Neural transfer learning for assigning diagnosis codes to EMRs
•Transfer learning using convolutional neural networks improves multi-label learning.•Predicting MeSH terms for biomedical articles is a useful source task for EMR coding.•Using 2 copies of source task parameters, one fixed and one tuned, helps target models.•Using both word embeddings and convoluti...
Gespeichert in:
| Veröffentlicht in: | Artificial intelligence in medicine Jg. 96; S. 116 - 122 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.05.2019
|
| Schlagworte: | |
| ISSN: | 0933-3657, 1873-2860, 1873-2860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Transfer learning using convolutional neural networks improves multi-label learning.•Predicting MeSH terms for biomedical articles is a useful source task for EMR coding.•Using 2 copies of source task parameters, one fixed and one tuned, helps target models.•Using both word embeddings and convolutions from source task improves prediction.
Electronic medical records (EMRs) are manually annotated by healthcare professionals and specialized medical coders with a standardized set of alphanumeric diagnosis and procedure codes, specifically from the International Classification of Diseases (ICD). Annotating EMRs with ICD codes is important for medical billing and downstream epidemiological studies. However, manually annotating EMRs is both time-consuming and error prone. In this paper, we explore the use of convolutional neural networks (CNNs) for automatic ICD coding. Because many codes occur infrequently, CNN performance is inhibited. Therefore, we propose supplementing EMR data with PubMed indexed biomedical research abstracts through neural transfer learning.
Transfer learning is the process of “transferring” knowledge acquired from one task (the source task) to a different (target) task. For the source task, we train a CNN to predict medical subject headings (MeSH) using 1.6 million PubMed indexed biomedical abstracts. For the target task, we train a CNN on 71,463 real-world EMRs collected from the University of Kentucky (UKY) medical center to predict ICD diagnosis codes. We introduce a simple, yet effective, transfer learning methodology which avoids forgetting knowledge gained from the source task.
Compared to our prior work using EMRs from the UKY medical center, we improve both the micro and macro F-scores by more than 8%. Likewise, compared to other transfer learning methods, our approach results in nearly 2% improvement in macro F-score.
We show that transfer learning can improve CNN performance for EMR coding in the presence of data sparsity issues. Furthermore, we find that our proposed transfer learning approach outperforms other methods with respect to macro F-score. Finally, we analyze how transfer learning impacts codes with respect to code frequency. We find that we achieve greater improvement on infrequent codes compared to improvements in most frequent codes. |
|---|---|
| AbstractList | •Transfer learning using convolutional neural networks improves multi-label learning.•Predicting MeSH terms for biomedical articles is a useful source task for EMR coding.•Using 2 copies of source task parameters, one fixed and one tuned, helps target models.•Using both word embeddings and convolutions from source task improves prediction.
Electronic medical records (EMRs) are manually annotated by healthcare professionals and specialized medical coders with a standardized set of alphanumeric diagnosis and procedure codes, specifically from the International Classification of Diseases (ICD). Annotating EMRs with ICD codes is important for medical billing and downstream epidemiological studies. However, manually annotating EMRs is both time-consuming and error prone. In this paper, we explore the use of convolutional neural networks (CNNs) for automatic ICD coding. Because many codes occur infrequently, CNN performance is inhibited. Therefore, we propose supplementing EMR data with PubMed indexed biomedical research abstracts through neural transfer learning.
Transfer learning is the process of “transferring” knowledge acquired from one task (the source task) to a different (target) task. For the source task, we train a CNN to predict medical subject headings (MeSH) using 1.6 million PubMed indexed biomedical abstracts. For the target task, we train a CNN on 71,463 real-world EMRs collected from the University of Kentucky (UKY) medical center to predict ICD diagnosis codes. We introduce a simple, yet effective, transfer learning methodology which avoids forgetting knowledge gained from the source task.
Compared to our prior work using EMRs from the UKY medical center, we improve both the micro and macro F-scores by more than 8%. Likewise, compared to other transfer learning methods, our approach results in nearly 2% improvement in macro F-score.
We show that transfer learning can improve CNN performance for EMR coding in the presence of data sparsity issues. Furthermore, we find that our proposed transfer learning approach outperforms other methods with respect to macro F-score. Finally, we analyze how transfer learning impacts codes with respect to code frequency. We find that we achieve greater improvement on infrequent codes compared to improvements in most frequent codes. Electronic medical records (EMRs) are manually annotated by healthcare professionals and specialized medical coders with a standardized set of alphanumeric diagnosis and procedure codes, specifically from the International Classification of Diseases (ICD). Annotating EMRs with ICD codes is important for medical billing and downstream epidemiological studies. However, manually annotating EMRs is both time-consuming and error prone. In this paper, we explore the use of convolutional neural networks (CNNs) for automatic ICD coding. Because many codes occur infrequently, CNN performance is inhibited. Therefore, we propose supplementing EMR data with PubMed indexed biomedical research abstracts through neural transfer learning.OBJECTIVEElectronic medical records (EMRs) are manually annotated by healthcare professionals and specialized medical coders with a standardized set of alphanumeric diagnosis and procedure codes, specifically from the International Classification of Diseases (ICD). Annotating EMRs with ICD codes is important for medical billing and downstream epidemiological studies. However, manually annotating EMRs is both time-consuming and error prone. In this paper, we explore the use of convolutional neural networks (CNNs) for automatic ICD coding. Because many codes occur infrequently, CNN performance is inhibited. Therefore, we propose supplementing EMR data with PubMed indexed biomedical research abstracts through neural transfer learning.Transfer learning is the process of "transferring" knowledge acquired from one task (the source task) to a different (target) task. For the source task, we train a CNN to predict medical subject headings (MeSH) using 1.6 million PubMed indexed biomedical abstracts. For the target task, we train a CNN on 71,463 real-world EMRs collected from the University of Kentucky (UKY) medical center to predict ICD diagnosis codes. We introduce a simple, yet effective, transfer learning methodology which avoids forgetting knowledge gained from the source task.MATERIALS AND METHODSTransfer learning is the process of "transferring" knowledge acquired from one task (the source task) to a different (target) task. For the source task, we train a CNN to predict medical subject headings (MeSH) using 1.6 million PubMed indexed biomedical abstracts. For the target task, we train a CNN on 71,463 real-world EMRs collected from the University of Kentucky (UKY) medical center to predict ICD diagnosis codes. We introduce a simple, yet effective, transfer learning methodology which avoids forgetting knowledge gained from the source task.Compared to our prior work using EMRs from the UKY medical center, we improve both the micro and macro F-scores by more than 8%. Likewise, compared to other transfer learning methods, our approach results in nearly 2% improvement in macro F-score.RESULTSCompared to our prior work using EMRs from the UKY medical center, we improve both the micro and macro F-scores by more than 8%. Likewise, compared to other transfer learning methods, our approach results in nearly 2% improvement in macro F-score.We show that transfer learning can improve CNN performance for EMR coding in the presence of data sparsity issues. Furthermore, we find that our proposed transfer learning approach outperforms other methods with respect to macro F-score. Finally, we analyze how transfer learning impacts codes with respect to code frequency. We find that we achieve greater improvement on infrequent codes compared to improvements in most frequent codes.CONCLUSIONWe show that transfer learning can improve CNN performance for EMR coding in the presence of data sparsity issues. Furthermore, we find that our proposed transfer learning approach outperforms other methods with respect to macro F-score. Finally, we analyze how transfer learning impacts codes with respect to code frequency. We find that we achieve greater improvement on infrequent codes compared to improvements in most frequent codes. Electronic medical records (EMRs) are manually annotated by healthcare professionals and specialized medical coders with a standardized set of alphanumeric diagnosis and procedure codes, specifically from the International Classification of Diseases (ICD). Annotating EMRs with ICD codes is important for medical billing and downstream epidemiological studies. However, manually annotating EMRs is both time-consuming and error prone. In this paper, we explore the use of convolutional neural networks (CNNs) for automatic ICD coding. Because many codes occur infrequently, CNN performance is inhibited. Therefore, we propose supplementing EMR data with PubMed indexed biomedical research abstracts through neural transfer learning. Transfer learning is the process of "transferring" knowledge acquired from one task (the source task) to a different (target) task. For the source task, we train a CNN to predict medical subject headings (MeSH) using 1.6 million PubMed indexed biomedical abstracts. For the target task, we train a CNN on 71,463 real-world EMRs collected from the University of Kentucky (UKY) medical center to predict ICD diagnosis codes. We introduce a simple, yet effective, transfer learning methodology which avoids forgetting knowledge gained from the source task. Compared to our prior work using EMRs from the UKY medical center, we improve both the micro and macro F-scores by more than 8%. Likewise, compared to other transfer learning methods, our approach results in nearly 2% improvement in macro F-score. We show that transfer learning can improve CNN performance for EMR coding in the presence of data sparsity issues. Furthermore, we find that our proposed transfer learning approach outperforms other methods with respect to macro F-score. Finally, we analyze how transfer learning impacts codes with respect to code frequency. We find that we achieve greater improvement on infrequent codes compared to improvements in most frequent codes. |
| Author | Rios, Anthony Kavuluru, Ramakanth |
| Author_xml | – sequence: 1 givenname: Anthony surname: Rios fullname: Rios, Anthony organization: Department of Computer Science, University of Kentucky, Lexington, KY, United States – sequence: 2 givenname: Ramakanth surname: Kavuluru fullname: Kavuluru, Ramakanth email: rvkavu2@uky.edu organization: Department of Computer Science, University of Kentucky, Lexington, KY, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31164204$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtLxDAURoMoOo7-A5Eu3bTePCZtRQQRX-ADRNchTW-GjJ1Ek44w_97qqAs3swoXzvkgZ5ds-uCRkAMKBQUqj2eFjv0c24IBrQsQBQDbICNalTxnlYRNMoKa85zLSblDdlOaAUApqNwmO5xSKRiIETl7wEXUXdZH7ZPFmHWoo3d-mtkQM52Sm35frdNTH5JLmQktpqwP2eX9U9ojW1Z3Cfd_3jF5ubp8vrjJ7x6vby_O73Ij6KTPtbCsobRqoJZlxVsuQaAsUVhbc8sqzrExVNTQUGwElmChYhPZMJjoSljKx-RotfsWw_sCU6_mLhnsOu0xLJJinImaAfByQA9_0EUz5FFv0c11XKrfPw-AWAEmhpQi2j-EgvpKq2ZqlVZ9pVUg1JB20E7-acb1unfBD-1ct04-W8k4RPpwGFUyDr3B1kU0vWqDWzdw-m_AdM47o7tXXK7XPwESTqlp |
| CitedBy_id | crossref_primary_10_1016_j_jbi_2023_104418 crossref_primary_10_3390_healthcare9111596 crossref_primary_10_1016_j_respe_2021_11_019 crossref_primary_10_1016_j_jbi_2019_103267 crossref_primary_10_1053_j_ro_2023_02_003 crossref_primary_10_1016_j_artmed_2020_101939 crossref_primary_10_1186_s12911_020_1085_4 crossref_primary_10_1016_j_imu_2023_101227 crossref_primary_10_3390_diagnostics13152582 crossref_primary_10_1186_s40537_024_00903_y crossref_primary_10_4103_jmss_jmss_76_24 crossref_primary_10_1016_j_nic_2020_08_008 crossref_primary_10_1016_j_artmed_2023_102667 crossref_primary_10_1109_ACCESS_2023_3325896 crossref_primary_10_1109_TKDE_2022_3148267 crossref_primary_10_26599_TST_2024_9010125 crossref_primary_10_1016_j_neucom_2020_07_109 crossref_primary_10_1016_j_ijmedinf_2021_104615 crossref_primary_10_1109_ACCESS_2020_3029429 crossref_primary_10_1016_j_eswa_2022_118997 crossref_primary_10_2196_22461 crossref_primary_10_3390_app15168872 crossref_primary_10_1002_alz_12721 crossref_primary_10_1016_j_future_2021_01_013 crossref_primary_10_1007_s10489_022_04346_x crossref_primary_10_3233_JAD_210299 crossref_primary_10_1016_j_artmed_2025_103187 |
| Cites_doi | 10.1016/j.jbi.2018.02.011 10.1561/1500000016 10.18653/v1/P18-1031 10.1007/978-3-662-44851-9_28 10.1136/amiajnl-2013-002159 10.1016/j.artmed.2015.04.007 10.1109/TPAMI.2017.2773081 10.1177/1753495X17701847 10.1016/j.neucom.2018.04.081 10.1136/jamia.2009.002733 10.1016/j.artmed.2018.03.006 10.1038/sdata.2016.35 10.1007/s10115-015-0870-3 10.1613/jair.4992 10.1093/nar/gkh061 10.1136/amiajnl-2013-002162 10.1073/pnas.1611835114 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.artmed.2019.04.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1873-2860 |
| EndPage | 122 |
| ExternalDocumentID | 31164204 10_1016_j_artmed_2019_04_002 S0933365718304378 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NLM NIH HHS grantid: R21 LM012274 |
| GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c415t-a4f2b118b096783d3604e67e4ff93f2833ebc1490b1eb4e70f08256b205a84f13 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472704800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0933-3657 1873-2860 |
| IngestDate | Thu Oct 02 11:17:35 EDT 2025 Wed Feb 19 02:30:38 EST 2025 Sat Nov 29 07:04:08 EST 2025 Tue Nov 18 20:54:00 EST 2025 Fri Feb 23 02:25:16 EST 2024 Tue Oct 14 19:30:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional neural networks Transfer learning Multi-label classification Medical coding |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c415t-a4f2b118b096783d3604e67e4ff93f2833ebc1490b1eb4e70f08256b205a84f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31164204 |
| PQID | 2324920037 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2324920037 pubmed_primary_31164204 crossref_primary_10_1016_j_artmed_2019_04_002 crossref_citationtrail_10_1016_j_artmed_2019_04_002 elsevier_sciencedirect_doi_10_1016_j_artmed_2019_04_002 elsevier_clinicalkey_doi_10_1016_j_artmed_2019_04_002 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Artificial intelligence in medicine |
| PublicationTitleAlternate | Artif Intell Med |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu (bib0160) 2017; 114 Aronson, Lang (bib0185) 2010; 17 Mullenbach, Wiegreffe, Duke, Sun, Eisenstein (bib0080) 2018 Glorot, Bordes, Bengio (bib0140) 2011 Johnson, Pollard, Shen, Lehman, Feng, Ghassemi (bib0010) 2016; 3 Choi, Bahadori, Schuetz, Stewart, Sun (bib0115) 2016 Kavuluru, Rios, Lu (bib0045) 2015; 65 Zeng, Li, Fei, Yu, Pan, Wang (bib0130) 2019; 324 Foo, Davis, Brown (bib0015) 2017; 10 Baumel, Nassour-Kassis, Elhadad, Elhadad (bib0035) 2017 Goldberg (bib0135) 2016; 57 Tsoumakas, Katakis, Vlahavas (bib0195) 2010 Nam, Kim, Loza Mencía, Gurevych, Fürnkranz (bib0150) 2014 Huang, Li, Pleiss, Liu, Hopcroft, Weinberger (bib0175) 2017 Liu (bib0190) 2009; 3 Sahu, Anand (bib0120) 2018; 87 Rios, Kavuluru (bib0090) 2018 Rios, Kavuluru, Lu (bib0125) 2018; 1 Bodenreider (bib0020) 2004; 32 Shi, Xie, Hu, Zhang, Xing (bib0085) 2017 Mou, Meng, Yan, Li, Xu, Zhang (bib0095) 2016 Nair, Hinton (bib0145) 2010 Al-Stouhi, Reddy (bib0100) 2016; 48 Kim (bib0030) 2014 Lee, Scott, Villarroel, Clifford, Saeed, Mark (bib0005) 2011 Li, Hoiem (bib0155) 2018; 40 Rios, Kavuluru (bib0060) 2013 Iyyer, Manjunatha, Boyd-Graber, Daumé (bib0165) 2015 Howard, Ruder (bib0105) 2018 Zeiler (bib0180) 2012 Zhang, He, Zhao, Li (bib0055) 2017; 2017 Duarte, Martins, Pinto, Silva (bib0070) 2018; 80 Oquab, Bottou, Laptev, Sivic (bib0025) 2014 Wallace, Small, Brodley, Trikalinos (bib0170) 2011 Perotte, Pivovarov, Natarajan, Weiskopf, Wood, Elhadad (bib0050) 2013; 21 Vani, Jernite, Sontag (bib0075) 2017 Wiens, Guttag, Horvitz (bib0110) 2014; 21 Pestian, Brew, Matykiewicz, Hovermale, Johnson, Cohen (bib0040) 2007 Karimi, Dai, Hassanzadeh, Nguyen (bib0065) 2017; 2017 Liu (10.1016/j.artmed.2019.04.002_bib0190) 2009; 3 Perotte (10.1016/j.artmed.2019.04.002_bib0050) 2013; 21 Baumel (10.1016/j.artmed.2019.04.002_bib0035) 2017 Kim (10.1016/j.artmed.2019.04.002_bib0030) 2014 Aronson (10.1016/j.artmed.2019.04.002_bib0185) 2010; 17 Foo (10.1016/j.artmed.2019.04.002_bib0015) 2017; 10 Huang (10.1016/j.artmed.2019.04.002_bib0175) 2017 Duarte (10.1016/j.artmed.2019.04.002_bib0070) 2018; 80 Mullenbach (10.1016/j.artmed.2019.04.002_bib0080) 2018 Shi (10.1016/j.artmed.2019.04.002_bib0085) 2017 Kirkpatrick (10.1016/j.artmed.2019.04.002_bib0160) 2017; 114 Al-Stouhi (10.1016/j.artmed.2019.04.002_bib0100) 2016; 48 Zeng (10.1016/j.artmed.2019.04.002_bib0130) 2019; 324 Nam (10.1016/j.artmed.2019.04.002_bib0150) 2014 Wiens (10.1016/j.artmed.2019.04.002_bib0110) 2014; 21 Vani (10.1016/j.artmed.2019.04.002_bib0075) 2017 Zeiler (10.1016/j.artmed.2019.04.002_bib0180) 2012 Wallace (10.1016/j.artmed.2019.04.002_bib0170) 2011 Karimi (10.1016/j.artmed.2019.04.002_bib0065) 2017; 2017 Nair (10.1016/j.artmed.2019.04.002_bib0145) 2010 Rios (10.1016/j.artmed.2019.04.002_bib0125) 2018; 1 Li (10.1016/j.artmed.2019.04.002_bib0155) 2018; 40 Oquab (10.1016/j.artmed.2019.04.002_bib0025) 2014 Kavuluru (10.1016/j.artmed.2019.04.002_bib0045) 2015; 65 Johnson (10.1016/j.artmed.2019.04.002_bib0010) 2016; 3 Howard (10.1016/j.artmed.2019.04.002_bib0105) 2018 Iyyer (10.1016/j.artmed.2019.04.002_bib0165) 2015 Goldberg (10.1016/j.artmed.2019.04.002_bib0135) 2016; 57 Lee (10.1016/j.artmed.2019.04.002_bib0005) 2011 Zhang (10.1016/j.artmed.2019.04.002_bib0055) 2017; 2017 Sahu (10.1016/j.artmed.2019.04.002_bib0120) 2018; 87 Glorot (10.1016/j.artmed.2019.04.002_bib0140) 2011 Tsoumakas (10.1016/j.artmed.2019.04.002_bib0195) 2010 Choi (10.1016/j.artmed.2019.04.002_bib0115) 2016 Pestian (10.1016/j.artmed.2019.04.002_bib0040) 2007 Rios (10.1016/j.artmed.2019.04.002_bib0090) 2018 Rios (10.1016/j.artmed.2019.04.002_bib0060) 2013 Bodenreider (10.1016/j.artmed.2019.04.002_bib0020) 2004; 32 Mou (10.1016/j.artmed.2019.04.002_bib0095) 2016 |
| References_xml | – start-page: 1746 year: 2014 end-page: 1751 ident: bib0030 article-title: Convolutional neural networks for sentence classification publication-title: Empirical methods in natural language processing (EMNLP) – volume: 114 start-page: 3521 year: 2017 end-page: 3526 ident: bib0160 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc Natl Acad Sci – volume: 3 start-page: 225 year: 2009 end-page: 331 ident: bib0190 article-title: Learning to rank for information retrieval publication-title: Found Trends Inf Retriev – volume: 80 start-page: 64 year: 2018 end-page: 77 ident: bib0070 article-title: Deep neural models for icd-10 coding of death certificates and autopsy reports in free-text publication-title: J Biomed Inform – volume: 2017 start-page: 328 year: 2017 end-page: 332 ident: bib0065 article-title: Automatic diagnosis coding of radiology reports: a comparison of deep learning and conventional classification methods publication-title: BioNLP – start-page: 437 year: 2014 end-page: 452 ident: bib0150 article-title: Large-scale multi-label text classification – revisiting neural networks publication-title: European conference on machine learning and knowledge discovery in databases – (ECML PKDD) – volume: 65 start-page: 155 year: 2015 end-page: 166 ident: bib0045 article-title: An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records publication-title: Artif Intell Med – year: 2018 ident: bib0090 article-title: EMRcoding with semi-parametric multi-head matching networks publication-title: Proceedings of the North American chapter of the association for computational linguistics (NAACL) – start-page: 97 year: 2007 end-page: 104 ident: bib0040 article-title: A shared task involving multi-label classification of clinical free text publication-title: Proceedings of the workshop on BioNLP: biological, translational, and clinical language processing – start-page: 1681 year: 2015 end-page: 1691 ident: bib0165 article-title: Deep unordered composition rivals syntactic methods for text classification publication-title: Annual meeting of the association for computational linguistics (ACL) – volume: 10 start-page: 192 year: 2017 end-page: 194 ident: bib0015 article-title: Frontal lobe meningioma mimicking preeclampsia: a case study publication-title: Obstet Med – volume: 57 start-page: 345 year: 2016 end-page: 420 ident: bib0135 article-title: A primer on neural network models for natural language processing publication-title: J Artif Intell Res – volume: 2017 start-page: 263 year: 2017 end-page: 271 ident: bib0055 article-title: Enhancing automatic icd-9-cm code assignment for medical texts with pubmed publication-title: BioNLP – volume: 21 start-page: 699 year: 2014 end-page: 706 ident: bib0110 article-title: A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions publication-title: J Am Med Inform Assoc – start-page: 301 year: 2016 end-page: 318 ident: bib0115 article-title: Doctor AI: predicting clinical events via recurrent neural networks publication-title: Machine learning for healthcare conference – volume: 40 start-page: 2935 year: 2018 end-page: 2947 ident: bib0155 article-title: Learning without forgetting publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2017 ident: bib0175 article-title: Snapshot ensembles: Train 1, get m for free publication-title: International conference on learning representations (ICLR) – volume: 87 start-page: 60 year: 2018 end-page: 66 ident: bib0120 article-title: What matters in a transferable neural network model for relation classification in the biomedical domain? publication-title: Artif Intell Med – start-page: 754 year: 2011 end-page: 763 ident: bib0170 article-title: Class imbalance, redux publication-title: IEEE international conference on data mining (ICDM) – year: 2017 ident: bib0085 article-title: Towards automated ICD coding using deep learning – start-page: 328 year: 2018 end-page: 339 ident: bib0105 article-title: Universal language model fine-tuning for text classification publication-title: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), vol. 1 – start-page: 479 year: 2016 end-page: 489 ident: bib0095 article-title: How transferable are neural networks in NLP applications? publication-title: Conference on empirical methods in natural language processing (EMNLP) – volume: 324 start-page: 43 year: 2019 end-page: 50 ident: bib0130 article-title: Automatic icd-9 coding via deep transfer learning publication-title: Neurocomputing – volume: 17 start-page: 229 year: 2010 end-page: 236 ident: bib0185 article-title: An overview of metamap: historical perspective and recent advances publication-title: J Am Med Inform Assoc – volume: 32 start-page: D267 year: 2004 end-page: D270 ident: bib0020 article-title: The unified medical language system (umls): integrating biomedical terminology publication-title: Nucl Acids Res – volume: 1 start-page: 9 year: 2018 ident: bib0125 article-title: Generalizing biomedical relation classification with neural adversarial domain adaptation publication-title: Bioinformatics – volume: 3 year: 2016 ident: bib0010 article-title: Mimic-iii, a freely accessible critical care database publication-title: Sci Data – start-page: 667 year: 2010 end-page: 685 ident: bib0195 article-title: Mining multi-label data publication-title: Data mining and knowledge discovery handbook – start-page: 8315 year: 2011 end-page: 8318 ident: bib0005 article-title: Open-access mimic-ii database for intensive care research publication-title: IEEE annual international conference engineering in medicine and biology society (EMBC) – volume: 21 start-page: 231 year: 2013 end-page: 237 ident: bib0050 article-title: Diagnosis code assignment: models and evaluation metrics publication-title: J Am Med Inform Assoc – year: 2017 ident: bib0075 article-title: Grounded recurrent neural networks – year: 2017 ident: bib0035 article-title: Multi-label classification of patient notes a case study on ICD code assignment – start-page: 66 year: 2013 end-page: 73 ident: bib0060 article-title: Supervised extraction of diagnosis codes from EMRs: role of feature selection, data selection, and probabilistic thresholding publication-title: IEEE international conference on healthcare informatics (ICHI) – volume: 48 start-page: 201 year: 2016 end-page: 228 ident: bib0100 article-title: Transfer learning for class imbalance problems with inadequate data publication-title: Knowl Inf Syst – start-page: 807 year: 2010 end-page: 814 ident: bib0145 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: International conference on machine learning (ICML) – year: 2012 ident: bib0180 article-title: ADADELTA: an adaptive learning rate method – start-page: 1717 year: 2014 end-page: 1724 ident: bib0025 article-title: Learning and transferring mid-level image representations using convolutional neural networks publication-title: IEEE conference on computer vision and pattern recognition (CVPR) – start-page: 315 year: 2011 end-page: 323 ident: bib0140 article-title: Deep sparse rectifier networks publication-title: International conference on artificial intelligence and statistics. JMLR W&CP Volume, vol. 15 – year: 2018 ident: bib0080 article-title: Explainable prediction of medical codes from clinical text publication-title: North American chapter of the association for computational linguistics (NAACL) – start-page: 1717 year: 2014 ident: 10.1016/j.artmed.2019.04.002_bib0025 article-title: Learning and transferring mid-level image representations using convolutional neural networks publication-title: IEEE conference on computer vision and pattern recognition (CVPR) – start-page: 807 year: 2010 ident: 10.1016/j.artmed.2019.04.002_bib0145 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: International conference on machine learning (ICML) – start-page: 1746 year: 2014 ident: 10.1016/j.artmed.2019.04.002_bib0030 article-title: Convolutional neural networks for sentence classification publication-title: Empirical methods in natural language processing (EMNLP) – volume: 80 start-page: 64 year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0070 article-title: Deep neural models for icd-10 coding of death certificates and autopsy reports in free-text publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.02.011 – year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0175 article-title: Snapshot ensembles: Train 1, get m for free publication-title: International conference on learning representations (ICLR) – year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0090 article-title: EMRcoding with semi-parametric multi-head matching networks publication-title: Proceedings of the North American chapter of the association for computational linguistics (NAACL) – start-page: 66 year: 2013 ident: 10.1016/j.artmed.2019.04.002_bib0060 article-title: Supervised extraction of diagnosis codes from EMRs: role of feature selection, data selection, and probabilistic thresholding publication-title: IEEE international conference on healthcare informatics (ICHI) – volume: 3 start-page: 225 issue: 3 year: 2009 ident: 10.1016/j.artmed.2019.04.002_bib0190 article-title: Learning to rank for information retrieval publication-title: Found Trends Inf Retriev doi: 10.1561/1500000016 – start-page: 328 year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0105 article-title: Universal language model fine-tuning for text classification publication-title: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), vol. 1 doi: 10.18653/v1/P18-1031 – start-page: 437 year: 2014 ident: 10.1016/j.artmed.2019.04.002_bib0150 article-title: Large-scale multi-label text classification – revisiting neural networks publication-title: European conference on machine learning and knowledge discovery in databases – (ECML PKDD) doi: 10.1007/978-3-662-44851-9_28 – start-page: 479 year: 2016 ident: 10.1016/j.artmed.2019.04.002_bib0095 article-title: How transferable are neural networks in NLP applications? publication-title: Conference on empirical methods in natural language processing (EMNLP) – start-page: 301 year: 2016 ident: 10.1016/j.artmed.2019.04.002_bib0115 article-title: Doctor AI: predicting clinical events via recurrent neural networks publication-title: Machine learning for healthcare conference – start-page: 8315 year: 2011 ident: 10.1016/j.artmed.2019.04.002_bib0005 article-title: Open-access mimic-ii database for intensive care research publication-title: IEEE annual international conference engineering in medicine and biology society (EMBC) – year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0080 article-title: Explainable prediction of medical codes from clinical text publication-title: North American chapter of the association for computational linguistics (NAACL) – start-page: 315 year: 2011 ident: 10.1016/j.artmed.2019.04.002_bib0140 article-title: Deep sparse rectifier networks publication-title: International conference on artificial intelligence and statistics. JMLR W&CP Volume, vol. 15 – volume: 21 start-page: 231 issue: 2 year: 2013 ident: 10.1016/j.artmed.2019.04.002_bib0050 article-title: Diagnosis code assignment: models and evaluation metrics publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002159 – year: 2012 ident: 10.1016/j.artmed.2019.04.002_bib0180 – start-page: 667 year: 2010 ident: 10.1016/j.artmed.2019.04.002_bib0195 article-title: Mining multi-label data – volume: 65 start-page: 155 issue: 2 year: 2015 ident: 10.1016/j.artmed.2019.04.002_bib0045 article-title: An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records publication-title: Artif Intell Med doi: 10.1016/j.artmed.2015.04.007 – volume: 40 start-page: 2935 issue: 12 year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0155 article-title: Learning without forgetting publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2773081 – volume: 2017 start-page: 263 year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0055 article-title: Enhancing automatic icd-9-cm code assignment for medical texts with pubmed publication-title: BioNLP – volume: 10 start-page: 192 issue: 4 year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0015 article-title: Frontal lobe meningioma mimicking preeclampsia: a case study publication-title: Obstet Med doi: 10.1177/1753495X17701847 – volume: 324 start-page: 43 year: 2019 ident: 10.1016/j.artmed.2019.04.002_bib0130 article-title: Automatic icd-9 coding via deep transfer learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.081 – start-page: 1681 year: 2015 ident: 10.1016/j.artmed.2019.04.002_bib0165 article-title: Deep unordered composition rivals syntactic methods for text classification publication-title: Annual meeting of the association for computational linguistics (ACL) – volume: 17 start-page: 229 issue: 3 year: 2010 ident: 10.1016/j.artmed.2019.04.002_bib0185 article-title: An overview of metamap: historical perspective and recent advances publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.002733 – volume: 87 start-page: 60 year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0120 article-title: What matters in a transferable neural network model for relation classification in the biomedical domain? publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.03.006 – start-page: 97 year: 2007 ident: 10.1016/j.artmed.2019.04.002_bib0040 article-title: A shared task involving multi-label classification of clinical free text publication-title: Proceedings of the workshop on BioNLP: biological, translational, and clinical language processing – start-page: 754 year: 2011 ident: 10.1016/j.artmed.2019.04.002_bib0170 article-title: Class imbalance, redux publication-title: IEEE international conference on data mining (ICDM) – volume: 3 year: 2016 ident: 10.1016/j.artmed.2019.04.002_bib0010 article-title: Mimic-iii, a freely accessible critical care database publication-title: Sci Data doi: 10.1038/sdata.2016.35 – volume: 48 start-page: 201 issue: 1 year: 2016 ident: 10.1016/j.artmed.2019.04.002_bib0100 article-title: Transfer learning for class imbalance problems with inadequate data publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0870-3 – volume: 57 start-page: 345 year: 2016 ident: 10.1016/j.artmed.2019.04.002_bib0135 article-title: A primer on neural network models for natural language processing publication-title: J Artif Intell Res doi: 10.1613/jair.4992 – year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0035 – year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0075 – volume: 2017 start-page: 328 year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0065 article-title: Automatic diagnosis coding of radiology reports: a comparison of deep learning and conventional classification methods publication-title: BioNLP – volume: 32 start-page: D267 issue: suppl_1 year: 2004 ident: 10.1016/j.artmed.2019.04.002_bib0020 article-title: The unified medical language system (umls): integrating biomedical terminology publication-title: Nucl Acids Res doi: 10.1093/nar/gkh061 – volume: 21 start-page: 699 issue: 4 year: 2014 ident: 10.1016/j.artmed.2019.04.002_bib0110 article-title: A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002162 – volume: 1 start-page: 9 year: 2018 ident: 10.1016/j.artmed.2019.04.002_bib0125 article-title: Generalizing biomedical relation classification with neural adversarial domain adaptation publication-title: Bioinformatics – year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0085 – volume: 114 start-page: 3521 issue: 13 year: 2017 ident: 10.1016/j.artmed.2019.04.002_bib0160 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1611835114 |
| SSID | ssj0007416 |
| Score | 2.3971834 |
| Snippet | •Transfer learning using convolutional neural networks improves multi-label learning.•Predicting MeSH terms for biomedical articles is a useful source task for... Electronic medical records (EMRs) are manually annotated by healthcare professionals and specialized medical coders with a standardized set of alphanumeric... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 116 |
| SubjectTerms | Clinical Coding - methods Convolutional neural networks Electronic Health Records - organization & administration Electronic Health Records - standards Humans International Classification of Diseases Medical coding Multi-label classification Neural Networks, Computer Transfer learning |
| Title | Neural transfer learning for assigning diagnosis codes to EMRs |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365718304378 https://dx.doi.org/10.1016/j.artmed.2019.04.002 https://www.ncbi.nlm.nih.gov/pubmed/31164204 https://www.proquest.com/docview/2324920037 |
| Volume | 96 |
| WOSCitedRecordID | wos000472704800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZrO8Zedulu2aVoMPYyXGxLjuWXQRgp22izUVLIm5BsiaXrnMyOS3_-jm5uICvNHvYiHGEljr7PR-dI54LQu4IyyipBIl2SLKI0rSImhIaGCJWkksiqssUm8smEzWbFd19WsbXlBPK6ZldXxfK_Qg19ALYJnf0HuPsvhQ64BtChBdih3Qp4k27DepAbjVQ1oS6E95dsjcOG-VQ5H7t5-8FEtds8D-OT03ZdWR011pHIlvVYz9w5rzeO5E_nzl3P5yLoxbi47C66prNAil_iJ-D4Y32jwcQ2Bbc-LxtZTqKUufT_h-ovfV6gFusSMXGhlBuS2m0anB_CPMEjGx-7wuacjdPrlSmcxk--8aOz42M-Hc-m75e_I1MzzJyt-wIqO2gvzbMCxPLe6Mt49rVfiY22aQzu8JAhdNL6923-8E2qyU2mh1VBpo_QA2874JHD_DG6o-p99DDU5cBeTO-jeycenSfoo2MDDmzAgQ0Y2IB7NuCeDdiyAa8W2LDhKTo7Gk8_fY58yYyoBE1sFQmqUwk2owTLNGekIsOYqmGuqNYF0aBKEiVLMIpjmShJVR5rs0UwlGmcCUZ1Qp6h3XpRqxcIxyWTIstkoRNFK7iQWlVMJIwVmQTLfYBImC1e-nzypqzJBQ-Og-fczTE3c8xjymGOByjqRy1dPpVb7s8CEDzECsPqxoFGt4zL-3Fel3Q64hYj3wa8OYhac34marXoWm6Mj8I4c-YD9NwRof8PBHhO05i-3GL0K3T_-v16jXZXTafeoLvl5WreNgdoJ5-xA0_lP_QXqfw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+transfer+learning+for+assigning+diagnosis+codes+to+EMRs&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Rios%2C+Anthony&rft.au=Kavuluru%2C+Ramakanth&rft.date=2019-05-01&rft.issn=1873-2860&rft.eissn=1873-2860&rft.volume=96&rft.spage=116&rft_id=info:doi/10.1016%2Fj.artmed.2019.04.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |