Uncertainty-Aware Principal Component Analysis
We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniqu...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 26; H. 1; S. 822 - 831 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach. |
|---|---|
| AbstractList | We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach. We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach. |
| Author | Weiskopf, Daniel Gortler, Jochen Deussen, Oliver Spinner, Thilo Streeb, Dirk |
| Author_xml | – sequence: 1 givenname: Jochen surname: Gortler fullname: Gortler, Jochen email: jochen.gortler@uni-konstanz.de organization: University of Konstanz, Germany – sequence: 2 givenname: Thilo surname: Spinner fullname: Spinner, Thilo email: thilo.spinner@uni-konstanz.de organization: University of Konstanz, Germany – sequence: 3 givenname: Dirk surname: Streeb fullname: Streeb, Dirk email: dirk.streeb@uni-konstanz.de organization: University of Konstanz, Germany – sequence: 4 givenname: Daniel surname: Weiskopf fullname: Weiskopf, Daniel email: weiskopf@visus.uni-stuttgart.de organization: University of Stuttgart, Germany – sequence: 5 givenname: Oliver surname: Deussen fullname: Deussen, Oliver email: oliver.deussen@uni-konstanz.de organization: University of Konstanz, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31603820$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LAzEQhoNUtFV_gAhS8OJlazLJJtljKX6BoAf1GpJ0FiLbbE22SP-9W9p66MHTzOF55-MZkUFsIxJyyeiEMVrdvX_OHidAWTWBigvN4IgMWSVYQUsqB31PlSpAgjwlo5y_KGVC6OqEnHImKddAh2TyET2mzobYrYvpj004fksh-rC0zXjWLpb9xtiNp9E26xzyOTmubZPxYlfPyMfD_fvsqXh5fXyeTV8KL1jZFZUshSqldsAcnXM2V8KhE67Wbi5L67WoBUiuuHQIHgAlIPDaWoUOhPf8jNxu5y5T-73C3JlFyB6bxkZsV9kA718UnKqqR28O0K92lfp7NxRTCqTW0FPXO2rlFjg3yxQWNq3N3kQPqC3gU5tzwtr40NkutLFLNjSGUbNxbjbOzca52Tnvk-wguR_-X-ZqmwmI-MdrLXklJf8F97SKKQ |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1109_TVCG_2025_3542898 crossref_primary_10_1007_s00371_024_03435_x crossref_primary_10_1109_TVCG_2024_3406387 crossref_primary_10_1155_2021_5564235 crossref_primary_10_3389_fpubh_2022_913255 crossref_primary_10_1016_j_intfin_2023_101853 crossref_primary_10_1186_s12864_025_11728_1 crossref_primary_10_1016_j_compbiomed_2024_109105 crossref_primary_10_1109_TVCG_2023_3288356 crossref_primary_10_1111_cgf_14034 crossref_primary_10_1109_TVCG_2023_3345532 crossref_primary_10_1029_2023JB026839 crossref_primary_10_1016_j_eswa_2022_116650 crossref_primary_10_1109_TVCG_2022_3209420 crossref_primary_10_1002_jemt_24307 crossref_primary_10_1016_j_wees_2024_05_004 crossref_primary_10_1007_s00371_022_02733_6 crossref_primary_10_1016_j_atech_2025_101277 crossref_primary_10_1016_j_scitotenv_2020_144496 crossref_primary_10_1109_TIT_2022_3215496 crossref_primary_10_1016_j_knosys_2021_107517 crossref_primary_10_1002_biof_70012 crossref_primary_10_3390_rs14215341 crossref_primary_10_1111_cgf_70063 |
| Cites_doi | 10.1109/TVCG.2016.2598604 10.1109/TVCG.2018.2846735 10.1057/ivs.2009.1 10.1088/0305-4470/38/8/009 10.1080/14786440109462720 10.1002/cem.759 10.1109/TVCG.2016.2598919 10.1109/TVCG.2015.2467132 10.7551/mitpress/3206.001.0001 10.1126/science.1191181 10.1007/BF02288916 10.1093/bioinformatics/bti617 10.1111/1467-9868.00196 10.1109/TVCG.2018.2865194 10.1007/BFb0020217 10.2307/1412107 10.1007/s11258-014-0406-z 10.1037/0033-295X.98.1.74 10.1109/TVCG.2004.17 10.1016/j.csda.2006.02.019 10.1007/978-3-662-02781-3_19 10.1002/0471221317 10.1111/cgf.12876 10.1109/TVCG.2016.2598694 10.23915/distill.00002 10.1198/jasa.2009.0121 10.1029/2007WR006692 10.1109/JPROC.2018.2853498 10.1017/CBO9780511666353.009 10.1109/TFUZZ.2004.825990 10.1162/089976603321043694 10.1109/TVCG.2014.2346481 10.1561/2200000002 10.1109/TVCG.2016.2640960 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2019.2934812 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 831 |
| ExternalDocumentID | 31603820 10_1109_TVCG_2019_2934812 8863966 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Horizon 2020 Framework Programme; Horizon 2020 grantid: 825041 funderid: 10.13039/100010661 – fundername: DFG grantid: 251654672 - TRR 161 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIC RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c415t-96547568b21b0d31d74beb4bf8bd65ac84f4263736be2c22e62e23faa7eb24cc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506166100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sun Sep 28 02:11:52 EDT 2025 Sun Nov 09 08:14:50 EST 2025 Wed Feb 19 02:30:41 EST 2025 Sat Nov 29 06:05:42 EST 2025 Tue Nov 18 21:45:01 EST 2025 Wed Aug 27 06:24:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-96547568b21b0d31d74beb4bf8bd65ac84f4263736be2c22e62e23faa7eb24cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31603820 |
| PQID | 2317726882 |
| PQPubID | 75741 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2305043079 crossref_citationtrail_10_1109_TVCG_2019_2934812 pubmed_primary_31603820 crossref_primary_10_1109_TVCG_2019_2934812 proquest_journals_2317726882 ieee_primary_8863966 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jan. 2020-1-00 2020-Jan 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref14 ref36 ref31 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref38 Gaillard (ref9) 2019 ref19 ref18 Kandogan (ref15) 2000 Wickens (ref44) 1994 ref24 ref23 ref26 ref25 ref42 ref41 ref22 ref21 ref43 Streeb (ref35) 2018 Hermida (ref11) 2015; 3 ref28 ref27 ref29 Steiger (ref34) 2019 ref8 Cunningham (ref4) 2015; 16 ref7 Shevlyakov (ref30) 2011; 1 & 2 ref3 ref6 ref5 Bishop (ref2) 1999; 11 ref40 Nakajima (ref20) 2011 |
| References_xml | – ident: ref7 doi: 10.1109/TVCG.2016.2598604 – ident: ref21 doi: 10.1109/TVCG.2018.2846735 – ident: ref31 doi: 10.1057/ivs.2009.1 – ident: ref29 doi: 10.1088/0305-4470/38/8/009 – ident: ref23 doi: 10.1080/14786440109462720 – ident: ref22 doi: 10.1002/cem.759 – ident: ref27 doi: 10.1109/TVCG.2016.2598919 – ident: ref17 doi: 10.1109/TVCG.2015.2467132 – ident: ref24 doi: 10.7551/mitpress/3206.001.0001 – ident: ref33 doi: 10.1126/science.1191181 – ident: ref38 doi: 10.1007/BF02288916 – ident: ref26 doi: 10.1093/bioinformatics/bti617 – ident: ref36 doi: 10.1111/1467-9868.00196 – ident: ref8 doi: 10.1109/TVCG.2018.2865194 – ident: ref28 doi: 10.1007/BFb0020217 – volume: 1 & 2 start-page: 147 year: 2011 ident: ref30 article-title: Robust estimation of the correlation coefficient: An attempt of survey publication-title: Australian Journal of Statistics – ident: ref32 doi: 10.2307/1412107 – ident: ref6 doi: 10.1007/s11258-014-0406-z – ident: ref12 doi: 10.1037/0033-295X.98.1.74 – volume-title: The Geometry of Multivariate Statistics year: 1994 ident: ref44 – ident: ref16 doi: 10.1109/TVCG.2004.17 – ident: ref10 doi: 10.1016/j.csda.2006.02.019 – start-page: 9 volume-title: Proceedings of the IEEE Information Visualization Symposium, Late Breaking Hot Topics year: 2000 ident: ref15 article-title: Star coordinates: A multi-dimensional visualization technique with uniform treatment of dimensions – ident: ref41 doi: 10.1007/978-3-662-02781-3_19 – volume-title: CERN Data Centre passes the 200-petabyte milestone year: 2019 ident: ref9 – start-page: 497 volume-title: International Conference on Machine Learning year: 2011 ident: ref20 article-title: On Bayesian PCA: Automatic dimensionality selection and analytic solution – ident: ref13 doi: 10.1002/0471221317 – ident: ref18 doi: 10.1111/cgf.12876 – ident: ref42 doi: 10.1109/TVCG.2016.2598694 – ident: ref43 doi: 10.23915/distill.00002 – ident: ref14 doi: 10.1198/jasa.2009.0121 – ident: ref39 doi: 10.1029/2007WR006692 – volume: 11 start-page: 382 volume-title: Advances in Neural Information Processing Systems year: 1999 ident: ref2 article-title: Bayesian PCA – ident: ref40 doi: 10.1109/JPROC.2018.2853498 – volume: 3 start-page: 05 issue: 1 year: 2015 ident: ref11 article-title: The problem of allowing correlated errors in structural equation modeling: concerns and considerations publication-title: Computational Methods in Social Sciences – year: 2019 ident: ref34 publication-title: Principal Components Analysis – ident: ref37 doi: 10.1017/CBO9780511666353.009 – ident: ref5 doi: 10.1109/TFUZZ.2004.825990 – volume-title: Workshop at IEEE VIS Conference year: 2018 ident: ref35 article-title: Distances, neighborhoods, or dimensions? Projection literacy for the analysis of multivariate data – ident: ref1 doi: 10.1162/089976603321043694 – ident: ref25 doi: 10.1109/TVCG.2014.2346481 – ident: ref3 doi: 10.1561/2200000002 – volume: 16 start-page: 2859 issue: 1 year: 2015 ident: ref4 article-title: Linear dimensionality reduction: Survey, insights, and generalizations publication-title: Journal of Machine Learning Research – ident: ref19 doi: 10.1109/TVCG.2016.2640960 |
| SSID | ssj0014489 |
| Score | 2.4412844 |
| Snippet | We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 822 |
| SubjectTerms | Covariance matrices Covariance matrix Data visualization Dimensionality reduction linear projection machine learning Mathematical analysis Matrix methods Multivariate analysis Principal component analysis Principal components analysis Probability distribution Random variables Reduction Sensitivity analysis Uncertainty Uncertainty analysis |
| Title | Uncertainty-Aware Principal Component Analysis |
| URI | https://ieeexplore.ieee.org/document/8863966 https://www.ncbi.nlm.nih.gov/pubmed/31603820 https://www.proquest.com/docview/2317726882 https://www.proquest.com/docview/2305043079 |
| Volume | 26 |
| WOSCitedRecordID | wos000506166100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) - NZ customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c8EEf_Jof1SkTfBIz0zRrmschfjyI-ODG3kqTJiBIJ1un-N97SbuioIJvhV6Sckl697tLfgdwpkIrIiMokVYJwhFwEJVJTlRkqAmZiYRnvBnfi4eHZDKRjytw0dyFMcb4w2em7x59Lj-f6oULlV0mCdrTOG5BSwhR3dVqMgYIM2R1vlAQhl56ncEMqbx8Gl_dukNcso-2jSch-2aDfFGV3_1Lb2duNv_3hVuwUfuTvWG1ALZhxRQ7sP6FZbAD_RFOrE_8lx9k-J7NTO-xCrFjQ_c_mBbYaW9JT7ILo5vrp6s7UpdJIBqtb0mkqx88iBPFQkXzKMwFV0ZxZROVx4NMJ9w6VnYRxcowzZiJmWGRzTKBqJprHe1Bu8CRDqBnpeI61JTmdsCZVSqXsUIXIrMW5SwPgC4Vl-qaQ9yVsnhJPZagMnW6Tp2u01rXAZw3TV4rAo2_hDtOp41grc4AusvZSestNk_RMUVkECNCCOC0eY2bw2U8ssJMF06GOoY2KmQA-9WsNn1HrsA2-j-HP495BGvMQWsfbelCu5wtzDGs6rfyeT47wRU4SU78CvwEvrTWKA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfs2P-jnBJzEzTbOmeRTxC-fYw5S9lSZNQJBN5qb433tJu6Kggm-FXpJySXr3u0t-B3CsQisiIyiRVgnCEXAQlUlOVGSoCZmJhGe8eWyLTifp92W3BqfVXRhjjD98Zpru0efy86GeuFDZWZKgPY3jGZhrcc7C4rZWlTNAoCGLE4aCMPTTyxxmSOVZ7_Hi2h3jkk20bjwJ2Tcr5Muq_O5hektztfK_b1yF5dKjbJwXS2ANamawDktfeAbr0HzAqfWp__EHOX_PRqbRLYLs2ND9EYYD7LQxJSjZgIery97FDSkLJRCN9ndMpKsg3IoTxUJF8yjMBVdGcWUTlcetTCfcOl52EcXKMM2YiZlhkc0ygbiaax1twuwAR9qGhpWK61BTmtsWZ1apXMYKnYjMWpSzPAA6VVyqSxZxV8ziOfVogsrU6Tp1uk5LXQdwUjV5KSg0_hKuO51WgqU6A9ibzk5abrLXFF1TxAYxYoQAjqrXuD1cziMbmOHEyVDH0UaFDGCrmNWq78iV2EYPaOfnMQ9h4aZ3307bt527XVhkDmj72MsezI5HE7MP8_pt_PQ6OvDr8BP-MdiH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Aware+Principal+Component+Analysis&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Gortler%2C+Jochen&rft.au=Spinner%2C+Thilo&rft.au=Streeb%2C+Dirk&rft.au=Weiskopf%2C+Daniel&rft.date=2020-01-01&rft.eissn=1941-0506&rft.volume=26&rft.issue=1&rft.spage=822&rft_id=info:doi/10.1109%2FTVCG.2019.2934812&rft_id=info%3Apmid%2F31603820&rft.externalDocID=31603820 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |