Uncertainty-Aware Principal Component Analysis

We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 26; H. 1; S. 822 - 831
Hauptverfasser: Gortler, Jochen, Spinner, Thilo, Streeb, Dirk, Weiskopf, Daniel, Deussen, Oliver
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1077-2626, 1941-0506, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.
AbstractList We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.
We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.
Author Weiskopf, Daniel
Gortler, Jochen
Deussen, Oliver
Spinner, Thilo
Streeb, Dirk
Author_xml – sequence: 1
  givenname: Jochen
  surname: Gortler
  fullname: Gortler, Jochen
  email: jochen.gortler@uni-konstanz.de
  organization: University of Konstanz, Germany
– sequence: 2
  givenname: Thilo
  surname: Spinner
  fullname: Spinner, Thilo
  email: thilo.spinner@uni-konstanz.de
  organization: University of Konstanz, Germany
– sequence: 3
  givenname: Dirk
  surname: Streeb
  fullname: Streeb, Dirk
  email: dirk.streeb@uni-konstanz.de
  organization: University of Konstanz, Germany
– sequence: 4
  givenname: Daniel
  surname: Weiskopf
  fullname: Weiskopf, Daniel
  email: weiskopf@visus.uni-stuttgart.de
  organization: University of Stuttgart, Germany
– sequence: 5
  givenname: Oliver
  surname: Deussen
  fullname: Deussen, Oliver
  email: oliver.deussen@uni-konstanz.de
  organization: University of Konstanz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31603820$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUtFV_gAhS8OJlazLJJtljKX6BoAf1GpJ0FiLbbE22SP-9W9p66MHTzOF55-MZkUFsIxJyyeiEMVrdvX_OHidAWTWBigvN4IgMWSVYQUsqB31PlSpAgjwlo5y_KGVC6OqEnHImKddAh2TyET2mzobYrYvpj004fksh-rC0zXjWLpb9xtiNp9E26xzyOTmubZPxYlfPyMfD_fvsqXh5fXyeTV8KL1jZFZUshSqldsAcnXM2V8KhE67Wbi5L67WoBUiuuHQIHgAlIPDaWoUOhPf8jNxu5y5T-73C3JlFyB6bxkZsV9kA718UnKqqR28O0K92lfp7NxRTCqTW0FPXO2rlFjg3yxQWNq3N3kQPqC3gU5tzwtr40NkutLFLNjSGUbNxbjbOzca52Tnvk-wguR_-X-ZqmwmI-MdrLXklJf8F97SKKQ
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2025_3542898
crossref_primary_10_1007_s00371_024_03435_x
crossref_primary_10_1109_TVCG_2024_3406387
crossref_primary_10_1155_2021_5564235
crossref_primary_10_3389_fpubh_2022_913255
crossref_primary_10_1016_j_intfin_2023_101853
crossref_primary_10_1186_s12864_025_11728_1
crossref_primary_10_1016_j_compbiomed_2024_109105
crossref_primary_10_1109_TVCG_2023_3288356
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1109_TVCG_2023_3345532
crossref_primary_10_1029_2023JB026839
crossref_primary_10_1016_j_eswa_2022_116650
crossref_primary_10_1109_TVCG_2022_3209420
crossref_primary_10_1002_jemt_24307
crossref_primary_10_1016_j_wees_2024_05_004
crossref_primary_10_1007_s00371_022_02733_6
crossref_primary_10_1016_j_atech_2025_101277
crossref_primary_10_1016_j_scitotenv_2020_144496
crossref_primary_10_1109_TIT_2022_3215496
crossref_primary_10_1016_j_knosys_2021_107517
crossref_primary_10_1002_biof_70012
crossref_primary_10_3390_rs14215341
crossref_primary_10_1111_cgf_70063
Cites_doi 10.1109/TVCG.2016.2598604
10.1109/TVCG.2018.2846735
10.1057/ivs.2009.1
10.1088/0305-4470/38/8/009
10.1080/14786440109462720
10.1002/cem.759
10.1109/TVCG.2016.2598919
10.1109/TVCG.2015.2467132
10.7551/mitpress/3206.001.0001
10.1126/science.1191181
10.1007/BF02288916
10.1093/bioinformatics/bti617
10.1111/1467-9868.00196
10.1109/TVCG.2018.2865194
10.1007/BFb0020217
10.2307/1412107
10.1007/s11258-014-0406-z
10.1037/0033-295X.98.1.74
10.1109/TVCG.2004.17
10.1016/j.csda.2006.02.019
10.1007/978-3-662-02781-3_19
10.1002/0471221317
10.1111/cgf.12876
10.1109/TVCG.2016.2598694
10.23915/distill.00002
10.1198/jasa.2009.0121
10.1029/2007WR006692
10.1109/JPROC.2018.2853498
10.1017/CBO9780511666353.009
10.1109/TFUZZ.2004.825990
10.1162/089976603321043694
10.1109/TVCG.2014.2346481
10.1561/2200000002
10.1109/TVCG.2016.2640960
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2019.2934812
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 831
ExternalDocumentID 31603820
10_1109_TVCG_2019_2934812
8863966
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Horizon 2020 Framework Programme; Horizon 2020
  grantid: 825041
  funderid: 10.13039/100010661
– fundername: DFG
  grantid: 251654672 - TRR 161
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIC
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-96547568b21b0d31d74beb4bf8bd65ac84f4263736be2c22e62e23faa7eb24cc3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506166100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sun Sep 28 02:11:52 EDT 2025
Sun Nov 09 08:14:50 EST 2025
Wed Feb 19 02:30:41 EST 2025
Sat Nov 29 06:05:42 EST 2025
Tue Nov 18 21:45:01 EST 2025
Wed Aug 27 06:24:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-96547568b21b0d31d74beb4bf8bd65ac84f4263736be2c22e62e23faa7eb24cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31603820
PQID 2317726882
PQPubID 75741
PageCount 10
ParticipantIDs proquest_miscellaneous_2305043079
crossref_citationtrail_10_1109_TVCG_2019_2934812
pubmed_primary_31603820
crossref_primary_10_1109_TVCG_2019_2934812
proquest_journals_2317726882
ieee_primary_8863966
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref14
ref36
ref31
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref38
Gaillard (ref9) 2019
ref19
ref18
Kandogan (ref15) 2000
Wickens (ref44) 1994
ref24
ref23
ref26
ref25
ref42
ref41
ref22
ref21
ref43
Streeb (ref35) 2018
Hermida (ref11) 2015; 3
ref28
ref27
ref29
Steiger (ref34) 2019
ref8
Cunningham (ref4) 2015; 16
ref7
Shevlyakov (ref30) 2011; 1 & 2
ref3
ref6
ref5
Bishop (ref2) 1999; 11
ref40
Nakajima (ref20) 2011
References_xml – ident: ref7
  doi: 10.1109/TVCG.2016.2598604
– ident: ref21
  doi: 10.1109/TVCG.2018.2846735
– ident: ref31
  doi: 10.1057/ivs.2009.1
– ident: ref29
  doi: 10.1088/0305-4470/38/8/009
– ident: ref23
  doi: 10.1080/14786440109462720
– ident: ref22
  doi: 10.1002/cem.759
– ident: ref27
  doi: 10.1109/TVCG.2016.2598919
– ident: ref17
  doi: 10.1109/TVCG.2015.2467132
– ident: ref24
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref33
  doi: 10.1126/science.1191181
– ident: ref38
  doi: 10.1007/BF02288916
– ident: ref26
  doi: 10.1093/bioinformatics/bti617
– ident: ref36
  doi: 10.1111/1467-9868.00196
– ident: ref8
  doi: 10.1109/TVCG.2018.2865194
– ident: ref28
  doi: 10.1007/BFb0020217
– volume: 1 & 2
  start-page: 147
  year: 2011
  ident: ref30
  article-title: Robust estimation of the correlation coefficient: An attempt of survey
  publication-title: Australian Journal of Statistics
– ident: ref32
  doi: 10.2307/1412107
– ident: ref6
  doi: 10.1007/s11258-014-0406-z
– ident: ref12
  doi: 10.1037/0033-295X.98.1.74
– volume-title: The Geometry of Multivariate Statistics
  year: 1994
  ident: ref44
– ident: ref16
  doi: 10.1109/TVCG.2004.17
– ident: ref10
  doi: 10.1016/j.csda.2006.02.019
– start-page: 9
  volume-title: Proceedings of the IEEE Information Visualization Symposium, Late Breaking Hot Topics
  year: 2000
  ident: ref15
  article-title: Star coordinates: A multi-dimensional visualization technique with uniform treatment of dimensions
– ident: ref41
  doi: 10.1007/978-3-662-02781-3_19
– volume-title: CERN Data Centre passes the 200-petabyte milestone
  year: 2019
  ident: ref9
– start-page: 497
  volume-title: International Conference on Machine Learning
  year: 2011
  ident: ref20
  article-title: On Bayesian PCA: Automatic dimensionality selection and analytic solution
– ident: ref13
  doi: 10.1002/0471221317
– ident: ref18
  doi: 10.1111/cgf.12876
– ident: ref42
  doi: 10.1109/TVCG.2016.2598694
– ident: ref43
  doi: 10.23915/distill.00002
– ident: ref14
  doi: 10.1198/jasa.2009.0121
– ident: ref39
  doi: 10.1029/2007WR006692
– volume: 11
  start-page: 382
  volume-title: Advances in Neural Information Processing Systems
  year: 1999
  ident: ref2
  article-title: Bayesian PCA
– ident: ref40
  doi: 10.1109/JPROC.2018.2853498
– volume: 3
  start-page: 05
  issue: 1
  year: 2015
  ident: ref11
  article-title: The problem of allowing correlated errors in structural equation modeling: concerns and considerations
  publication-title: Computational Methods in Social Sciences
– year: 2019
  ident: ref34
  publication-title: Principal Components Analysis
– ident: ref37
  doi: 10.1017/CBO9780511666353.009
– ident: ref5
  doi: 10.1109/TFUZZ.2004.825990
– volume-title: Workshop at IEEE VIS Conference
  year: 2018
  ident: ref35
  article-title: Distances, neighborhoods, or dimensions? Projection literacy for the analysis of multivariate data
– ident: ref1
  doi: 10.1162/089976603321043694
– ident: ref25
  doi: 10.1109/TVCG.2014.2346481
– ident: ref3
  doi: 10.1561/2200000002
– volume: 16
  start-page: 2859
  issue: 1
  year: 2015
  ident: ref4
  article-title: Linear dimensionality reduction: Survey, insights, and generalizations
  publication-title: Journal of Machine Learning Research
– ident: ref19
  doi: 10.1109/TVCG.2016.2640960
SSID ssj0014489
Score 2.4412844
Snippet We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 822
SubjectTerms Covariance matrices
Covariance matrix
Data visualization
Dimensionality reduction
linear projection
machine learning
Mathematical analysis
Matrix methods
Multivariate analysis
Principal component analysis
Principal components analysis
Probability distribution
Random variables
Reduction
Sensitivity analysis
Uncertainty
Uncertainty analysis
Title Uncertainty-Aware Principal Component Analysis
URI https://ieeexplore.ieee.org/document/8863966
https://www.ncbi.nlm.nih.gov/pubmed/31603820
https://www.proquest.com/docview/2317726882
https://www.proquest.com/docview/2305043079
Volume 26
WOSCitedRecordID wos000506166100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL) - NZ
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c8EEf_Jof1SkTfBIz0zRrmschfjyI-ODG3kqTJiBIJ1un-N97SbuioIJvhV6Sckl697tLfgdwpkIrIiMokVYJwhFwEJVJTlRkqAmZiYRnvBnfi4eHZDKRjytw0dyFMcb4w2em7x59Lj-f6oULlV0mCdrTOG5BSwhR3dVqMgYIM2R1vlAQhl56ncEMqbx8Gl_dukNcso-2jSch-2aDfFGV3_1Lb2duNv_3hVuwUfuTvWG1ALZhxRQ7sP6FZbAD_RFOrE_8lx9k-J7NTO-xCrFjQ_c_mBbYaW9JT7ILo5vrp6s7UpdJIBqtb0mkqx88iBPFQkXzKMwFV0ZxZROVx4NMJ9w6VnYRxcowzZiJmWGRzTKBqJprHe1Bu8CRDqBnpeI61JTmdsCZVSqXsUIXIrMW5SwPgC4Vl-qaQ9yVsnhJPZagMnW6Tp2u01rXAZw3TV4rAo2_hDtOp41grc4AusvZSestNk_RMUVkECNCCOC0eY2bw2U8ssJMF06GOoY2KmQA-9WsNn1HrsA2-j-HP495BGvMQWsfbelCu5wtzDGs6rfyeT47wRU4SU78CvwEvrTWKA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfs2P-jnBJzEzTbOmeRTxC-fYw5S9lSZNQJBN5qb433tJu6Kggm-FXpJySXr3u0t-B3CsQisiIyiRVgnCEXAQlUlOVGSoCZmJhGe8eWyLTifp92W3BqfVXRhjjD98Zpru0efy86GeuFDZWZKgPY3jGZhrcc7C4rZWlTNAoCGLE4aCMPTTyxxmSOVZ7_Hi2h3jkk20bjwJ2Tcr5Muq_O5hektztfK_b1yF5dKjbJwXS2ANamawDktfeAbr0HzAqfWp__EHOX_PRqbRLYLs2ND9EYYD7LQxJSjZgIery97FDSkLJRCN9ndMpKsg3IoTxUJF8yjMBVdGcWUTlcetTCfcOl52EcXKMM2YiZlhkc0ygbiaax1twuwAR9qGhpWK61BTmtsWZ1apXMYKnYjMWpSzPAA6VVyqSxZxV8ziOfVogsrU6Tp1uk5LXQdwUjV5KSg0_hKuO51WgqU6A9ibzk5abrLXFF1TxAYxYoQAjqrXuD1cziMbmOHEyVDH0UaFDGCrmNWq78iV2EYPaOfnMQ9h4aZ3307bt527XVhkDmj72MsezI5HE7MP8_pt_PQ6OvDr8BP-MdiH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Aware+Principal+Component+Analysis&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Gortler%2C+Jochen&rft.au=Spinner%2C+Thilo&rft.au=Streeb%2C+Dirk&rft.au=Weiskopf%2C+Daniel&rft.date=2020-01-01&rft.eissn=1941-0506&rft.volume=26&rft.issue=1&rft.spage=822&rft_id=info:doi/10.1109%2FTVCG.2019.2934812&rft_id=info%3Apmid%2F31603820&rft.externalDocID=31603820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon