, Du, Zou, Li, Zhang (bib49) 2017; 148
Liu, Li, Guo, Zhang, Zhang (bib256) 2019; 120
Zhu, Ma, Wu, Yung, Xie (bib149) 2010; 118
Guo, Pan, Yang, Ruan, Han, Kong, Gu (bib48) 2019; 124
Zhang, Zha, Li, Li, Wang, Wen, Dang (bib129) 2018; 156
Song, Zhang (bib163) 2019; 141
Li, Ding, Meng, Zhou, Zhu, Liu, Dresselhaus, Chen (bib57) 2017; 17
Takahata, Iguchi, Tanaka, Itoh, Terasaki (bib135) 2000; 61
Shi, Ma, Wu, Hu, Mo, Yang, Zhang, Zhang (bib122) 2019; 136
Suh, Moon, Kim, Baik (bib33) 2016; 28
Hassan, Yang, Elagib, Ge, Lv, Zhou, Yu, Zhu (bib212) 2019; 171
Ma, Tian (bib65) 2019; 34
Xu, Zhou, Chen (bib81) 2019
Chen, Huang, Sun, Jiang (bib111) 2019; 13
Dong, Long, Peng, Peng, Guo (bib9) 2019; 54
Jiang, Cao, Xiao, Zhu, Lu (bib185) 2017; 7
Wen, Sun, Su, Shen, Li, Guo (bib242) 2012; 53
Burger, Laachachi, Ferriol, Lutz, Toniazzo, Ruch (bib15) 2016; 61
Evans, Prasher, Fish, Meakin, Phelan, Keblinski (bib206) 2008; 51
Huang, Qian, Yang (bib23) 2018; 132
Xu, Kraemer, Song, Jiang, Zhou, Loomis, Wang, Li, Ghasemi, Huang, Li, Chen (bib70) 2019; 10
dos Santos, de Sousa, Gregorio (bib88) 2013; 32
Mehra, Li, Yang, Li, Kashfipour, Gu, Zhu (bib43) 2019; 166
Zhang, Keblinski, Wang, Li (bib217) 2011; 83
Giri, Hopkins (bib164) 2019
Liu, Peng, Liu, Fang, Zhou, Liu, Liu (bib267) 2018; 165
An, Chen, Lu, Li, Chen, Fan, Wang, Wu (bib131) 2019; 11
Luo, Huang, Huang (bib63) 2018; 140
Kidalov, Shakhov (bib138) 2009; 2
Kikugawa, Desai, Keblinski, Ohara (bib78) 2013; 114
Vu, Bae, Yu, Choi, Islam, Kim (bib224) 2019; 95
Song, Katagi, Takezawa (bib85) 2012; 53
Jiang, Cui, Song, Shi, Ding (bib11) 2018; 10
Yang, Tang, Guo, Liang, Zhang, Kou, Gu (bib55) 2017; 101
Lo, He, Biswas, Kanatzidis, Dravid (bib133) 2012; 22
Wang, Chen, Liu, Duan, Xu, Zhou, Xu, Lei, Li (bib178) 2019; 7
Tian, Ren (bib2) 2019; 58
Losego, Grady, Sottos, Cahill, Braun (bib218) 2012; 11
Wang, Wu (bib126) 2019; 11
Fang, Bai, Wong (bib95) 2018; 112
Yu, France, Routbort, Choi (bib147) 2008; 29
Yang, Kong, Ni, Gao, Yang, Zhu, Zhang (bib124) 2019; 124
Gu, Xie, Li, Dang, Geng, Zhang (bib34) 2014; 35
Holman (bib21) 2010
You, Choi, Lee, Cho, Park, Lee, Park (bib105) 2019; 164
Li, Xu, Guo, Ma, Zhong, Zhang, Gu (bib238) 2018; 107
Wang, Qiu, Liang, Song, Han, Han, Gu, Kong, Pan, Guo (bib6) 2019; 141
Song, Zhang (bib203) 2017; 123
Guan, Wan, Gong, Yan, Tang, Wu, Jiang, Lai (bib221) 2014; 2
Jia, He, Geng, Huang, Peng (bib258) 2017; 145
Kunanuruksapong, Sirivat (bib263) 2012; 16
Zhang, Wu, Liu, Yu, Zhang, Chen, Fu (bib29) 2019; 175
Choy, Young (bib25) 1977; 18
Gu, Zhang, Dang, Xie (bib188) 2012; 23
Zhang, Shi, Tang, Liu, Zhang, Guo, Gu (bib89) 2020
Li, Yin, Hu, Zhang, Guo, Chen, Sun, Du, Shu, Yu, Zhang (bib232) 2019; 54
Ngo, Vattikuti, Byon (bib128) 2017; 114
Guo, Ruan, Yang, Ma, Kong, Wu, Zhang, Gu, Guo (bib108) 2019; 7
Tessema, Zhao, Moll, Xu, Yang, Li, Kumar, Kidane (bib92) 2017; 57
Mehra, Mu, Ji, Li, Zhu (bib274) 2017; 151
Yang, Fan, Li, Guo, Li, Ruan, Zhang, Zhang, Kong, Gu (bib254) 2020; 128
Wernik, Meguid (bib204) 2011; 63
Zhang, Shen, Wu, Guo (bib244) 2013; 89
Zheng, Kim, Park (bib200) 2019; 121
Tanimoto, Yamagata, Miyata, Ando (bib205) 2013; 5
Phuong, Tran, Plamondon, Tuduri, Vo, Nanda, Mishra, Chao, Bajpai (bib183) 2019; 132
Yang, Ni, Liang, Li, Ma, Zhang (bib186) 2019; 180
Gu, Lv, Yang, Wang, Zhang (bib190) 2016; 8
Gu, Lv, Wu, Zhao, Tian, Zhang (bib236) 2015; 79
Ren, Zeng, Zhang, Sun, Tian, Zeng, Xu, Wong (bib194) 2019; 119
Huxtable, Cahill, Shenogin, Xue, Ozisik, Barone, Usrey, Strano, Siddons, Shim, Keblinski (bib215) 2003; 2
Shen, Wang, Zhang, Zeng (bib114) 2019; 35
Liu, Chen, Yu (bib195) 2019; 192
Jeong, Lee, Seo, Kim (bib223) 2014; 71
Moses, Denenstein (bib61) 1984; 30
Yu, Ramesh, Sun, Bekyarova, Itkis, Haddon (bib137) 2008; 20
Yang, Liang, Ma, Guo, Kong, Gu, Chen, Zhu (bib42) 2018; 1
Guo, Yang, Ruan, Kong, Dong, Zhang, Gu, Guo (bib103) 2019; 11
Dong, Sun, Tang, Hayashi, Li, Shang, Miyazaki, Li (bib130) 2019; 11
Yu, Ramesh, Itkis, Bekyarova, Haddon (bib156) 2007; 111
Layek, Nandi (bib226) 2013; 54
Han, Fina (bib53) 2011; 36
Rivière, Lonjon, Dantras, Lacabanne, Olivier, Gleizes (bib154) 2016; 85
Zhang, Tan, Ma, Wang, Yang (bib119) 2018; 162
Xiao, Tang, Chen, Zhang, Zheng, Tian (bib96) 2019; 121
Wen, Zheng (bib272) 2019; 174
Li, Wilhelmsen, Lv, Wang, Yan (bib18) 2011; 5
Wang, Wang, Lu, Li, Gu, Zhang, Zhang (bib174) 2018; 442
Lin, Pei, Zhang (bib136) 2018; 135
Gu, Yang, Lv, Li, Liang, Zhang (bib160) 2016; 92
Yang, Ma, Teng, Huang, Liao, Huang, Tien, Lee, Chiou (bib176) 2010; 48
Watari, Ishizaki, Tsuchiya (bib134) 1993; 28
Yuan, Li, Cao, Tang, Zhang (bib125) 2019; 45
Chen, Li, Wen, Liu, Li, Zeng, Xue, Zhou, Xie (bib202) 2019; 125
Zou, Liu, Hu, Ning, Jiang, Xu, Fu, Li, Zhou, Yan (bib140) 2019; 149
Feng, Ni, Chen, Yang (bib248) 2016; 8
Li, Zhang, Zhang (bib27) 2017; 9
Xiao, Chen, Tang, Zhang, Zheng, Tian (bib170) 2019; 116
Qin, Xu, Cao, Feng, Chen (bib255) 2018; 28
Wensel, Wright, Thomas, Douglas, Mannhalter, Cross, Hong, Kellar, Smith, Roy (bib208) 2008; 92
Xiao, Chen, Tang, Zhang, Zheng, Tian (bib123) 2019; 124
Yuan, Qian, Meng, Yang, Liu (bib269) 2019; 11
Owais, Zhao, Imani, Wang, Zhang, Zhang (bib198) 2019; 117
Oluwalowo, Nguyen, Zhang, Park, Liang (bib35) 2019; 146
Soga, Saito, Kawaguchi, Satoh (bib28) 2017; 12
Gu, Guo, Yang, Liang, Geng, Tang, Li, Zhang (bib54) 2017; 95
Choy, Greig (bib87) 1975; 8
Yang, Zhu, Yang, Zhang, Guo, Zhong, Kong, Gu (bib252) 2020; 185
Li, Li, Liu, Wang, Zhang, Liu, Yang (bib228) 2019; 8
Fu, Yan, Ren, Zeng, Du, Sun, Xu, Wong (bib7) 2019; 177
Chen, Wu, Mishra, Kang, Zhang, Cho, Cai, Balandin, Ruoff (bib20) 2012; 11
Lule, Kim (bib113) 2019; 11
Huang, Iizuka, Jiang, Ohki, Tanaka (bib172) 2012; 116
You, Kim, Seo, Huh, Park, Lee (bib167) 2018; 66
Zhang (bib16) 2007
Yang, Kong, Ni, Gao, Yang, Zhu, Zhang (bib177) 2019; 124
Burk, Gliem, Lais, Nutz, Retsch, Mulhaupt (bib165) 2018; 10
Askadskii, Petunova, Markov (bib58) 2013; 55
Rashidi, Coyle, Sebeck, Kieffer, Pipe (bib220) 2017; 121
Mortazavi, Baniassadi, Bardon, Ahzi (bib155) 2013; 45
Li, Zheng, Lv, Liu, Wang, Huang, Cahill, Lv (bib1) 2018; 361
Abyzov, Kidalov, Shakhov (bib139) 2011; 46
Zhuang, Cao, Zhang, Ma, Shang, Lu, Yang, Zheng, Ma (bib104) 2019; 120
Lin, Pei, Zhang (bib118) 2018; 135
T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang, Y. Guo, X. Yang, J. Kong, J. Gu, Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures, ACS Appl. Mater. Interfaces 12(1) 2020 1677-1686.
Paszkiewicz, Szymczyk, Pawlikowska, Subocz, Zenker, Masztak (bib46) 2018; 8
Liu, Lu, Wu, Yao, Du, Chen, Zhang, Liang, Lu (bib107) 2019; 174
Yang, Guo, Luo, Zheng, Ma, Tan, Li, Zhang, Gu (bib8) 2018; 164
Yan, Yu, Ji, Kang, Wang, Sun, Wong (bib112) 2019; 5
Saucedo-Espinosa, Lapizco-Encinas (bib264) 2017; 89
Ma, Tian (bib66) 2015; 107
Wang, Wu, Zhuo, Zhang, Zheng (bib116) 2018; 57
Gu, Du, Dang, Geng, Hu, Zhang (bib189) 2014; 4
Fu, He, Mo, Lu (bib99) 2014; 66
Yan, Yu, Ji, Zeng, Lu, Sun, Wong (bib110) 2019; 136
Yang, Li, Bai, Wang (bib94) 2019; 11
Sohn, Han, Han (bib145) 2019; 149
Yan, Liu, Li, Zhang, Shang, Xiao, Ao (bib199) 2019; 125
Fu, Feng, Lauke, Mai (bib209) 2008; 39
Ma, Zhang, Mayo, Ni, Yi, Chen, Mu, Bellan, Li (bib75) 2015; 7
Kim, Kim (bib271) 2016; 100
Michio, Kang (bib141) 2014
Huang, Liu, Chen, Zheng, Feng, Chen, Yang, Yang (bib277) 2019; 171
Ho, Powell, Liley (bib19) 1974
Chen, Ginzburg, Yang, Yang, Liu, Huang, Du, Chen (bib60) 2016; 59
Nan, Birringer, Clarke, Gleiter (bib210) 1997; 81
Deng, Lin, Xu, Lin, Du (bib69) 2015; 54
Bigg (bib40) 1995; 119
Waheed, Cabot, Smejkal, Farajikhah, Sayyar, Innis, Beirne, Barnsley, Lewis, Breadmore, Paull (bib257) 2019; 11
Mehra, Kashfipour, Zhu (bib80) 2018; 13
Su, Li, Weng (bib37) 2018; 137
Maira, Takeuchi, Chammingkwan, Terano, Taniike (bib47) 2018; 165
Li, Guo, Tian, Tian (bib39) 2017; 40
Shen, Wang, Wu, Liu, He, Kim (bib157) 2016; 16
Mehra, Mu, Ji, Yang, Kong, Gu, Zhu (bib52) 2018; 12
Wang, Xie, Xin, Li (bib166) 2010; 48
Badard, Combessis, Allais, Flandin (bib262) 2016; 82
Chen, Feng, Qin, Ji, Feng (bib191) 2017; 116
Cai, Scullion, Gan, Falin, Zhang, Watanabe, Taniguchi, Chen, Santos, Li (bib93) 2019; 5
Sun, Zhang, Jobbins, Guo, Zhang, Zheng, Tang, Ptasinska, Luo (bib219) 2014; 26
Teng, Ma, Lu, Yang, Lee, Hsiao, Yen, Chiou, Lee (bib227) 2011; 49
Chen, Huang, Zhu, Jiang (bib4) 2017; 27
Li, Hsu (bib197) 2010; 114
Han, Du, Gao, Bai (bib253) 2019; 29
Xu, Chen, Zhou, Li (bib3) 2018; 30
Khan, Tahir, Baloch, Koc (bib184) 2019; 9
You, Choi, Cho, Son, Park, Lee, Park (bib168) 2018; 160
Li, Xing, Geng, Liu, He, Wang, Zhang, Qu (bib51) 2018; 29
Ji, Feng, Qin, Li, Zhang, Lv, Feng (bib12) 2018; 131
Wei, Shi, Jiang, Zhang, Chen, Zhang, Zhang, Gong (bib201) 2019; 810
Tong, Huang, Wu (bib115) 2018; 348
Ng, Lu, Lau (bib150) 2005; 26
Choy (bib86) 1977; 18
Choy, Chen, Luk (bib24) 1980; 18
Guiney, Mansukhani, Jakus, Wallace, Shah, Hersam (bib120) 2018; 18
Hussain, Alahyari, Eastman, Thibaud-Erkey, Johnston, Sobkowicz (bib230) 2017; 113
Zheng, Sun, Tian, Zhu, Ma, Tang, Wang (bib216) 2015; 7
Xiao, Fan, Fan, Li (bib59) 2017; 74
Lee, Park, Kim, Lee, Yoon (bib101) 2006; 37
Lu, Chiang, Du, Li, Gan, Zhang, Chu, Yao, Li, Kang (bib74) 2017; 115
Yang, Guo, Han, Li, Ma, Chen, Kong, Zhu, Gu (bib234) 2019; 175
Hossain, Pahlevani, Cholake, Privat, Sahajwalla (bib181) 2019; 7
Bigg (bib41) 1986; 7
Yu, Gong, Tian, Zhang, Xu, Lin, Hu, Fan, Yao (bib240) 2018; 160
Singh, Bougher, Weathers, Cai, Bi, Pettes, McMenamin, Lv, Resler, Gattuso, Altman, Sandhage, Shi, Henry, Cola (bib72) 2014; 9
Feng, Yu, Xu, Zou (bib207) 2007; 40
Li, Wang, Li, Feng, Feng (bib90) 2019; 179
Gu, Liang, Dang, Meng, Tang, Li, Zhang (bib171) 2016; 6
Bubke, Gnewuch, Hempstead, Hammer, Green (bib260) 1997; 71
Haggenmueller, Guthy, Lukes, Fischer, Winey (bib45) 2007; 40
Ramezanzadeh, Bahlakeh, Ramezanzadeh (bib180) 2019; 792
Wang, Zhu, Yan, Wei, Zhang,
Qin (10.1016/j.compscitech.2020.108134_bib255) 2018; 28
Bigg (10.1016/j.compscitech.2020.108134_bib41) 1986; 7
Phuong (10.1016/j.compscitech.2020.108134_bib183) 2019; 132
Wang (10.1016/j.compscitech.2020.108134_bib166) 2010; 48
Feng (10.1016/j.compscitech.2020.108134_bib231) 2016; 109
Wang (10.1016/j.compscitech.2020.108134_bib178) 2019; 7
Mehra (10.1016/j.compscitech.2020.108134_bib52) 2018; 12
Li (10.1016/j.compscitech.2020.108134_bib18) 2011; 5
Ho (10.1016/j.compscitech.2020.108134_bib19) 1974
Zhou (10.1016/j.compscitech.2020.108134_bib148) 2012; 43
Xu (10.1016/j.compscitech.2020.108134_bib3) 2018; 30
Yu (10.1016/j.compscitech.2020.108134_bib229) 2012; 53
Zhu (10.1016/j.compscitech.2020.108134_bib149) 2010; 118
Huxtable (10.1016/j.compscitech.2020.108134_bib215) 2003; 2
Wang (10.1016/j.compscitech.2020.108134_bib126) 2019; 11
Gu (10.1016/j.compscitech.2020.108134_bib100) 2015; 5
10.1016/j.compscitech.2020.108134_bib239
Wen (10.1016/j.compscitech.2020.108134_bib242) 2012; 53
Zhang (10.1016/j.compscitech.2020.108134_bib79) 2015; 5
Xu (10.1016/j.compscitech.2020.108134_bib81) 2019
Liu (10.1016/j.compscitech.2020.108134_bib107) 2019; 174
Kim (10.1016/j.compscitech.2020.108134_bib22) 2014; 14
Gu (10.1016/j.compscitech.2020.108134_bib56) 2017; 92
Luo (10.1016/j.compscitech.2020.108134_bib63) 2018; 140
Jiang (10.1016/j.compscitech.2020.108134_bib185) 2017; 7
Akatsuka (10.1016/j.compscitech.2020.108134_bib84) 2003; 89
Guan (10.1016/j.compscitech.2020.108134_bib221) 2014; 2
Huang (10.1016/j.compscitech.2020.108134_bib277) 2019; 171
Fang (10.1016/j.compscitech.2020.108134_bib95) 2018; 112
Ji (10.1016/j.compscitech.2020.108134_bib12) 2018; 131
Chen (10.1016/j.compscitech.2020.108134_bib60) 2016; 59
Wei (10.1016/j.compscitech.2020.108134_bib201) 2019; 810
Ren (10.1016/j.compscitech.2020.108134_bib151) 2019; 370
Feng (10.1016/j.compscitech.2020.108134_bib248) 2016; 8
Cho (10.1016/j.compscitech.2020.108134_bib268) 2016; 129
Rashidi (10.1016/j.compscitech.2020.108134_bib220) 2017; 121
Han (10.1016/j.compscitech.2020.108134_bib253) 2019; 29
Moses (10.1016/j.compscitech.2020.108134_bib61) 1984; 30
Gu (10.1016/j.compscitech.2020.108134_bib189) 2014; 4
Tan (10.1016/j.compscitech.2020.108134_bib225) 2014; 378
Zhang (10.1016/j.compscitech.2020.108134_bib244) 2013; 89
Li (10.1016/j.compscitech.2020.108134_bib238) 2018; 107
Ma (10.1016/j.compscitech.2020.108134_bib64) 2017; 110
Shen (10.1016/j.compscitech.2020.108134_bib71) 2010; 5
Maira (10.1016/j.compscitech.2020.108134_bib47) 2018; 165
Zhang (10.1016/j.compscitech.2020.108134_bib67) 2016; 120
Gu (10.1016/j.compscitech.2020.108134_bib171) 2016; 6
Badard (10.1016/j.compscitech.2020.108134_bib262) 2016; 82
Choy (10.1016/j.compscitech.2020.108134_bib24) 1980; 18
You (10.1016/j.compscitech.2020.108134_bib168) 2018; 160
Kakade (10.1016/j.compscitech.2020.108134_bib73) 2007; 129
Song (10.1016/j.compscitech.2020.108134_bib163) 2019; 141
Huang (10.1016/j.compscitech.2020.108134_bib127) 2019; 123
Tichit (10.1016/j.compscitech.2020.108134_bib182) 2019; 369
Lee (10.1016/j.compscitech.2020.108134_bib101) 2006; 37
Li (10.1016/j.compscitech.2020.108134_bib57) 2017; 17
Feng (10.1016/j.compscitech.2020.108134_bib207) 2007; 40
You (10.1016/j.compscitech.2020.108134_bib105) 2019; 164
An (10.1016/j.compscitech.2020.108134_bib131) 2019; 11
Li (10.1016/j.compscitech.2020.108134_bib1) 2018; 361
Ngo (10.1016/j.compscitech.2020.108134_bib128) 2017; 114
Gu (10.1016/j.compscitech.2020.108134_bib54) 2017; 95
Yan (10.1016/j.compscitech.2020.108134_bib112) 2019; 5
Chen (10.1016/j.compscitech.2020.108134_bib191) 2017; 116
Shen (10.1016/j.compscitech.2020.108134_bib250) 2019; 170
Guo (10.1016/j.compscitech.2020.108134_bib48) 2019; 124
Yan (10.1016/j.compscitech.2020.108134_bib110) 2019; 136
Abyzov (10.1016/j.compscitech.2020.108134_bib139) 2011; 46
Gu (10.1016/j.compscitech.2020.108134_bib188) 2012; 23
Choy (10.1016/j.compscitech.2020.108134_bib25) 1977; 18
Gu (10.1016/j.compscitech.2020.108134_bib161) 2016; 6
Tabarraei (10.1016/j.compscitech.2020.108134_bib144) 2015; 108
Zhou (10.1016/j.compscitech.2020.108134_bib247) 2017; 9
Henry (10.1016/j.compscitech.2020.108134_bib76) 2009; 79
Wang (10.1016/j.compscitech.2020.108134_bib246) 2018; 162
Pang (10.1016/j.compscitech.2020.108134_bib261) 2011; 49
Ikramullah (10.1016/j.compscitech.2020.108134_bib213) 2019; 12
Liang (10.1016/j.compscitech.2020.108134_bib179) 2017; 102
Naji (10.1016/j.compscitech.2020.108134_bib50) 2019; 40
Kim (10.1016/j.compscitech.2020.108134_bib271) 2016; 100
Lin (10.1016/j.compscitech.2020.108134_bib5) 2019; 175
Liang (10.1016/j.compscitech.2020.108134_bib109) 2019; 7
Wang (10.1016/j.compscitech.2020.108134_bib132) 2019; 55
Aradhana (10.1016/j.compscitech.2020.108134_bib36) 2019; 169
Zhang (10.1016/j.compscitech.2020.108134_bib259) 2018; 9
Su (10.1016/j.compscitech.2020.108134_bib37) 2018; 137
Gu (10.1016/j.compscitech.2020.108134_bib236) 2015; 79
Yang (10.1016/j.compscitech.2020.108134_bib124) 2019; 124
Takahata (10.1016/j.compscitech.2020.108134_bib135) 2000; 61
Shen (10.1016/j.compscitech.2020.108134_bib157) 2016; 16
Choy (10.1016/j.compscitech.2020.108134_bib86) 1977; 18
Arani (10.1016/j.compscitech.2020.108134_bib193) 2019; 55
Li (10.1016/j.compscitech.2020.108134_bib90) 2019; 179
Suh (10.1016/j.compscitech.2020.108134_bib33) 2016; 28
Bai (10.1016/j.compscitech.2020.108134_bib68) 2018; 53
Lo (10.1016/j.compscitech.2020.108134_bib133) 2012; 22
Evans (10.1016/j.compscitech.2020.108134_bib206) 2008; 51
Song (10.1016/j.compscitech.2020.108134_bib275) 2018; 6
Qiu (10.1016/j.compscitech.2020.108134_bib97) 2019; 141
Chen (10.1016/j.compscitech.2020.108134_bib4) 2017; 27
Song (10.1016/j.compscitech.2020.108134_bib85) 2012; 53
Teng (10.1016/j.compscitech.2020.108134_bib227) 2011; 49
Zheng (10.1016/j.compscitech.2020.108134_bib200) 2019; 121
Huang (10.1016/j.compscitech.2020.108134_bib172) 2012; 116
Gu (10.1016/j.compscitech.2020.108134_bib192) 2012; 124
Ramezanzadeh (10.1016/j.compscitech.2020.108134_bib180) 2019; 792
Kidalov (10.1016/j.compscitech.2020.108134_bib138) 2009; 2
Zhang (10.1016/j.compscitech.2020.108134_bib49) 2017; 148
Li (10.1016/j.compscitech.2020.108134_bib27) 2017; 9
Xiao (10.1016/j.compscitech.2020.108134_bib59) 2017; 74
Hauser (10.1016/j.compscitech.2020.108134_bib83) 2008; 109
Gu (10.1016/j.compscitech.2020.108134_bib159) 2015; 78
Shen (10.1016/j.compscitech.2020.108134_bib241) 2015; 7
Guo (10.1016/j.compscitech.2020.108134_bib121) 2018; 6
Zhang (10.1016/j.compscitech.2020.108134_bib31) 2019; 29
Zou (10.1016/j.compscitech.2020.108134_bib140) 2019; 149
Mehra (10.1016/j.compscitech.2020.108134_bib80) 2018; 13
Rai (10.1016/j.compscitech.2020.108134_bib153) 2017; 144
Yang (10.1016/j.compscitech.2020.108134_bib252) 2020; 185
Hong (10.1016/j.compscitech.2020.108134_bib175) 2008; 17
Zhao (10.1016/j.compscitech.2020.108134_bib62) 2013; 113
Saucedo-Espinosa (10.1016/j.compscitech.2020.108134_bib264) 2017; 89
Liu (10.1016/j.compscitech.2020.108134_bib256) 2019; 120
Lule (10.1016/j.compscitech.2020.108134_bib10) 2019; 124
Zhang (10.1016/j.compscitech.2020.108134_bib129) 2018; 156
Wen (10.1016/j.compscitech.2020.108134_bib272) 2019; 174
Askadskii (10.1016/j.compscitech.2020.108134_bib58) 2013; 55
Wang (10.1016/j.compscitech.2020.108134_bib273) 2020; 180
Owais (10.1016/j.compscitech.2020.108134_bib198) 2019; 117
Li (10.1016/j.compscitech.2020.108134_bib232) 2019; 54
Yang (10.1016/j.compscitech.2020.108134_bib177) 2019; 124
Moradi (10.1016/j.compscitech.2020.108134_bib146) 2019; 11
Yu (10.1016/j.compscitech.2020.108134_bib156) 2007; 111
Burk (10.1016/j.compscitech.2020.108134_bib165) 2018; 10
Tanimoto (10.1016/j.compscitech.2020.108134_bib205) 2013; 5
Dong (10.1016/j.compscitech.2020.108134_bib9) 2019; 54
Cai (10.1016/j.compscitech.2020.108134_bib93) 2019; 5
Khaliq (10.1016/j.compscitech.2020.108134_bib265) 2017; 43
Singh (10.1016/j.compscitech.2020.108134_bib72) 2014; 9
Yuan (10.1016/j.compscitech.2020.108134_bib187) 2018; 164
Liu (10.1016/j.compscitech.2020.108134_bib195) 2019; 192
Mehra (10.1016/j.compscitech.2020.108134_bib43) 2019; 166
Michio (10.1016/j.compscitech.2020.108134_bib141) 2014
Yang (10.1016/j.compscitech.2020.108134_bib234) 2019; 175
Paszkiewicz (10.1016/j.compscitech.2020.108134_bib46) 2018; 8
Soga (10.1016/j.compscitech.2020.108134_bib28) 2017; 12
Xu (10.1016/j.compscitech.2020.108134_bib70) 2019; 10
Song (10.1016/j.compscitech.2020.108134_bib98) 2020
Yu (10.1016/j.compscitech.2020.108134_bib147) 2008; 29
Gu (10.1016/j.compscitech.2020.108134_bib160) 2016; 92
Bigg (10.1016/j.compscitech.2020.108134_bib40) 1995; 119
dos Santos (10.1016/j.compscitech.2020.108134_bib88) 2013; 32
Zhang (10.1016/j.compscitech.2020.108134_bib29) 2019; 175
Ma (10.1016/j.compscitech.2020.108134_bib75) 2015; 7
Gu (10.1016/j.compscitech.2020.108134_bib32) 2017; 139
Liu (10.1016/j.compscitech.2020.108134_bib267) 2018; 165
Li (10.1016/j.compscitech.2020.108134_bib197) 2010; 114
Min (10.1016/j.compscitech.2020.108134_bib251) 2018; 28
Yang (10.1016/j.compscitech.2020.108134_bib42) 2018; 1
Sun (10.1016/j.compscitech.2020.108134_bib219) 2014; 26
Zhang (10.1016/j.compscitech.2020.108134_bib162) 2019; 177
Ma (10.1016/j.compscitech.2020.108134_bib66) 2015; 107
Kunanuruksapong (10.1016/j.compscitech.2020.108134_bib263) 2012; 16
Xiao (10.1016/j.compscitech.2020.108134_bib96) 2019; 121
Yu (10.1016/j.compscitech.2020.108134_bib137) 2008; 20
Xiao (10.1016/j.compscitech.2020.108134_bib170) 2019; 116
Wang (10.1016/j.compscitech.2020.108134_bib6) 2019; 141
Tian (10.1016/j.compscitech.2020.108134_bib2) 2019; 58
Tessema (10.1016/j.compscitech.2020.108134_bib92) 2017; 57
Guo (10.1016/j.compscitech.2020.108134_bib233) 2019; 164
Tong (10.1016/j.compscitech.2020.108134_bib115) 2018; 348
Chen (10.1016/j.compscitech.2020.108134_bib276) 2018; 112
Shi (10.1016/j.compscitech.2020.108134_bib122) 2019; 136
Rivière (10.1016/j.compscitech.2020.108134_bib154) 2016; 85
Sohn (10.1016/j.compscitech.2020.108134_bib145) 2019; 149
Yang (10.1016/j.compscitech.2020.108134_bib186) 2019; 180
Ma (10.1016/j.compscitech.2020.108134_bib65) 2019; 34
Lv (10.1016/j.compscitech.2020.108134_bib196) 2019; 149
Li (10.1016/j.compscitech.2020.108134_bib117) 2018; 135
Lin (1
References_xml – volume: 165
  start-page: 39
  year: 2018
  end-page: 47
  ident: bib267
  article-title: Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties
  publication-title: Compos. Sci. Technol.
– volume: 35
  start-page: 1087
  year: 2014
  end-page: 1092
  ident: bib34
  article-title: Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites
  publication-title: Polym. Compos.
– volume: 29
  start-page: 432
  year: 2008
  end-page: 460
  ident: bib147
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
  publication-title: Heat Tran. Eng.
– volume: 11
  start-page: 28221
  year: 2019
  end-page: 28227
  ident: bib130
  article-title: Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 68
  year: 2018
  end-page: 72
  ident: bib235
  article-title: Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique
  publication-title: Compos. Commun.
– volume: 11
  start-page: 27788
  year: 2019
  end-page: 27797
  ident: bib131
  article-title: Low thermal conductivity and optimized thermoelectric properties of p-Type Te-Sb
  publication-title: ACS Appl. Mater. Interfaces
– volume: 100
  start-page: 29
  year: 2016
  end-page: 36
  ident: bib271
  article-title: Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field
  publication-title: Int. J. Therm. Sci.
– volume: 66
  start-page: 493
  year: 2014
  end-page: 498
  ident: bib99
  article-title: Thermal conductivity enhancement with different fillers for epoxy resin adhesives
  publication-title: Appl. Therm. Eng.
– volume: 78
  start-page: 95
  year: 2015
  end-page: 101
  ident: bib159
  article-title: Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 49
  start-page: 1980
  year: 2011
  end-page: 1988
  ident: bib261
  article-title: The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets
  publication-title: Carbon
– volume: 810
  start-page: 151950
  year: 2019
  ident: bib201
  article-title: High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes
  publication-title: J. Alloys Compd.
– reference: T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang, Y. Guo, X. Yang, J. Kong, J. Gu, Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures, ACS Appl. Mater. Interfaces 12(1) 2020 1677-1686.
– volume: 6
  start-page: 1900275
  year: 2019
  ident: bib214
  article-title: Interfacial thermal contact conductance inside the graphene-Bi
  publication-title: Adv. Mater. Interfaces
– volume: 97
  start-page: 442
  year: 2014
  end-page: 450
  ident: bib17
  article-title: Effective thermal conductivity of soda-lime silicate glassmelts with different iron contents between 1100°C and 1500°C
  publication-title: J. Am. Ceram. Soc.
– volume: 4
  start-page: 22101
  year: 2014
  end-page: 22105
  ident: bib189
  article-title: Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites
  publication-title: RSC Adv.
– volume: 11
  start-page: 502
  year: 2012
  ident: bib218
  article-title: Effects of chemical bonding on heat transport across interfaces
  publication-title: Nat. Mater.
– volume: 165
  start-page: 259
  year: 2018
  end-page: 265
  ident: bib47
  article-title: Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology
  publication-title: Compos. Sci. Technol.
– volume: 101
  start-page: 237
  year: 2017
  end-page: 242
  ident: bib55
  article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 26
  start-page: 6093
  year: 2014
  end-page: 6099
  ident: bib219
  article-title: Molecule bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces
  publication-title: Adv. Mater.
– volume: 79
  start-page: 8
  year: 2015
  end-page: 13
  ident: bib236
  article-title: Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 163
  start-page: 363
  year: 2019
  end-page: 370
  ident: bib106
  article-title: Thermal conductivity enhancement of CNT/MoS
  publication-title: Compos. B Eng.
– volume: 11
  start-page: 28943
  year: 2019
  end-page: 28952
  ident: bib126
  article-title: 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite
  publication-title: ACS Appl. Mater. Interfaces
– volume: 192
  start-page: 72
  year: 2019
  end-page: 80
  ident: bib195
  article-title: Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 18
  start-page: 984
  year: 1977
  end-page: 1004
  ident: bib86
  article-title: Thermal conductivity of polymers
  publication-title: Polymer
– volume: 108
  start-page: 66
  year: 2015
  end-page: 71
  ident: bib144
  article-title: Thermal conductivity of monolayer hexagonal boron nitride nanoribbons
  publication-title: Comput. Mater. Sci.
– volume: 95
  start-page: 887
  year: 2019
  end-page: 910
  ident: bib224
  article-title: Thermally conductive adhesives from covalent-bonding of reduced graphene oxide to acrylic copolymer
  publication-title: J. Adhes.
– volume: 175
  start-page: 85
  year: 2019
  end-page: 91
  ident: bib5
  article-title: Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets
  publication-title: Compos. Sci. Technol.
– volume: 43
  start-page: 658
  year: 2012
  end-page: 664
  ident: bib148
  article-title: Thermal conductivity and dielectric properties of Al/PVDF composites
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 82
  start-page: 198
  year: 2016
  end-page: 205
  ident: bib262
  article-title: Electric field as a tuning key to process carbon nanotube suspensions with controlled conductivity
  publication-title: Polymer
– volume: 9
  start-page: 117
  year: 2019
  ident: bib184
  article-title: Review of micro-nanoscale surface coatings application for sustaining dropwise condensation
  publication-title: Coatings
– volume: 123
  start-page: 158
  year: 2017
  end-page: 167
  ident: bib203
  article-title: Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber
  publication-title: Carbon
– volume: 156
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib129
  article-title: Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning
  publication-title: Compos. Sci. Technol.
– volume: 7
  start-page: 9018
  year: 2019
  end-page: 9024
  ident: bib178
  article-title: Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications
  publication-title: J. Mater. Chem. C
– volume: 128
  start-page: 105670
  year: 2020
  ident: bib254
  article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework
  publication-title: Compos. Appl. Sci. Manuf.
– start-page: 1904704
  year: 2019
  ident: bib81
  article-title: Thermal transport in conductive polymer-based materials
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 2650
  year: 2009
  end-page: 2655
  ident: bib30
  article-title: Properties and heat-conduction mechanism of thermally conductive polymer composites
  publication-title: J. Chem. Ind. Eng.
– volume: 37
  start-page: 727
  year: 2006
  end-page: 734
  ident: bib101
  article-title: Enhanced thermal conductivity of polymer composites filled with hybrid filler
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 123
  start-page: 79
  year: 2019
  end-page: 85
  ident: bib127
  article-title: Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene composites
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 145
  start-page: 55
  year: 2017
  end-page: 61
  ident: bib258
  article-title: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing
  publication-title: Compos. Sci. Technol.
– volume: 119
  start-page: 299
  year: 2019
  end-page: 309
  ident: bib194
  article-title: Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 57
  start-page: 10967
  year: 2018
  end-page: 10976
  ident: bib116
  article-title: Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties via incorporation of low graphene content
  publication-title: Ind. Eng. Chem. Res.
– volume: 139
  start-page: 83
  year: 2017
  end-page: 89
  ident: bib32
  article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities
  publication-title: Compos. Sci. Technol.
– year: 2020
  ident: bib98
  article-title: Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance
  publication-title: Sustain. Mater. Technol.
– volume: 32
  start-page: 987
  year: 2013
  end-page: 994
  ident: bib88
  article-title: Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures
  publication-title: Polym. Test.
– volume: 442
  start-page: 170
  year: 2018
  end-page: 177
  ident: bib174
  article-title: Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 125
  year: 1986
  end-page: 140
  ident: bib41
  article-title: Thermally conductive polymer compositions
  publication-title: Polym. Compos.
– volume: 177
  start-page: 118
  year: 2019
  end-page: 126
  ident: bib7
  article-title: Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles
  publication-title: Compos. Sci. Technol.
– volume: 370
  start-page: 166
  year: 2019
  end-page: 175
  ident: bib151
  article-title: Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity
  publication-title: Chem. Eng. J.
– volume: 121
  start-page: 330
  year: 2019
  end-page: 340
  ident: bib96
  article-title: Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 29
  start-page: 1901383
  year: 2019
  ident: bib31
  article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 5990
  year: 2006
  end-page: 5996
  ident: bib222
  article-title: Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites
  publication-title: Polymer
– volume: 141
  start-page: 1049
  year: 2019
  end-page: 1055
  ident: bib163
  article-title: Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites
  publication-title: Int. J. Heat Mass Tran.
– volume: 5
  start-page: 251
  year: 2010
  ident: bib71
  article-title: Polyethylene nanofibres with very high thermal conductivities
  publication-title: Nat. Nanotechnol.
– volume: 53
  start-page: 1602
  year: 2012
  end-page: 1610
  ident: bib242
  article-title: The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion
  publication-title: Polymer
– volume: 9
  start-page: 437
  year: 2017
  ident: bib27
  article-title: Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications
  publication-title: Polymers
– year: 2010
  ident: bib21
  article-title: Heat Transfer
– volume: 5
  start-page: 1800548
  year: 2019
  ident: bib112
  article-title: Tailoring highly thermal conductive properties of Te/MoS
  publication-title: Adv. Electron. Mater.
– volume: 7
  start-page: 5701
  year: 2015
  end-page: 5708
  ident: bib241
  article-title: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 41
  year: 2016
  end-page: 85
  ident: bib60
  article-title: Thermal conductivity of polymer-based composites: fundamentals and applications
  publication-title: Prog. Polym. Sci.
– volume: 171
  start-page: 70
  year: 2019
  end-page: 77
  ident: bib212
  article-title: Synergistic effect of hydrogen bonding and pi-pi stacking in interface of CF/PEEK composites
  publication-title: Compos. B Eng.
– volume: 792
  start-page: 375
  year: 2019
  end-page: 388
  ident: bib180
  article-title: Development of a nanostructured Ce(III)-Pr(III) film for excellently corrosion resistance improvement of epoxy/polyamide coating on carbon steel
  publication-title: J. Alloys Compd.
– volume: 94
  start-page: 209
  year: 2017
  end-page: 216
  ident: bib237
  article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 63
  year: 2011
  ident: bib204
  article-title: Recent developments in multifunctional nanocomposites using carbon nanotubes
  publication-title: Appl. Mech. Rev.
– volume: 164
  start-page: 153
  year: 2018
  end-page: 159
  ident: bib187
  article-title: Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire
  publication-title: Compos. Sci. Technol.
– volume: 125
  year: 2019
  ident: bib202
  article-title: Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: a promising strategy for enhancing thermal conductivity of epoxy composites
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 40
  start-page: 389
  year: 2017
  end-page: 401
  ident: bib39
  article-title: Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock
  publication-title: J. Therm. Stresses
– volume: 66
  start-page: 356
  year: 2018
  end-page: 361
  ident: bib167
  article-title: Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite
  publication-title: J. Ind. Eng. Chem.
– volume: 89
  start-page: 8459
  year: 2017
  end-page: 8467
  ident: bib264
  article-title: Exploiting particle mutual interactions to enable challenging dielectrophoretic processes
  publication-title: Anal. Chem.
– volume: 54
  start-page: 5087
  year: 2013
  end-page: 5103
  ident: bib226
  article-title: A review on synthesis and properties of polymer functionalized graphene
  publication-title: Polymer
– volume: 113
  start-page: 1118
  year: 2017
  end-page: 1127
  ident: bib230
  article-title: Review of polymers for heat exchanger applications: factors concerning thermal conductivity
  publication-title: Appl. Therm. Eng.
– volume: 71
  start-page: 1906
  year: 1997
  end-page: 1908
  ident: bib260
  article-title: Optical anisotropy of dispersed carbon nanotubes induced by an electric field
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2018
  ident: bib158
  article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes
  publication-title: Front. Mater.
– volume: 10
  start-page: 1088
  year: 2018
  ident: bib165
  article-title: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity
  publication-title: Polymers
– volume: 30
  start-page: 1705544
  year: 2018
  ident: bib3
  article-title: Thermal conductivity of polymers and their nanocomposites
  publication-title: Adv. Mater.
– volume: 85
  start-page: 115
  year: 2016
  end-page: 125
  ident: bib154
  article-title: Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites
  publication-title: Eur. Polym. J.
– volume: 162
  start-page: 7
  year: 2018
  end-page: 13
  ident: bib246
  article-title: Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites
  publication-title: Compos. Sci. Technol.
– volume: 2
  start-page: 509
  year: 1971
  ident: bib77
  article-title: Thermal conductivity of cross-linked polymers
  publication-title: Polym. J.
– volume: 179
  start-page: 10
  year: 2019
  end-page: 40
  ident: bib90
  article-title: Carbon-based functional nanomaterials: preparation, properties and applications
  publication-title: Compos. Sci. Technol.
– volume: 7
  start-page: 23644
  year: 2015
  end-page: 23649
  ident: bib216
  article-title: Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 7035
  year: 2019
  end-page: 7044
  ident: bib108
  article-title: Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites
  publication-title: J. Mater. Chem. C
– volume: 378
  start-page: 1952
  year: 2014
  end-page: 1955
  ident: bib225
  article-title: Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms
  publication-title: Phys. Lett.
– volume: 149
  start-page: 152
  year: 2019
  end-page: 164
  ident: bib145
  article-title: Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites
  publication-title: Carbon
– volume: 111
  start-page: 83
  year: 2017
  end-page: 90
  ident: bib169
  article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent
  publication-title: Compos. B Eng.
– volume: 34
  start-page: 126
  year: 2019
  end-page: 133
  ident: bib65
  article-title: Chain rotation significantly reduces thermal conductivity of single-chain polymers
  publication-title: J. Mater. Res.
– volume: 130
  start-page: 295
  year: 2018
  end-page: 303
  ident: bib142
  article-title: Effect of defects on thermal conductivity of graphene/epoxy nanocomposites
  publication-title: Carbon
– volume: 181
  start-page: 107713
  year: 2019
  ident: bib91
  article-title: High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
  publication-title: Compos. Sci. Technol.
– volume: 148
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib49
  article-title: MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite
  publication-title: Compos. Sci. Technol.
– volume: 9
  start-page: 33
  year: 2018
  end-page: 41
  ident: bib259
  article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications
  publication-title: Compos. Commun.
– volume: 22
  start-page: 5175
  year: 2012
  end-page: 5184
  ident: bib133
  article-title: Phonon scattering and thermal conductivity in p-Type nanostructured PbTe-BaTe bulk thermoelectric materials
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 355
  year: 2017
  end-page: 363
  ident: bib266
  article-title: Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane
  publication-title: Mater. Des.
– volume: 89
  start-page: 2464
  year: 2003
  end-page: 2467
  ident: bib84
  article-title: Study of high thermal conductive epoxy resins containing controlled high-order structures
  publication-title: J. Appl. Polym. Sci.
– volume: 40
  start-page: 3189
  year: 2019
  end-page: 3198
  ident: bib50
  article-title: Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications
  publication-title: Polym. Compos.
– volume: 102
  start-page: 126
  year: 2017
  end-page: 136
  ident: bib179
  article-title: Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 11
  start-page: 25465
  year: 2019
  end-page: 25473
  ident: bib103
  article-title: Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 361
  start-page: 579
  year: 2018
  end-page: 581
  ident: bib1
  article-title: High thermal conductivity in cubic boron arsenide crystals
  publication-title: Science
– volume: 125
  start-page: 105530
  year: 2019
  ident: bib199
  article-title: One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial for properties of epoxy composites
  publication-title: Compos. Appl. Sci. Manuf.
– year: 2007
  ident: bib16
  article-title: Nano/microscale Heat Transfer
– volume: 111
  start-page: 7565
  year: 2007
  end-page: 7569
  ident: bib156
  article-title: Graphite nanoplatelet-epoxy composite thermal interface materials
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 1214
  year: 2013
  end-page: 1224
  ident: bib243
  article-title: In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion
  publication-title: J. Mater. Sci.
– volume: 124
  start-page: 105506
  year: 2019
  ident: bib10
  article-title: Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 11
  start-page: 3388
  year: 2019
  end-page: 3399
  ident: bib94
  article-title: Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 10543
  year: 2018
  end-page: 10553
  ident: bib68
  article-title: Effect of temperature, crystallinity and molecule chain orientation on the thermal conductivity of polymers: a case study of PLLA
  publication-title: J. Mater. Sci.
– volume: 5
  year: 2019
  ident: bib93
  article-title: High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion
  publication-title: Sci. Adv.
– volume: 146
  start-page: 224
  year: 2019
  end-page: 231
  ident: bib35
  article-title: Electrical and thermal conductivity improvement of carbon nanotube and silver composites
  publication-title: Carbon
– volume: 58
  start-page: 5824
  year: 2019
  end-page: 5831
  ident: bib2
  article-title: High thermal conductivity in boron arsenide: from prediction to reality
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 222
  year: 2018
  end-page: 233
  ident: bib37
  article-title: Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance
  publication-title: Carbon
– volume: 8
  start-page: 55
  year: 2019
  end-page: 61
  ident: bib228
  article-title: Thermal behavior of silica aerogel/PMMA composite reinforced by non-covalent interaction
  publication-title: Emerg. Mater. Res.
– volume: 114
  year: 2013
  ident: bib78
  article-title: Effect of crosslink formation on heat conduction in amorphous polymers
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 16899
  year: 2015
  end-page: 16908
  ident: bib75
  article-title: Thermal conductivity of electrospun polyethylene nanofibers
  publication-title: Nanoscale
– volume: 45
  start-page: 16569
  year: 2019
  end-page: 16576
  ident: bib125
  article-title: Modification of Si
  publication-title: Ceram. Int.
– volume: 141
  start-page: 506
  year: 2019
  end-page: 514
  ident: bib6
  article-title: Electromagnetic interference shielding MWCNT-Fe
  publication-title: Carbon
– start-page: 1903857
  year: 2019
  ident: bib164
  article-title: A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces
  publication-title: Adv. Funct. Mater.
– volume: 369
  start-page: 302
  year: 2019
  end-page: 332
  ident: bib182
  article-title: Synthesis of layered double hydroxides through continuous flow processes: a review
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 2774
  year: 2017
  end-page: 2779
  ident: bib265
  article-title: Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites
  publication-title: Ceram. Int.
– volume: 7
  start-page: 9228
  year: 2019
  end-page: 9236
  ident: bib181
  article-title: Innovative surface engineering of high-carbon steel through formation of ceramic surface and diffused subsurface hybrid layering
  publication-title: ACS Sustain. Chem. Eng.
– volume: 132
  start-page: 1
  year: 2018
  end-page: 22
  ident: bib23
  article-title: Thermal conductivity of polymers and polymer nanocomposites
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 124
  start-page: 132
  year: 2012
  end-page: 137
  ident: bib192
  article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites
  publication-title: J. Appl. Polym. Sci.
– year: 1974
  ident: bib19
  article-title: Thermal Conductivity of the Elements: a Comprehensive Review
– volume: 79
  start-page: 144305
  year: 2009
  ident: bib76
  article-title: Anomalous heat conduction in polyethylene chains: theory and molecule dynamics simulations
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 933
  year: 2008
  end-page: 961
  ident: bib209
  article-title: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites
  publication-title: Compos. B Eng.
– volume: 5
  start-page: 1119
  year: 2011
  end-page: 1139
  ident: bib18
  article-title: Viscosities, thermal conductivities and diffusion coefficient of CO
  publication-title: Int. J. Greenh. Gas Control
– volume: 117
  start-page: 11
  year: 2019
  end-page: 22
  ident: bib198
  article-title: Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 121
  start-page: 449
  year: 2019
  end-page: 456
  ident: bib200
  article-title: Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 8
  start-page: 264
  year: 2018
  ident: bib46
  article-title: Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/Graphene nanoplatelets with improved thermo-oxidative stability
  publication-title: Nanomaterials
– volume: 114
  start-page: 6825
  year: 2010
  end-page: 6829
  ident: bib197
  article-title: Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride
  publication-title: J. Phys. Chem. B
– volume: 61
  start-page: 12551
  year: 2000
  end-page: 12555
  ident: bib135
  article-title: Low thermal conductivity of the layered oxide (Na,Ca)Co
  publication-title: Phys. Rev. B
– volume: 54
  start-page: 10041
  year: 2019
  end-page: 10054
  ident: bib173
  article-title: Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin
  publication-title: J. Mater. Sci.
– volume: 28
  start-page: 1805365
  year: 2018
  ident: bib251
  article-title: Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion
  publication-title: Adv. Funct. Mater.
– volume: 119
  start-page: 1
  year: 1995
  end-page: 30
  ident: bib40
  article-title: Thermal-conductivity of heterophase polymer compositions
  publication-title: Adv. Polym. Sci.
– volume: 164
  start-page: 59
  year: 2018
  end-page: 64
  ident: bib8
  article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization
  publication-title: Compos. Sci. Technol.
– volume: 12
  year: 2017
  ident: bib28
  article-title: Percolation effect on thermal conductivity of filler-dispersed polymer composites
  publication-title: J. Therm. Sci. Technol.
– volume: 7
  start-page: 2725
  year: 2019
  end-page: 2733
  ident: bib109
  article-title: Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity
  publication-title: J. Mater. Chem. C
– volume: 35
  start-page: 36
  year: 2019
  end-page: 43
  ident: bib114
  article-title: Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites
  publication-title: J. Mater. Sci. Technol.
– volume: 18
  start-page: 1187
  year: 1980
  end-page: 1207
  ident: bib24
  article-title: Thermal-conductivity of oriented crystalline polymers
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
– volume: 348
  start-page: 693
  year: 2018
  end-page: 703
  ident: bib115
  article-title: Simultaneously facilitating dispersion and thermal reduction of graphene oxide to enhance thermal conductivity of poly(vinylidene fluoride)/graphene nanocomposites by water in continuous extrusion
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 3488
  year: 2018
  end-page: 3493
  ident: bib120
  article-title: Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites
  publication-title: Nano Lett.
– volume: 12
  start-page: 92
  year: 2018
  end-page: 130
  ident: bib52
  article-title: Thermal transport in polymeric materials and across composite interfaces
  publication-title: Appl. Mater. Today
– volume: 10
  start-page: 16812
  year: 2018
  end-page: 16821
  ident: bib11
  article-title: Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  start-page: 47054
  year: 2019
  ident: bib110
  article-title: 3D interconnected high aspect ratio tellurium nanowires in epoxy nanocomposites: serving as thermal conductive expressway
  publication-title: J. Appl. Polym. Sci.
– volume: 17
  start-page: 1577
  year: 2008
  end-page: 1581
  ident: bib175
  article-title: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes
  publication-title: Diam. Relat. Mater.
– volume: 110
  year: 2017
  ident: bib64
  article-title: Effects of polymer topology and morphology on thermal transport: a molecule dynamics study of bottlebrush polymers
  publication-title: Appl. Phys. Lett.
– volume: 121
  start-page: 4600
  year: 2017
  end-page: 4609
  ident: bib220
  article-title: Thermal conductance in cross-linked polymers: effects of non-bonding interactions
  publication-title: J. Phys. Chem. B
– volume: 175
  start-page: 107070
  year: 2019
  ident: bib234
  article-title: Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology
  publication-title: Compos. B Eng.
– volume: 10
  start-page: 1771
  year: 2019
  ident: bib70
  article-title: Nanostructured polymer films with metal-like thermal conductivity
  publication-title: Nat. Commun.
– volume: 7
  start-page: 7531
  year: 2017
  end-page: 7539
  ident: bib185
  article-title: A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates
  publication-title: RSC Adv.
– volume: 115
  start-page: 52
  year: 2017
  end-page: 59
  ident: bib74
  article-title: Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)
  publication-title: Polymer
– volume: 8
  start-page: 19732
  year: 2016
  end-page: 19738
  ident: bib248
  article-title: Facile method to fabricate highly thermally conductive graphite/PP composite with network structures
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 1424
  year: 2011
  end-page: 1438
  ident: bib139
  article-title: High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix
  publication-title: J. Mater. Sci.
– volume: 95
  start-page: 267
  year: 2017
  end-page: 273
  ident: bib54
  article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 28
  start-page: 7220
  year: 2016
  end-page: 7227
  ident: bib33
  article-title: Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits
  publication-title: Adv. Mater.
– volume: 124
  year: 2019
  ident: bib177
  article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 27
  year: 2017
  ident: bib4
  article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2225
  year: 2019
  ident: bib213
  article-title: Evaluation of interfacial fracture toughness and interfacial shear strength of typha Spp. fiber/polymer composite by double shear test method
  publication-title: Materials
– volume: 11
  start-page: 148
  year: 2019
  ident: bib113
  article-title: Surface modification of aluminum nitride to fabricate thermally conductive poly(butylene succinate) nanocomposite
  publication-title: Polymers
– volume: 31
  start-page: 1900199
  year: 2019
  ident: bib38
  article-title: Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3121
  year: 1975
  end-page: 3130
  ident: bib87
  article-title: The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate
  publication-title: J. Phys. C Solid State Phys.
– volume: 48
  start-page: 592
  year: 2010
  end-page: 603
  ident: bib176
  article-title: Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites
  publication-title: Carbon
– volume: 53
  start-page: 4489
  year: 2012
  end-page: 4492
  ident: bib85
  article-title: Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure
  publication-title: Polymer
– volume: 120
  start-page: 49
  year: 2019
  end-page: 55
  ident: bib104
  article-title: Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 57
  start-page: 101
  year: 2017
  end-page: 106
  ident: bib92
  article-title: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites
  publication-title: Polym. Test.
– volume: 160
  start-page: 245
  year: 2018
  end-page: 254
  ident: bib168
  article-title: Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment
  publication-title: Compos. Sci. Technol.
– volume: 6
  start-page: 3004
  year: 2018
  end-page: 3015
  ident: bib121
  article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology
  publication-title: J. Mater. Chem. C
– volume: 54
  start-page: 13135
  year: 2019
  end-page: 13146
  ident: bib9
  article-title: Effect of coatings on thermal conductivity and tribological properties of aluminum foam/polyoxymethylene interpenetrating composites
  publication-title: J. Mater. Sci.
– volume: 11
  start-page: 203
  year: 2012
  end-page: 207
  ident: bib20
  article-title: Thermal conductivity of isotopically modified graphene
  publication-title: Nat. Mater.
– volume: 160
  start-page: 199
  year: 2018
  end-page: 207
  ident: bib240
  article-title: Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm
  publication-title: Compos. Sci. Technol.
– volume: 175
  start-page: 135
  year: 2019
  end-page: 142
  ident: bib29
  article-title: Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites
  publication-title: Compos. Sci. Technol.
– volume: 17
  start-page: 1587
  year: 2017
  end-page: 1594
  ident: bib57
  article-title: Nonperturbative quantum nature of the dislocation phonon interaction
  publication-title: Nano Lett.
– volume: 6
  start-page: 13108
  year: 2018
  end-page: 13113
  ident: bib275
  article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity
  publication-title: J. Mater. Chem. C
– volume: 169
  start-page: 86
  year: 2019
  end-page: 94
  ident: bib36
  article-title: Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity
  publication-title: Compos. Sci. Technol.
– volume: 51
  start-page: 1431
  year: 2008
  end-page: 1438
  ident: bib206
  article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
  publication-title: Int. J. Heat Mass Tran.
– volume: 8
  start-page: 972
  year: 2016
  end-page: 979
  ident: bib190
  article-title: Fabrication and properties of thermally conductive epoxy resin nanocomposites filled with f GNPs/PNBRs hybrid fillers
  publication-title: Sci. Adv. Mater.
– volume: 53
  start-page: 2199
  year: 2017
  end-page: 2209
  ident: bib211
  article-title: Review of interfacial layer's effect on thermal conductivity in nanofluid
  publication-title: Heat Mass Tran.
– volume: 11
  start-page: 3656
  year: 2019
  end-page: 3664
  ident: bib14
  article-title: Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance
  publication-title: Nanoscale
– volume: 18
  start-page: 769
  year: 1977
  end-page: 776
  ident: bib25
  article-title: Thermal-conductivity of semicrystalline polymers-model
  publication-title: Polymer
– volume: 112
  start-page: 18
  year: 2018
  end-page: 24
  ident: bib276
  article-title: Anisotropic thermally conductive composite with wood-derived carbon scaffolds
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 55
  start-page: 2329
  year: 2019
  end-page: 2339
  ident: bib193
  article-title: Experimental investigation of thermal conductivity behavior of MWCNTS-Al
  publication-title: Heat Mass Tran.
– volume: 2
  start-page: 731
  year: 2003
  end-page: 734
  ident: bib215
  article-title: Interfacial heat flow in carbon nanotube suspensions
  publication-title: Nat. Mater.
– volume: 140
  start-page: 24
  year: 2018
  end-page: 29
  ident: bib270
  article-title: Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment
  publication-title: Carbon
– volume: 164
  start-page: 732
  year: 2019
  end-page: 739
  ident: bib233
  article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites
  publication-title: Compos. B Eng.
– volume: 124
  start-page: 105484
  year: 2019
  ident: bib48
  article-title: Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 116
  start-page: 98
  year: 2019
  end-page: 105
  ident: bib170
  article-title: Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 40
  start-page: 3164
  year: 2007
  end-page: 3171
  ident: bib207
  article-title: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
  publication-title: J. Phys. D Appl. Phys.
– volume: 5
  start-page: 4374
  year: 2013
  end-page: 4382
  ident: bib205
  article-title: Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 149
  start-page: 173
  year: 2019
  end-page: 180
  ident: bib140
  article-title: Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity
  publication-title: Carbon
– volume: 55
  start-page: 772
  year: 2013
  end-page: 777
  ident: bib58
  article-title: Calculation scheme for the evaluation of polymer thermal conductivity
  publication-title: Polym. Sci.
– volume: 166
  start-page: 509
  year: 2019
  end-page: 515
  ident: bib43
  article-title: Engineering molecule interaction in polymeric hybrids: effect of thermal linker and polymer chain structure on thermal conduction
  publication-title: Compos. B Eng.
– volume: 109
  start-page: 575
  year: 2016
  end-page: 597
  ident: bib231
  article-title: Toward highly thermally conductive all-carbon composites: structure control
  publication-title: Carbon
– volume: 92
  year: 2008
  ident: bib208
  article-title: Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 207
  year: 2018
  end-page: 230
  ident: bib42
  article-title: A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods
  publication-title: Adv. Compos. Hybrid. Mater.
– volume: 23
  start-page: 1025
  year: 2012
  end-page: 1028
  ident: bib188
  article-title: Thermal conductivity epoxy resin composites filled with boron nitride
  publication-title: Polym. Adv. Technol.
– volume: 487
  start-page: 379
  year: 2019
  end-page: 388
  ident: bib102
  article-title: Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
  publication-title: Appl. Surf. Sci.
– volume: 174
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib107
  article-title: Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe
  publication-title: Compos. Sci. Technol.
– volume: 11
  start-page: 4353
  year: 2019
  end-page: 4363
  ident: bib257
  article-title: Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 5107
  year: 2011
  end-page: 5116
  ident: bib227
  article-title: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites
  publication-title: Carbon
– volume: 5
  start-page: 87981
  year: 2015
  end-page: 87986
  ident: bib79
  article-title: Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding
  publication-title: RSC Adv.
– volume: 112
  start-page: 216
  year: 2018
  end-page: 238
  ident: bib95
  article-title: Microstructure engineering of graphene towards highly thermal conductive composites
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 28
  start-page: 1805053
  year: 2018
  ident: bib255
  article-title: Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge
  publication-title: Adv. Funct. Mater.
– volume: 109
  start-page: 2145
  year: 2008
  end-page: 2155
  ident: bib83
  article-title: Effects of carbon fillers on the thermal conductivity of highly filled liquid-crystal polymer based resins
  publication-title: J. Appl. Polym. Sci.
– volume: 187
  start-page: 107944
  year: 2020
  ident: bib82
  article-title: Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers
  publication-title: Compos. Sci. Technol.
– year: 2014
  ident: bib141
  article-title: Materials Science and Engineering of Carbon: Fundamentals
– volume: 180
  start-page: 121760
  year: 2019
  ident: bib44
  article-title: Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecule weight polyethylene bulk material
  publication-title: Polymer
– volume: 11
  start-page: 1156
  year: 2019
  ident: bib146
  article-title: Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface
  publication-title: Polymers
– volume: 113
  start-page: 184304
  year: 2013
  ident: bib62
  article-title: Thermal conductivity dependence on chain length in amorphous polymers
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 7637
  year: 2017
  end-page: 7647
  ident: bib249
  article-title: Design and preparation of a unique segregated double network with excellent thermal conductive property
  publication-title: ACS Appl. Mater. Interfaces
– volume: 102
  start-page: 7533
  year: 2019
  end-page: 7542
  ident: bib143
  article-title: Impact of irradiation induced dislocation loops on thermal conductivity in ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 92
  start-page: 15
  year: 2016
  end-page: 22
  ident: bib160
  article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity
  publication-title: Int. J. Heat Mass Tran.
– volume: 26
  start-page: 778
  year: 2005
  end-page: 790
  ident: bib150
  article-title: Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions
  publication-title: Polym. Compos.
– volume: 92
  start-page: 27
  year: 2017
  end-page: 32
  ident: bib56
  article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 61
  start-page: 1
  year: 2016
  end-page: 28
  ident: bib15
  article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory
  publication-title: Prog. Polym. Sci.
– volume: 16
  start-page: 3585
  year: 2016
  end-page: 3593
  ident: bib157
  article-title: Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites
  publication-title: Nano Lett.
– volume: 144
  start-page: 70
  year: 2017
  end-page: 78
  ident: bib153
  article-title: Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites
  publication-title: Compos. Sci. Technol.
– volume: 71
  start-page: 245
  year: 2014
  end-page: 250
  ident: bib223
  article-title: Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving
  publication-title: Int. J. Heat Mass Tran.
– volume: 83
  year: 2011
  ident: bib217
  article-title: Interfacial thermal transport in atomic junctions
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 24
  year: 2013
  end-page: 28
  ident: bib244
  article-title: Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion
  publication-title: Compos. Sci. Technol.
– volume: 140
  year: 2018
  ident: bib63
  article-title: Decreased thermal conductivity of polyethylene chain influenced by short chain branching
  publication-title: J. Heat Tran.
– volume: 48
  start-page: 3979
  year: 2010
  end-page: 3986
  ident: bib166
  article-title: Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes
  publication-title: Carbon
– volume: 55
  start-page: 5805
  year: 2019
  end-page: 5808
  ident: bib132
  article-title: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation
  publication-title: Chem. Commun.
– volume: 180
  start-page: 107569
  year: 2020
  ident: bib273
  article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management
  publication-title: Compos. B Eng.
– volume: 6
  start-page: 35809
  year: 2016
  end-page: 35814
  ident: bib161
  article-title: Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride
  publication-title: RSC Adv.
– volume: 131
  start-page: 149
  year: 2018
  end-page: 159
  ident: bib12
  article-title: Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes
  publication-title: Carbon
– volume: 129
  start-page: 2777
  year: 2007
  end-page: 2782
  ident: bib73
  article-title: Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 9025
  year: 2019
  end-page: 9033
  ident: bib232
  article-title: Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 36334
  year: 2015
  end-page: 36339
  ident: bib100
  article-title: High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites
  publication-title: RSC Adv.
– volume: 40
  start-page: 2417
  year: 2007
  end-page: 2421
  ident: bib45
  article-title: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity
  publication-title: Macromolecules
– volume: 20
  start-page: 4740
  year: 2008
  end-page: 4744
  ident: bib137
  article-title: Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites
  publication-title: Adv. Mater.
– volume: 29
  start-page: 337
  year: 2018
  end-page: 346
  ident: bib51
  article-title: Surface modification of boron nitride via poly(dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity
  publication-title: Polym. Adv. Technol.
– volume: 6
  start-page: 57357
  year: 2016
  end-page: 57362
  ident: bib171
  article-title: Fabrication of modified bismaleimide resins by hyperbranched phenyl polysiloxane and improvement of their thermal conductivities
  publication-title: RSC Adv.
– volume: 120
  start-page: 140
  year: 2019
  end-page: 146
  ident: bib256
  article-title: Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 13
  start-page: 207
  year: 2018
  end-page: 216
  ident: bib80
  article-title: Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers
  publication-title: Appl. Mater. Today
– volume: 13
  start-page: 337
  year: 2019
  end-page: 345
  ident: bib111
  article-title: Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability
  publication-title: ACS Nano
– volume: 136
  start-page: 47951
  year: 2019
  ident: bib122
  article-title: Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites
  publication-title: J. Appl. Polym. Sci.
– volume: 45
  start-page: 1117
  year: 2013
  end-page: 1125
  ident: bib155
  article-title: Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods
  publication-title: Compos. B Eng.
– volume: 150
  start-page: 217
  year: 2017
  end-page: 226
  ident: bib245
  article-title: Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC
  publication-title: Compos. Sci. Technol.
– volume: 2
  start-page: 15058
  year: 2014
  end-page: 15069
  ident: bib221
  article-title: Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide
  publication-title: J. Mater. Chem.
– volume: 170
  start-page: 135
  year: 2019
  end-page: 140
  ident: bib250
  article-title: Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement
  publication-title: Compos. Sci. Technol.
– volume: 135
  start-page: 46454
  year: 2018
  ident: bib117
  article-title: Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties
  publication-title: J. Appl. Polym. Sci.
– volume: 11
  start-page: 17915
  year: 2019
  end-page: 17924
  ident: bib269
  article-title: Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 176
  start-page: 110
  year: 2019
  end-page: 117
  ident: bib26
  article-title: Theoretical analysis and development of thermally conductive polymer composites
  publication-title: Polymer
– volume: 50
  start-page: 2083
  year: 2012
  end-page: 2090
  ident: bib152
  article-title: Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization
  publication-title: Carbon
– volume: 135
  start-page: 46397
  year: 2018
  ident: bib118
  article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid
  publication-title: J. Appl. Polym. Sci.
– year: 2020
  ident: bib89
  article-title: Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and BN fillers
  publication-title: Chin. J. Polym. Sci.
– volume: 53
  start-page: 471
  year: 2012
  end-page: 480
  ident: bib229
  article-title: Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties
  publication-title: Polymer
– volume: 177
  start-page: 107835
  year: 2019
  ident: bib162
  article-title: Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH
  publication-title: Mater. Des.
– volume: 149
  start-page: 281
  year: 2019
  end-page: 289
  ident: bib196
  article-title: High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite
  publication-title: Carbon
– volume: 118
  start-page: 2754
  year: 2010
  end-page: 2764
  ident: bib149
  article-title: Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles
  publication-title: J. Appl. Polym. Sci.
– volume: 124
  start-page: 105511
  year: 2019
  ident: bib123
  article-title: Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 180
  start-page: 86
  year: 2019
  end-page: 93
  ident: bib186
  article-title: Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al
  publication-title: Compos. Sci. Technol.
– volume: 14
  start-page: 295
  year: 2014
  ident: bib22
  article-title: High thermal conductivity in amorphous polymer blends by engineered interchain interactions
  publication-title: Nat. Mater.
– volume: 164
  start-page: 710
  year: 2019
  end-page: 719
  ident: bib105
  article-title: Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties
  publication-title: Compos. B Eng.
– volume: 36
  start-page: 914
  year: 2011
  end-page: 944
  ident: bib53
  article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review
  publication-title: Prog. Polym. Sci.
– volume: 120
  start-page: 803
  year: 2016
  end-page: 812
  ident: bib67
  article-title: Role of chain morphology and stiffness in thermal conductivity of amorphous polymers
  publication-title: J. Phys. Chem. B
– volume: 114
  start-page: 727
  year: 2017
  end-page: 734
  ident: bib128
  article-title: A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers
  publication-title: Int. J. Heat Mass Tran.
– volume: 135
  start-page: 46397
  year: 2018
  ident: bib136
  article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid
  publication-title: J. Appl. Polym. Sci.
– volume: 74
  start-page: 4561
  year: 2017
  end-page: 4575
  ident: bib59
  article-title: High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films
  publication-title: Polym. Bull.
– volume: 30
  start-page: 2090
  year: 1984
  end-page: 2097
  ident: bib61
  article-title: Experimental determination of the thermal conductivity of a conducting polymer: pure and heavily doped polyacetylene
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 84
  year: 2017
  end-page: 93
  ident: bib191
  article-title: Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes
  publication-title: Carbon
– volume: 81
  start-page: 6692
  year: 1997
  end-page: 6699
  ident: bib210
  article-title: Effective thermal conductivity of particulate composites with interfacial thermal resistance
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 1017
  year: 2015
  end-page: 1024
  ident: bib69
  article-title: Effects of carbon fillers on crystallization properties and thermal conductivity of poly(phenylene sulfide)
  publication-title: Polym. Plast. Technol. Eng.
– volume: 162
  start-page: 180
  year: 2018
  end-page: 187
  ident: bib119
  article-title: BaTiO
  publication-title: Compos. Sci. Technol.
– volume: 16
  start-page: 135
  year: 2012
  end-page: 142
  ident: bib263
  article-title: Dielectrophoresis force of poly(p-phenylene)/acrylic elastomer under ac electric field
  publication-title: Mater. Res. Innovat.
– volume: 185
  start-page: 107784
  year: 2020
  ident: bib252
  article-title: High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers
  publication-title: Compos. B Eng.
– volume: 2
  start-page: 2467
  year: 2009
  end-page: 2495
  ident: bib138
  article-title: Thermal conductivity of diamond composites
  publication-title: Materials
– volume: 141
  start-page: 497
  year: 2019
  end-page: 505
  ident: bib97
  article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity
  publication-title: Carbon
– volume: 132
  start-page: 235
  year: 2019
  end-page: 256
  ident: bib183
  article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review
  publication-title: Prog. Org. Coating
– volume: 174
  start-page: 68
  year: 2019
  end-page: 75
  ident: bib272
  article-title: Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend
  publication-title: Compos. Sci. Technol.
– volume: 129
  start-page: 205
  year: 2016
  end-page: 213
  ident: bib268
  article-title: Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets
  publication-title: Compos. Sci. Technol.
– volume: 171
  start-page: 127
  year: 2019
  end-page: 134
  ident: bib277
  article-title: Highly anisotropic functional conductors fabricated by multi-melt multi-injection molding ((MIM)-I-3): a synergetic role of multiple melt flows and confined interface
  publication-title: Compos. Sci. Technol.
– volume: 4
  year: 2018
  ident: bib13
  article-title: Molecular engineered conjugated polymer with high thermal conductivity
  publication-title: Sci. Adv.
– volume: 29
  start-page: 1900412
  year: 2019
  ident: bib253
  article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network
  publication-title: Adv. Funct. Mater.
– volume: 107
  start-page: 570
  year: 2018
  end-page: 578
  ident: bib238
  article-title: Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 28
  start-page: 3709
  year: 1993
  end-page: 3714
  ident: bib134
  article-title: Phonon-scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics
  publication-title: J. Mater. Sci.
– volume: 116
  start-page: 13629
  year: 2012
  end-page: 13639
  ident: bib172
  article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites
  publication-title: J. Phys. Chem. C
– volume: 107
  year: 2015
  ident: bib66
  article-title: Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 384
  year: 2014
  end-page: 390
  ident: bib72
  article-title: High thermal conductivity of chain-oriented amorphous polythiophene
  publication-title: Nat. Nanotechnol.
– volume: 151
  start-page: 115
  year: 2017
  end-page: 123
  ident: bib274
  article-title: Moisture driven thermal conduction in polymer and polymer blends
  publication-title: Compos. Sci. Technol.
– volume: 124
  start-page: 105447
  year: 2019
  ident: bib124
  article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 9
  start-page: 29071
  year: 2017
  end-page: 29081
  ident: bib247
  article-title: Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 36
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib114
  article-title: Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.09.016
– volume: 53
  start-page: 2199
  issue: 6
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib211
  article-title: Review of interfacial layer's effect on thermal conductivity in nanofluid
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-016-1963-6
– volume: 114
  start-page: 6825
  issue: 20
  year: 2010
  ident: 10.1016/j.compscitech.2020.108134_bib197
  article-title: Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp101857w
– volume: 150
  start-page: 217
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib245
  article-title: Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.07.019
– volume: 29
  start-page: 337
  issue: 1
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib51
  article-title: Surface modification of boron nitride via poly(dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4119
– volume: 810
  start-page: 151950
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib201
  article-title: High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.151950
– volume: 112
  start-page: 18
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib276
  article-title: Anisotropic thermally conductive composite with wood-derived carbon scaffolds
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.05.023
– volume: 10
  start-page: 1771
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib70
  article-title: Nanostructured polymer films with metal-like thermal conductivity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09697-7
– volume: 10
  start-page: 16812
  issue: 19
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib11
  article-title: Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03522
– volume: 179
  start-page: 10
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib90
  article-title: Carbon-based functional nanomaterials: preparation, properties and applications
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.04.028
– volume: 110
  issue: 9
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib64
  article-title: Effects of polymer topology and morphology on thermal transport: a molecule dynamics study of bottlebrush polymers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4976946
– volume: 130
  start-page: 295
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib142
  article-title: Effect of defects on thermal conductivity of graphene/epoxy nanocomposites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.110
– volume: 125
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib202
  article-title: Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: a promising strategy for enhancing thermal conductivity of epoxy composites
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.105517
– volume: 124
  start-page: 105511
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib123
  article-title: Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.105511
– volume: 165
  start-page: 259
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib47
  article-title: Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.07.007
– year: 2020
  ident: 10.1016/j.compscitech.2020.108134_bib98
  article-title: Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance
  publication-title: Sustain. Mater. Technol.
– volume: 116
  start-page: 84
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib191
  article-title: Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.103
– volume: 6
  start-page: 35809
  issue: 42
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib161
  article-title: Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04513H
– volume: 49
  start-page: 1980
  issue: 6
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib261
  article-title: The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.01.023
– volume: 187
  start-page: 107944
  year: 2020
  ident: 10.1016/j.compscitech.2020.108134_bib82
  article-title: Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107944
– volume: 185
  start-page: 107784
  year: 2020
  ident: 10.1016/j.compscitech.2020.108134_bib252
  article-title: High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.107784
– volume: 7
  start-page: 9228
  issue: 10
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib181
  article-title: Innovative surface engineering of high-carbon steel through formation of ceramic surface and diffused subsurface hybrid layering
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00051
– volume: 57
  start-page: 10967
  issue: 32
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib116
  article-title: Fabrication of polyamide 6 nanocomposite with improved thermal conductivity and mechanical properties via incorporation of low graphene content
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01070
– volume: 112
  start-page: 216
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib95
  article-title: Microstructure engineering of graphene towards highly thermal conductive composites
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2018.06.010
– volume: 107
  issue: 7
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib66
  article-title: Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4929426
– volume: 174
  start-page: 68
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib272
  article-title: Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.02.017
– volume: 162
  start-page: 7
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib246
  article-title: Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.03.016
– volume: 140
  issue: 3
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib63
  article-title: Decreased thermal conductivity of polyethylene chain influenced by short chain branching
  publication-title: J. Heat Tran.
  doi: 10.1115/1.4038003
– volume: 5
  start-page: 251
  year: 2010
  ident: 10.1016/j.compscitech.2020.108134_bib71
  article-title: Polyethylene nanofibres with very high thermal conductivities
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.27
– volume: 89
  start-page: 24
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib244
  article-title: Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.09.017
– volume: 54
  start-page: 5087
  issue: 19
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib226
  article-title: A review on synthesis and properties of polymer functionalized graphene
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.06.027
– volume: 28
  start-page: 3709
  issue: 14
  year: 1993
  ident: 10.1016/j.compscitech.2020.108134_bib134
  article-title: Phonon-scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00353168
– volume: 97
  start-page: 442
  issue: 2
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib17
  article-title: Effective thermal conductivity of soda-lime silicate glassmelts with different iron contents between 1100°C and 1500°C
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12768
– volume: 32
  start-page: 987
  issue: 5
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib88
  article-title: Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2013.05.007
– volume: 37
  start-page: 727
  issue: 5
  year: 2006
  ident: 10.1016/j.compscitech.2020.108134_bib101
  article-title: Enhanced thermal conductivity of polymer composites filled with hybrid filler
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2005.07.006
– volume: 115
  start-page: 52
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib74
  article-title: Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.02.024
– volume: 66
  start-page: 493
  issue: 1
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib99
  article-title: Thermal conductivity enhancement with different fillers for epoxy resin adhesives
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.02.044
– volume: 74
  start-page: 4561
  issue: 11
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib59
  article-title: High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-017-1974-6
– start-page: 1904704
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib81
  article-title: Thermal transport in conductive polymer-based materials
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 769
  issue: 8
  year: 1977
  ident: 10.1016/j.compscitech.2020.108134_bib25
  article-title: Thermal-conductivity of semicrystalline polymers-model
  publication-title: Polymer
  doi: 10.1016/0032-3861(77)90179-3
– volume: 139
  start-page: 83
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib32
  article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.12.015
– ident: 10.1016/j.compscitech.2020.108134_bib239
  doi: 10.1021/acsami.9b19844
– volume: 39
  start-page: 933
  issue: 6
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib209
  article-title: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2008.01.002
– volume: 129
  start-page: 2777
  issue: 10
  year: 2007
  ident: 10.1016/j.compscitech.2020.108134_bib73
  article-title: Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065043f
– volume: 109
  start-page: 2145
  issue: 4
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib83
  article-title: Effects of carbon fillers on the thermal conductivity of highly filled liquid-crystal polymer based resins
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.27934
– volume: 11
  start-page: 3388
  issue: 3
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib94
  article-title: Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16209
– volume: 181
  start-page: 107713
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib91
  article-title: High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107713
– volume: 94
  start-page: 209
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib237
  article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2016.12.014
– volume: 22
  start-page: 5175
  issue: 24
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib133
  article-title: Phonon scattering and thermal conductivity in p-Type nanostructured PbTe-BaTe bulk thermoelectric materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201221
– volume: 26
  start-page: 6093
  issue: 35
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib219
  article-title: Molecule bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400954
– volume: 361
  start-page: 579
  issue: 6402
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib1
  article-title: High thermal conductivity in cubic boron arsenide crystals
  publication-title: Science
  doi: 10.1126/science.aat8982
– volume: 7
  start-page: 23644
  issue: 42
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib216
  article-title: Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07188
– volume: 53
  start-page: 10543
  issue: 14
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib68
  article-title: Effect of temperature, crystallinity and molecule chain orientation on the thermal conductivity of polymers: a case study of PLLA
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2306-4
– volume: 164
  start-page: 153
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib187
  article-title: Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.05.046
– volume: 348
  start-page: 693
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib115
  article-title: Simultaneously facilitating dispersion and thermal reduction of graphene oxide to enhance thermal conductivity of poly(vinylidene fluoride)/graphene nanocomposites by water in continuous extrusion
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.199
– volume: 166
  start-page: 509
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib43
  article-title: Engineering molecule interaction in polymeric hybrids: effect of thermal linker and polymer chain structure on thermal conduction
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.02.029
– volume: 10
  start-page: 1088
  issue: 10
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib165
  article-title: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity
  publication-title: Polymers
  doi: 10.3390/polym10101088
– volume: 6
  start-page: 57357
  issue: 62
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib171
  article-title: Fabrication of modified bismaleimide resins by hyperbranched phenyl polysiloxane and improvement of their thermal conductivities
  publication-title: RSC Adv.
  doi: 10.1039/C6RA10397A
– volume: 5
  issue: 6
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib93
  article-title: High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav0129
– volume: 141
  start-page: 497
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib97
  article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.073
– volume: 7
  start-page: 16899
  issue: 40
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib75
  article-title: Thermal conductivity of electrospun polyethylene nanofibers
  publication-title: Nanoscale
  doi: 10.1039/C5NR04995D
– volume: 79
  start-page: 144305
  issue: 14
  year: 2009
  ident: 10.1016/j.compscitech.2020.108134_bib76
  article-title: Anomalous heat conduction in polyethylene chains: theory and molecule dynamics simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.144305
– volume: 53
  start-page: 1602
  issue: 7
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib242
  article-title: The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.02.003
– volume: 95
  start-page: 267
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib54
  article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2017.01.019
– volume: 12
  start-page: 92
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib52
  article-title: Thermal transport in polymeric materials and across composite interfaces
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.04.004
– volume: 109
  start-page: 575
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib231
  article-title: Toward highly thermally conductive all-carbon composites: structure control
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.08.059
– volume: 135
  start-page: 46397
  issue: 26
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib118
  article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46397
– volume: 27
  issue: 5
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib4
  article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604754
– volume: 55
  start-page: 5805
  issue: 41
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib132
  article-title: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02889G
– volume: 135
  start-page: 46454
  issue: 27
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib117
  article-title: Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46454
– volume: 89
  start-page: 8459
  issue: 16
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib264
  article-title: Exploiting particle mutual interactions to enable challenging dielectrophoretic processes
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02008
– volume: 174
  start-page: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib107
  article-title: Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.02.005
– volume: 171
  start-page: 127
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib277
  article-title: Highly anisotropic functional conductors fabricated by multi-melt multi-injection molding ((MIM)-I-3): a synergetic role of multiple melt flows and confined interface
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.11.032
– volume: 175
  start-page: 107070
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib234
  article-title: Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107070
– volume: 18
  start-page: 984
  issue: 10
  year: 1977
  ident: 10.1016/j.compscitech.2020.108134_bib86
  article-title: Thermal conductivity of polymers
  publication-title: Polymer
  doi: 10.1016/0032-3861(77)90002-7
– volume: 53
  start-page: 471
  issue: 2
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib229
  article-title: Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.12.040
– volume: 487
  start-page: 379
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib102
  article-title: Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.070
– volume: 102
  start-page: 7533
  issue: 12
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib143
  article-title: Impact of irradiation induced dislocation loops on thermal conductivity in ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16616
– volume: 123
  start-page: 158
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib203
  article-title: Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.057
– volume: 149
  start-page: 281
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib196
  article-title: High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.043
– volume: 6
  start-page: 1900275
  issue: 11
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib214
  article-title: Interfacial thermal contact conductance inside the graphene-Bi2Te3 heterostructure
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900275
– volume: 148
  start-page: 1
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib49
  article-title: MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.05.008
– volume: 102
  start-page: 126
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib179
  article-title: Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2017.07.030
– volume: 192
  start-page: 72
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib195
  article-title: Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.12.014
– volume: 66
  start-page: 356
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib167
  article-title: Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.06.001
– volume: 14
  start-page: 295
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib22
  article-title: High thermal conductivity in amorphous polymer blends by engineered interchain interactions
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4141
– volume: 55
  start-page: 2329
  issue: 8
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib193
  article-title: Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/ethylene glycol hybrid Nanofluid: providing new thermal conductivity correlation
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-019-02572-7
– volume: 175
  start-page: 135
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib29
  article-title: Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.03.017
– volume: 114
  start-page: 355
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib266
  article-title: Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.11.010
– volume: 46
  start-page: 1424
  issue: 5
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib139
  article-title: High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-4938-x
– volume: 124
  start-page: 105506
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib10
  article-title: Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.105506
– volume: 54
  start-page: 9025
  issue: 12
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib232
  article-title: Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03539-z
– volume: 2
  start-page: 509
  issue: 4
  year: 1971
  ident: 10.1016/j.compscitech.2020.108134_bib77
  article-title: Thermal conductivity of cross-linked polymers
  publication-title: Polym. J.
  doi: 10.1295/polymj.2.509
– volume: 111
  start-page: 83
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib169
  article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2016.11.050
– volume: 8
  start-page: 972
  issue: 5
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib190
  article-title: Fabrication and properties of thermally conductive epoxy resin nanocomposites filled with f GNPs/PNBRs hybrid fillers
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2016.2652
– volume: 81
  start-page: 6692
  issue: 10
  year: 1997
  ident: 10.1016/j.compscitech.2020.108134_bib210
  article-title: Effective thermal conductivity of particulate composites with interfacial thermal resistance
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365209
– volume: 78
  start-page: 95
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib159
  article-title: Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2015.08.004
– volume: 121
  start-page: 4600
  issue: 17
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib220
  article-title: Thermal conductance in cross-linked polymers: effects of non-bonding interactions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b01377
– volume: 45
  start-page: 16569
  issue: 13
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib125
  article-title: Modification of Si3N4 ceramic powders and fabrication of Si3N4/PTFE composite substrate with high thermal conductivity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.194
– volume: 36
  start-page: 914
  issue: 7
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib53
  article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2010.11.004
– volume: 92
  start-page: 27
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib56
  article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2016.11.002
– volume: 177
  start-page: 107835
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib162
  article-title: Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107835
– volume: 113
  start-page: 184304
  issue: 18
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib62
  article-title: Thermal conductivity dependence on chain length in amorphous polymers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4804237
– volume: 5
  start-page: 36334
  issue: 46
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib100
  article-title: High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03284A
– volume: 124
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib177
  article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
– volume: 101
  start-page: 237
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib55
  article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2017.06.005
– volume: 28
  start-page: 1805365
  issue: 51
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib251
  article-title: Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805365
– volume: 9
  start-page: 384
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib72
  article-title: High thermal conductivity of chain-oriented amorphous polythiophene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.44
– volume: 30
  start-page: 2090
  issue: 4
  year: 1984
  ident: 10.1016/j.compscitech.2020.108134_bib61
  article-title: Experimental determination of the thermal conductivity of a conducting polymer: pure and heavily doped polyacetylene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.30.2090
– volume: 29
  start-page: 1900412
  issue: 13
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib253
  article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900412
– volume: 146
  start-page: 224
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib35
  article-title: Electrical and thermal conductivity improvement of carbon nanotube and silver composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.073
– volume: 40
  start-page: 3189
  issue: 8
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib50
  article-title: Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications
  publication-title: Polym. Compos.
  doi: 10.1002/pc.25169
– volume: 63
  issue: 5
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib204
  article-title: Recent developments in multifunctional nanocomposites using carbon nanotubes
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4003503
– volume: 48
  start-page: 3979
  issue: 14
  year: 2010
  ident: 10.1016/j.compscitech.2020.108134_bib166
  article-title: Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.06.044
– volume: 2
  start-page: 15058
  issue: 36
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib221
  article-title: Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA02429J
– volume: 54
  start-page: 13135
  issue: 20
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib9
  article-title: Effect of coatings on thermal conductivity and tribological properties of aluminum foam/polyoxymethylene interpenetrating composites
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03826-9
– volume: 136
  start-page: 47054
  issue: 6
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib110
  article-title: 3D interconnected high aspect ratio tellurium nanowires in epoxy nanocomposites: serving as thermal conductive expressway
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47054
– volume: 28
  start-page: 1805053
  issue: 45
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib255
  article-title: Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805053
– volume: 114
  start-page: 727
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib128
  article-title: A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.116
– volume: 124
  start-page: 132
  issue: 1
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib192
  article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.35089
– year: 1974
  ident: 10.1016/j.compscitech.2020.108134_bib19
– volume: 31
  start-page: 1900199
  issue: 19
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib38
  article-title: Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900199
– volume: 124
  start-page: 105447
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib124
  article-title: Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.05.015
– volume: 170
  start-page: 135
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib250
  article-title: Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.11.036
– volume: 151
  start-page: 115
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib274
  article-title: Moisture driven thermal conduction in polymer and polymer blends
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.08.010
– volume: 34
  start-page: 126
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib65
  article-title: Chain rotation significantly reduces thermal conductivity of single-chain polymers
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.362
– volume: 149
  start-page: 152
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib145
  article-title: Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.055
– volume: 125
  start-page: 105530
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib199
  article-title: One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial for properties of epoxy composites
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.105530
– volume: 144
  start-page: 70
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib153
  article-title: Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.03.020
– volume: 17
  start-page: 1587
  issue: 3
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib57
  article-title: Nonperturbative quantum nature of the dislocation phonon interaction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04756
– volume: 7
  start-page: 125
  issue: 3
  year: 1986
  ident: 10.1016/j.compscitech.2020.108134_bib41
  article-title: Thermally conductive polymer compositions
  publication-title: Polym. Compos.
  doi: 10.1002/pc.750070302
– volume: 176
  start-page: 110
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib26
  article-title: Theoretical analysis and development of thermally conductive polymer composites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.05.044
– volume: 26
  start-page: 778
  issue: 6
  year: 2005
  ident: 10.1016/j.compscitech.2020.108134_bib150
  article-title: Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions
  publication-title: Polym. Compos.
  doi: 10.1002/pc.20151
– volume: 20
  start-page: 4740
  issue: 24
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib137
  article-title: Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800401
– volume: 12
  issue: 1
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib28
  article-title: Percolation effect on thermal conductivity of filler-dispersed polymer composites
  publication-title: J. Therm. Sci. Technol.
  doi: 10.1299/jtst.2017jtst0013
– volume: 160
  start-page: 245
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib168
  article-title: Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.03.021
– volume: 369
  start-page: 302
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib182
  article-title: Synthesis of layered double hydroxides through continuous flow processes: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.057
– volume: 132
  start-page: 1
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib23
  article-title: Thermal conductivity of polymers and polymer nanocomposites
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2018.06.002
– volume: 54
  start-page: 1017
  issue: 10
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib69
  article-title: Effects of carbon fillers on crystallization properties and thermal conductivity of poly(phenylene sulfide)
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2014.986802
– volume: 137
  start-page: 222
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib37
  article-title: Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.033
– volume: 2
  start-page: 2467
  issue: 4
  year: 2009
  ident: 10.1016/j.compscitech.2020.108134_bib138
  article-title: Thermal conductivity of diamond composites
  publication-title: Materials
  doi: 10.3390/ma2042467
– volume: 61
  start-page: 12551
  issue: 19
  year: 2000
  ident: 10.1016/j.compscitech.2020.108134_bib135
  article-title: Low thermal conductivity of the layered oxide (Na,Ca)Co2O4: another example of a phonon glass and an electron crystal
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.12551
– volume: 45
  start-page: 1117
  issue: 1
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib155
  article-title: Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2012.05.015
– volume: 378
  start-page: 1952
  issue: 28–29
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib225
  article-title: Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2014.04.035
– volume: 9
  start-page: 29071
  issue: 34
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib247
  article-title: Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07947
– volume: 13
  start-page: 207
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib80
  article-title: Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.09.007
– volume: 141
  start-page: 1049
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib163
  article-title: Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.07.002
– volume: 4
  start-page: 22101
  issue: 42
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib189
  article-title: Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites
  publication-title: RSC Adv.
  doi: 10.1039/C4RA01761G
– volume: 61
  start-page: 1
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib15
  article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.05.001
– volume: 7
  start-page: 5701
  issue: 10
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib241
  article-title: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507416y
– volume: 48
  start-page: 592
  issue: 3
  year: 2010
  ident: 10.1016/j.compscitech.2020.108134_bib176
  article-title: Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.08.047
– volume: 1
  start-page: 207
  issue: 2
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib42
  article-title: A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods
  publication-title: Adv. Compos. Hybrid. Mater.
  doi: 10.1007/s42114-018-0031-8
– volume: 85
  start-page: 115
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib154
  article-title: Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.08.003
– volume: 100
  start-page: 29
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib271
  article-title: Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.09.013
– volume: 8
  start-page: 55
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib228
  article-title: Thermal behavior of silica aerogel/PMMA composite reinforced by non-covalent interaction
  publication-title: Emerg. Mater. Res.
– volume: 11
  start-page: 203
  issue: 3
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib20
  article-title: Thermal conductivity of isotopically modified graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3207
– volume: 124
  start-page: 105484
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib48
  article-title: Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.105484
– volume: 47
  start-page: 5990
  issue: 16
  year: 2006
  ident: 10.1016/j.compscitech.2020.108134_bib222
  article-title: Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.05.062
– volume: 29
  start-page: 432
  issue: 5
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib147
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
  publication-title: Heat Tran. Eng.
  doi: 10.1080/01457630701850851
– volume: 92
  issue: 2
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib208
  article-title: Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2834370
– volume: 162
  start-page: 180
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib119
  article-title: BaTiO3@carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.05.001
– volume: 83
  issue: 6
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib217
  article-title: Interfacial thermal transport in atomic junctions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.064303
– volume: 54
  start-page: 10041
  issue: 13
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib173
  article-title: Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03525-5
– volume: 79
  start-page: 8
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib236
  article-title: Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.09.005
– volume: 119
  start-page: 299
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib194
  article-title: Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.02.004
– volume: 132
  start-page: 235
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib183
  article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2019.03.042
– volume: 116
  start-page: 98
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib170
  article-title: Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2018.10.023
– volume: 57
  start-page: 101
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib92
  article-title: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2016.11.015
– volume: 121
  start-page: 330
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib96
  article-title: Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.03.044
– volume: 11
  start-page: 27788
  issue: 31
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib131
  article-title: Low thermal conductivity and optimized thermoelectric properties of p-Type Te-Sb2Se3: synergistic effect of doping and defect engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07313
– volume: 9
  start-page: 117
  issue: 2
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib184
  article-title: Review of micro-nanoscale surface coatings application for sustaining dropwise condensation
  publication-title: Coatings
  doi: 10.3390/coatings9020117
– volume: 141
  start-page: 506
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib6
  article-title: Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.003
– volume: 119
  start-page: 1
  year: 1995
  ident: 10.1016/j.compscitech.2020.108134_bib40
  article-title: Thermal-conductivity of heterophase polymer compositions
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/BFb0021279
– volume: 135
  start-page: 46397
  issue: 26
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib136
  article-title: Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46397
– volume: 11
  start-page: 28221
  issue: 31
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib130
  article-title: Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10207
– volume: 18
  start-page: 1187
  issue: 6
  year: 1980
  ident: 10.1016/j.compscitech.2020.108134_bib24
  article-title: Thermal-conductivity of oriented crystalline polymers
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
  doi: 10.1002/pol.1980.180180603
– volume: 6
  start-page: 13108
  issue: 48
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib275
  article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04309D
– volume: 16
  start-page: 3585
  issue: 6
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib157
  article-title: Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00722
– volume: 9
  start-page: 437
  issue: 9
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib27
  article-title: Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications
  publication-title: Polymers
  doi: 10.3390/polym9090437
– year: 2010
  ident: 10.1016/j.compscitech.2020.108134_bib21
– volume: 180
  start-page: 86
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib186
  article-title: Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al2O3-PDA-Ag hybrid nanoparticles
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.05.019
– volume: 71
  start-page: 245
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib223
  article-title: Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2013.12.017
– volume: 129
  start-page: 205
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib268
  article-title: Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.04.033
– volume: 28
  start-page: 7220
  issue: 33
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib33
  article-title: Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600642
– volume: 50
  start-page: 2083
  issue: 6
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib152
  article-title: Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.12.046
– volume: 113
  start-page: 1118
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib230
  article-title: Review of polymers for heat exchanger applications: factors concerning thermal conductivity
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.041
– volume: 156
  start-page: 1
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib129
  article-title: Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.12.008
– volume: 149
  start-page: 173
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib140
  article-title: Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.038
– volume: 7
  start-page: 7035
  issue: 23
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib108
  article-title: Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01804B
– volume: 123
  start-page: 79
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib127
  article-title: Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene composites
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.05.002
– volume: 82
  start-page: 198
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib262
  article-title: Electric field as a tuning key to process carbon nanotube suspensions with controlled conductivity
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.11.027
– volume: 177
  start-page: 118
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib7
  article-title: Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.04.026
– volume: 43
  start-page: 658
  issue: 4
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib148
  article-title: Thermal conductivity and dielectric properties of Al/PVDF composites
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2011.11.024
– volume: 140
  start-page: 24
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib270
  article-title: Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.08.029
– volume: 92
  start-page: 15
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib160
  article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.08.081
– volume: 180
  start-page: 121760
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib44
  article-title: Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecule weight polyethylene bulk material
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.121760
– volume: 71
  start-page: 1906
  issue: 14
  year: 1997
  ident: 10.1016/j.compscitech.2020.108134_bib260
  article-title: Optical anisotropy of dispersed carbon nanotubes induced by an electric field
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119976
– volume: 11
  start-page: 25465
  issue: 28
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib103
  article-title: Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10161
– volume: 164
  start-page: 59
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib8
  article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.05.038
– volume: 165
  start-page: 39
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib267
  article-title: Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.06.015
– volume: 145
  start-page: 55
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib258
  article-title: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.03.035
– year: 2007
  ident: 10.1016/j.compscitech.2020.108134_bib16
– year: 2020
  ident: 10.1016/j.compscitech.2020.108134_bib89
  article-title: Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and BN fillers
  publication-title: Chin. J. Polym. Sci.
– volume: 40
  start-page: 3164
  issue: 10
  year: 2007
  ident: 10.1016/j.compscitech.2020.108134_bib207
  article-title: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/40/10/020
– volume: 131
  start-page: 149
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib12
  article-title: Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.002
– volume: 7
  start-page: 7531
  issue: 13
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib185
  article-title: A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates
  publication-title: RSC Adv.
  doi: 10.1039/C6RA25841G
– volume: 29
  start-page: 1901383
  issue: 25
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib31
  article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901383
– volume: 59
  start-page: 41
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib60
  article-title: Thermal conductivity of polymer-based composites: fundamentals and applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.03.001
– volume: 118
  start-page: 2754
  issue: 5
  year: 2010
  ident: 10.1016/j.compscitech.2020.108134_bib149
  article-title: Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32673
– volume: 7
  start-page: 2725
  issue: 9
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib109
  article-title: Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC05955A
– volume: 370
  start-page: 166
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib151
  article-title: Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.217
– volume: 180
  start-page: 107569
  year: 2020
  ident: 10.1016/j.compscitech.2020.108134_bib273
  article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107569
– volume: 16
  start-page: 135
  issue: 2
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib263
  article-title: Dielectrophoresis force of poly(p-phenylene)/acrylic elastomer under ac electric field
  publication-title: Mater. Res. Innovat.
  doi: 10.1179/1433075X11Y.0000000030
– volume: 163
  start-page: 363
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib106
  article-title: Thermal conductivity enhancement of CNT/MoS2/graphene−epoxy nanocomposites based on structural synergistic effects and interpenetrating network
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.11.005
– volume: 169
  start-page: 86
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib36
  article-title: Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.11.008
– start-page: 1903857
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib164
  article-title: A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces
  publication-title: Adv. Funct. Mater.
– volume: 120
  start-page: 140
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib256
  article-title: Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.02.026
– volume: 4
  issue: 3
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib13
  article-title: Molecular engineered conjugated polymer with high thermal conductivity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar3031
– volume: 111
  start-page: 7565
  issue: 21
  year: 2007
  ident: 10.1016/j.compscitech.2020.108134_bib156
  article-title: Graphite nanoplatelet-epoxy composite thermal interface materials
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp071761s
– volume: 30
  start-page: 1705544
  issue: 17
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib3
  article-title: Thermal conductivity of polymers and their nanocomposites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705544
– volume: 5
  start-page: 4374
  issue: 10
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib205
  article-title: Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400615z
– volume: 175
  start-page: 85
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib5
  article-title: Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.02.006
– volume: 5
  start-page: 1800548
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib112
  article-title: Tailoring highly thermal conductive properties of Te/MoS2/Ag heterostructure nanocomposites using a bottom-up approach
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800548
– volume: 18
  start-page: 3488
  issue: 6
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib120
  article-title: Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00555
– volume: 164
  start-page: 710
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib105
  article-title: Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.01.100
– volume: 51
  start-page: 1431
  issue: 5
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib206
  article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2007.10.017
– volume: 49
  start-page: 5107
  issue: 15
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib227
  article-title: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.06.095
– volume: 95
  start-page: 887
  issue: 10
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib224
  article-title: Thermally conductive adhesives from covalent-bonding of reduced graphene oxide to acrylic copolymer
  publication-title: J. Adhes.
  doi: 10.1080/00218464.2018.1451331
– volume: 11
  start-page: 4353
  issue: 4
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib257
  article-title: Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18232
– volume: 11
  start-page: 1156
  issue: 7
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib146
  article-title: Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface
  publication-title: Polymers
  doi: 10.3390/polym11071156
– volume: 8
  start-page: 3121
  issue: 19
  year: 1975
  ident: 10.1016/j.compscitech.2020.108134_bib87
  article-title: The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/8/19/012
– volume: 55
  start-page: 772
  issue: 12
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib58
  article-title: Calculation scheme for the evaluation of polymer thermal conductivity
  publication-title: Polym. Sci.
– volume: 117
  start-page: 11
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib198
  article-title: Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.11.006
– volume: 40
  start-page: 389
  issue: 3
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib39
  article-title: Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495739.2016.1218745
– volume: 8
  start-page: 264
  issue: 4
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib46
  article-title: Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/Graphene nanoplatelets with improved thermo-oxidative stability
  publication-title: Nanomaterials
  doi: 10.3390/nano8040264
– year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib141
– volume: 53
  start-page: 4489
  issue: 20
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib85
  article-title: Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.07.065
– volume: 792
  start-page: 375
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib180
  article-title: Development of a nanostructured Ce(III)-Pr(III) film for excellently corrosion resistance improvement of epoxy/polyamide coating on carbon steel
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.051
– volume: 11
  start-page: 17915
  issue: 19
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib269
  article-title: Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06062
– volume: 11
  start-page: 502
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib218
  article-title: Effects of chemical bonding on heat transport across interfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3303
– volume: 48
  start-page: 1214
  issue: 3
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib243
  article-title: In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6862-8
– volume: 43
  start-page: 2774
  issue: 2
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib265
  article-title: Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.11.108
– volume: 120
  start-page: 49
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib104
  article-title: Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance
  publication-title: Compos. Appl. Sci. Manuf. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2019.02.019
– volume: 10
  start-page: 68
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib235
  article-title: Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2018.07.003
– volume: 11
  start-page: 148
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib113
  article-title: Surface modification of aluminum nitride to fabricate thermally conductive poly(butylene succinate) nanocomposite
  publication-title: Polymers
  doi: 10.3390/polym11010148
– volume: 11
  start-page: 3656
  issue: 8
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib14
  article-title: Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance
  publication-title: Nanoscale
  doi: 10.1039/C8NR08760A
– volume: 12
  start-page: 2225
  issue: 14
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib213
  article-title: Evaluation of interfacial fracture toughness and interfacial shear strength of typha Spp. fiber/polymer composite by double shear test method
  publication-title: Materials
  doi: 10.3390/ma12142225
– volume: 40
  start-page: 2417
  issue: 7
  year: 2007
  ident: 10.1016/j.compscitech.2020.108134_bib45
  article-title: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity
  publication-title: Macromolecules
  doi: 10.1021/ma0615046
– volume: 164
  start-page: 732
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib233
  article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.01.099
– volume: 171
  start-page: 70
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib212
  article-title: Synergistic effect of hydrogen bonding and pi-pi stacking in interface of CF/PEEK composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.04.015
– volume: 9
  start-page: 7637
  issue: 8
  year: 2017
  ident: 10.1016/j.compscitech.2020.108134_bib249
  article-title: Design and preparation of a unique segregated double network with excellent thermal conductive property
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16586
– volume: 6
  start-page: 3004
  issue: 12
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib121
  article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC00452H
– volume: 13
  start-page: 337
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib111
  article-title: Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06290
– volume: 128
  start-page: 105670
  year: 2020
  ident: 10.1016/j.compscitech.2020.108134_bib254
  article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.105670
– volume: 58
  start-page: 5824
  issue: 18
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib2
  article-title: High thermal conductivity in boron arsenide: from prediction to reality
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812112
– volume: 136
  start-page: 47951
  issue: 37
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib122
  article-title: Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47951
– volume: 2
  start-page: 731
  issue: 11
  year: 2003
  ident: 10.1016/j.compscitech.2020.108134_bib215
  article-title: Interfacial heat flow in carbon nanotube suspensions
  publication-title: Nat. Mater.
  doi: 10.1038/nmat996
– volume: 121
  start-page: 449
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib200
  article-title: Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.03.030
– volume: 60
  start-page: 2650
  issue: 10
  year: 2009
  ident: 10.1016/j.compscitech.2020.108134_bib30
  article-title: Properties and heat-conduction mechanism of thermally conductive polymer composites
  publication-title: J. Chem. Ind. Eng.
– volume: 5
  start-page: 1119
  issue: 5
  year: 2011
  ident: 10.1016/j.compscitech.2020.108134_bib18
  article-title: Viscosities, thermal conductivities and diffusion coefficient of CO2 mixtures: review of experimental data and theoretical models
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2011.07.009
– volume: 5
  start-page: 87981
  issue: 107
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib79
  article-title: Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18519J
– volume: 9
  start-page: 33
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib259
  article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2018.04.009
– volume: 108
  start-page: 66
  year: 2015
  ident: 10.1016/j.compscitech.2020.108134_bib144
  article-title: Thermal conductivity of monolayer hexagonal boron nitride nanoribbons
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.06.006
– volume: 7
  start-page: 9018
  issue: 29
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib178
  article-title: Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02845E
– volume: 120
  start-page: 803
  issue: 4
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib67
  article-title: Role of chain morphology and stiffness in thermal conductivity of amorphous polymers
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b09955
– volume: 17
  start-page: 1577
  issue: 7
  year: 2008
  ident: 10.1016/j.compscitech.2020.108134_bib175
  article-title: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2008.03.037
– volume: 89
  start-page: 2464
  issue: 9
  year: 2003
  ident: 10.1016/j.compscitech.2020.108134_bib84
  article-title: Study of high thermal conductive epoxy resins containing controlled high-order structures
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.12489
– volume: 8
  start-page: 19732
  issue: 30
  year: 2016
  ident: 10.1016/j.compscitech.2020.108134_bib248
  article-title: Facile method to fabricate highly thermally conductive graphite/PP composite with network structures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03723
– volume: 35
  start-page: 1087
  issue: 6
  year: 2014
  ident: 10.1016/j.compscitech.2020.108134_bib34
  article-title: Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22756
– volume: 116
  start-page: 13629
  issue: 25
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib172
  article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3026545
– volume: 5
  issue: 17
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib158
  article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes
  publication-title: Front. Mater.
– volume: 107
  start-page: 570
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib238
  article-title: Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.02.006
– volume: 11
  start-page: 28943
  issue: 32
  year: 2019
  ident: 10.1016/j.compscitech.2020.108134_bib126
  article-title: 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09398
– volume: 160
  start-page: 199
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib240
  article-title: Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm−1 K−1
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.03.028
– volume: 23
  start-page: 1025
  issue: 6
  year: 2012
  ident: 10.1016/j.compscitech.2020.108134_bib188
  article-title: Thermal conductivity epoxy resin composites filled with boron nitride
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.2063
– volume: 114
  issue: 3
  year: 2013
  ident: 10.1016/j.compscitech.2020.108134_bib78
  article-title: Effect of crosslink formation on heat conduction in amorphous polymers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4813505
– volume: 442
  start-page: 170
  year: 2018
  ident: 10.1016/j.compscitech.2020.108134_bib174
  article-title: Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.125
SSID ssj0007592
Score 2.7214696
SecondaryResourceType review_article
Snippet It is of considerable scientific and technological importance to enhance the thermal conductivity coefficient (λ) values of the polymers and polymer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108134
SubjectTerms Composite materials
Conducting polymers
Fillers
Functional composites
Heat conductivity
Heat transfer
Polymer matrix composites
Polymer-matrix composites (PMCs)
Polymers
Studies
Thermal conductivity
Thermal properties
Title Factors affecting thermal conductivities of the polymers and polymer composites: A review
URI https://dx.doi.org/10.1016/j.compscitech.2020.108134
https://www.proquest.com/docview/2440490482
Volume 193
WOSCitedRecordID wos000527648600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZO_bxMLZuY926ocHeios_Y2nsJZR2X1AG7cB9MrIsh5ZgZ01cuof977vzSXa6UsgYezGREkux7ufT-Xz3O8beqVKmgTGxF0qlvdiUgSeg7WktkaBLjKvK74pNpEdHIsvkt9Hol8uFuZyldS2uruT8v4oa-kDYmDr7F-LuB4UO-AxChyOIHY5rCf7QVtBRXaSGzYYC9Ys8IDWyu2K5iDPimu3ypJrZT3ReE2UANbpIcwznooi5ic1wWbVk9_tf7LrUoC4Y84ar_mPbeWNPm3r6A7A47V_xtOR7_drWczN0H3dVhnez1ixV0-sk69XOWjBVp6ueihAL2niUSEnuM5dCM8QrLTrm17EXJUTxsmdIC4tUwv5AjLS9mqZKijdUPnkfzlFic7hevMw9nB2jJwPrKL3OqH2Mc-KUMGQEBpq4wzbDNJGgFDcnnw-yL_1WDp0hOenoP95jb4cAwVsmvM3A-WOr7-yXk8fskX3w4BMCzBM2MvUWu-_y0hdb7OEKNeVTdmphxHsYcQsjfh1GvKnwG-5gxAEFrsEHGL3nE04gesa-Hx6c7H_ybBkOT4N1t_RUUsbGT3WhBa5XERexFFiZQI4l3M6JKFIV6MIIVUVF4Kdj5UtTVn4lQUvhW9rnbKNuavOCcZkkooxMEqqgiiMwjoXUKorKwoDlW4TFNhNu7XJtOeqxVMosd8GI5_nKsue47Dkt-zYL-1PnRNSyzkkfnIBye6-QJZkDutY5fccJNbcaYJGHyLgpYWMMX_7b6K_Yg-Eu2mEby4vWvGZ39eXybHHxxkL1N5xuukQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+affecting+thermal+conductivities+of+the+polymers+and+polymer+composites%3A+A+review&rft.jtitle=Composites+science+and+technology&rft.au=Guo%2C+Yongqiang&rft.au=Ruan%2C+Kunpeng&rft.au=Shi%2C+Xuetao&rft.au=Yang%2C+Xutong&rft.date=2020-06-16&rft.pub=Elsevier+Ltd&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=193&rft_id=info:doi/10.1016%2Fj.compscitech.2020.108134&rft.externalDocID=S0266353819333998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon