A User-Centric Context-Aware Framework for Real-Time Optimisation of Multimedia Data Privacy Protection, and Information Retention Within Multimodal AI Systems

The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users’ preferences and contextual requirements,...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 19; p. 6105
Main Authors: Topalli, Ndricim, Badii, Atta
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 03.10.2025
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users’ preferences and contextual requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-aware, and ontology-driven privacy protection framework that dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity, and contextual information. The framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, actions, and emotions in real time on data acquired from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology based in Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model that supports user-defined red lines (e.g., “always hide logos”). The framework also proposes a Re-Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity leakage and to support fallback protection when face recognition fails. The experimental evaluation relied on sensor-captured datasets, which replicate real-world image sensors such as surveillance cameras. User studies confirmed that the framework was effective, with over 85.2% of participants rating the obfuscation operations as highly effective, and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% considered the balance between privacy protection and usability very satisfactory and 28% found it satisfactory. GPU acceleration was deployed to enable real-time performance of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This ontology-driven framework employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the framework provides a real-time, user-centric, and GDPR-compliant method that operationalises privacy-by-design while preserving scene intelligibility. These features make the framework appropriate to a variety of real-world applications including healthcare, surveillance, and social media.
AbstractList The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users' preferences and contextual requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-aware, and ontology-driven privacy protection framework that dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity, and contextual information. The framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, actions, and emotions in real time on data acquired from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology based in Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model that supports user-defined red lines (e.g., "always hide logos"). The framework also proposes a Re-Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity leakage and to support fallback protection when face recognition fails. The experimental evaluation relied on sensor-captured datasets, which replicate real-world image sensors such as surveillance cameras. User studies confirmed that the framework was effective, with over 85.2% of participants rating the obfuscation operations as highly effective, and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% considered the balance between privacy protection and usability very satisfactory and 28% found it satisfactory. GPU acceleration was deployed to enable real-time performance of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This ontology-driven framework employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the framework provides a real-time, user-centric, and GDPR-compliant method that operationalises privacy-by-design while preserving scene intelligibility. These features make the framework appropriate to a variety of real-world applications including healthcare, surveillance, and social media.
The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users' preferences and contextual requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-aware, and ontology-driven privacy protection framework that dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity, and contextual information. The framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, actions, and emotions in real time on data acquired from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology based in Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model that supports user-defined red lines (e.g., "always hide logos"). The framework also proposes a Re-Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity leakage and to support fallback protection when face recognition fails. The experimental evaluation relied on sensor-captured datasets, which replicate real-world image sensors such as surveillance cameras. User studies confirmed that the framework was effective, with over 85.2% of participants rating the obfuscation operations as highly effective, and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% considered the balance between privacy protection and usability very satisfactory and 28% found it satisfactory. GPU acceleration was deployed to enable real-time performance of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This ontology-driven framework employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the framework provides a real-time, user-centric, and GDPR-compliant method that operationalises privacy-by-design while preserving scene intelligibility. These features make the framework appropriate to a variety of real-world applications including healthcare, surveillance, and social media.The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users' preferences and contextual requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-aware, and ontology-driven privacy protection framework that dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity, and contextual information. The framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, actions, and emotions in real time on data acquired from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology based in Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model that supports user-defined red lines (e.g., "always hide logos"). The framework also proposes a Re-Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity leakage and to support fallback protection when face recognition fails. The experimental evaluation relied on sensor-captured datasets, which replicate real-world image sensors such as surveillance cameras. User studies confirmed that the framework was effective, with over 85.2% of participants rating the obfuscation operations as highly effective, and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% considered the balance between privacy protection and usability very satisfactory and 28% found it satisfactory. GPU acceleration was deployed to enable real-time performance of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This ontology-driven framework employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the framework provides a real-time, user-centric, and GDPR-compliant method that operationalises privacy-by-design while preserving scene intelligibility. These features make the framework appropriate to a variety of real-world applications including healthcare, surveillance, and social media.
Audience Academic
Author Topalli, Ndricim
Badii, Atta
Author_xml – sequence: 1
  givenname: Ndricim
  orcidid: 0009-0009-4238-4253
  surname: Topalli
  fullname: Topalli, Ndricim
– sequence: 2
  givenname: Atta
  surname: Badii
  fullname: Badii, Atta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41094928$$D View this record in MEDLINE/PubMed
BookMark eNpdks1u1DAQxyNURD_gwAsgS1xAIsWOHcc-rhYKKxUVlVYco4kzLl6SeLG9lH0aXhVvd1khNIcZjX7zH83HaXE0-QmL4jmj55xr-jZWNdOS0fpRccJEJUpVVfTon_i4OI1xSWnFOVdPimPBqBa6UifF7xm5jRjKOU4pOEPmfkr4K5WzewhILgKMeO_Dd2J9INcIQ3njRiRXq-RGFyE5PxFvyaf1kBPYOyDvIAH5HNxPMJvsfUKzpd4QmHqymLLOuCu7xpR7bqOvLn1z017E9zCQ2YJ82cSEY3xaPLYwRHy292fF7cX7m_nH8vLqw2I-uyyNYHUqtWANNNBTqypNe6N1h7qxUhsqEWQjBNaoQcmusrVGMNh0llklLFWN1YqfFYudbu9h2a6CGyFsWg-ufUj4cNdCSM4M2DKwtu-U6DhjAqlSShrTSSpNXjVHlrVe7bRWwf9YY0xt3pXBYYAJ_Tq2vJKs0UIqkdGX_6FLvw5TnvSBoppSuRU831F3kPu7vMQUwGTrcXQm_4J1OT9TsmI1p3xb8GIvu-7yWQ7z_L17Bl7vABN8jAHtAWG03f5Ue_gp_gfzGL2s
Cites_doi 10.1109/SP.2009.22
10.1109/ISBA.2016.7477240
10.1109/JIOT.2017.2773600
10.1109/SP.2017.25
10.1109/TIFS.2015.2480381
10.1038/s41591-021-01343-4
10.5220/0005126603410345
10.1007/978-3-030-32583-1_2
10.1109/ICCV.2017.324
10.1109/ICCV.2009.5459413
10.1109/CVPR.2017.365
10.3390/app14156824
10.1007/978-3-319-46448-0_2
10.1145/3394171.3413972
10.1109/FG.2018.00020
10.3390/s21113845
10.1109/SPW.2015.13
10.5244/C.29.41
10.1109/TKDE.2005.32
10.1515/9780804772891
10.1007/978-3-319-46487-9_6
10.1109/CVPR.2019.00482
10.3390/su13031224
10.1016/j.physd.2019.132306
10.1109/ACCESS.2019.2952065
10.1038/nature14539
10.1109/CVPR.2014.220
10.1016/j.jnca.2023.103695
10.1109/ICCV.2017.322
10.1109/ACCESS.2020.2978223
10.1109/ICCV.2019.00667
10.1109/CVPR42600.2020.01079
10.1007/978-3-030-01246-5_38
10.1109/CVPRW.2017.175
10.1145/3357375
10.1109/CVPR.2017.502
10.1109/IWSSIP.2015.7314228
10.1186/s13640-015-0078-1
10.1145/2976749.2978318
10.1109/CVPR.2015.7298682
10.1109/MMSP.2012.6343470
10.1007/s11042-010-0635-7
10.1145/3561048
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2015.169
10.1080/1369118X.2013.777757
10.1016/j.cose.2015.07.002
10.3115/v1/D14-1179
10.1109/CVPR.2016.90
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s25196105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1affdb84b3114e08886ccb606c8223e1
A862153031
41094928
10_3390_s25196105
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c415t-9417a7ad0f8290dc99be97f69c06ea6744e5e9a86b2f59eace7bf1f84f087f983
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001593938200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Oct 20 20:02:56 EDT 2025
Sat Oct 18 22:53:46 EDT 2025
Sat Nov 29 14:29:22 EST 2025
Tue Nov 04 05:01:29 EST 2025
Fri Nov 28 01:41:36 EST 2025
Thu Nov 20 00:53:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords privacy protection
dynamic privacy adaptation
privacy engineering
data intelligibility
real-time data obfuscation
re-identification
user-centric privacy
context-aware AI
hard biometrics
multimodal data
GDPR compliance
soft biometrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-9417a7ad0f8290dc99be97f69c06ea6744e5e9a86b2f59eace7bf1f84f087f983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0009-4238-4253
OpenAccessLink https://doaj.org/article/1affdb84b3114e08886ccb606c8223e1
PMID 41094928
PQID 3261090061
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1affdb84b3114e08886ccb606c8223e1
proquest_miscellaneous_3261794684
proquest_journals_3261090061
gale_infotracacademiconefile_A862153031
pubmed_primary_41094928
crossref_primary_10_3390_s25196105
PublicationCentury 2000
PublicationDate 2025-10-03
PublicationDateYYYYMMDD 2025-10-03
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dantcheva (ref_38) 2011; 51
ref_14
ref_58
ref_13
ref_12
ref_56
ref_55
ref_10
ref_54
ref_53
ref_52
ref_51
Troncoso (ref_26) 2011; 14
LeCun (ref_76) 2015; 521
ref_19
ref_17
Bari (ref_18) 2019; 7
Newton (ref_15) 2005; 17
Moctezuma (ref_34) 2015; 2015
ref_61
Young (ref_46) 2015; 16
ref_69
ref_24
ref_68
ref_23
ref_67
ref_22
ref_66
ref_21
ref_65
ref_20
ref_64
ref_63
ref_29
ref_28
Liu (ref_1) 2020; 54
Huang (ref_74) 2020; 8
ref_72
ref_71
ref_70
Jiang (ref_2) 2021; 54
ref_35
ref_33
ref_77
ref_32
Wang (ref_48) 2020; 9
ref_31
ref_75
ref_30
ref_73
Krizhevsky (ref_59) 2012; 25
Zhang (ref_57) 2022; 23
ref_39
Ren (ref_60) 2016; 39
Rivadeneira (ref_16) 2023; 217
Kokolakis (ref_4) 2017; 64
ref_47
Badii (ref_11) 2013; 4
ref_45
ref_44
ref_43
ref_42
ref_41
Litjens (ref_36) 2021; 27
ref_40
ref_3
Sherstinsky (ref_62) 2020; 404
ref_49
Dwivedi (ref_50) 2023; 55
ref_9
ref_8
Dantcheva (ref_37) 2015; 11
ref_5
Fierrez (ref_25) 2018; 3
Sezer (ref_27) 2018; 5
ref_7
ref_6
41305309 - Sensors (Basel). 2025 Nov 14;25(22):6957. doi: 10.3390/s25226957.
References_xml – ident: ref_24
  doi: 10.1109/SP.2009.22
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_2
  article-title: Location Privacy-preserving Mechanisms in Location-based Services: A Comprehensive Survey
  publication-title: ACM Comput. Surv.
– ident: ref_5
– ident: ref_19
  doi: 10.1109/ISBA.2016.7477240
– ident: ref_68
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_27
  article-title: Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2773600
– ident: ref_22
  doi: 10.1109/SP.2017.25
– volume: 3
  start-page: 2001
  year: 2018
  ident: ref_25
  article-title: Facial Soft Biometrics for Recognition in the Wild Recent Works, Annotations and COTS Evaluation
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 11
  start-page: 441
  year: 2015
  ident: ref_37
  article-title: What Else Your Biometric Data Reveal? A Survey on Soft Biometrics
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2480381
– volume: 27
  start-page: 775
  year: 2021
  ident: ref_36
  article-title: Deep learning in histopathology: The path to the clinic
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01343-4
– ident: ref_13
  doi: 10.5220/0005126603410345
– ident: ref_20
  doi: 10.1007/978-3-030-32583-1_2
– ident: ref_64
  doi: 10.1109/ICCV.2017.324
– ident: ref_8
  doi: 10.1109/ICCV.2009.5459413
– ident: ref_71
  doi: 10.1109/CVPR.2017.365
– ident: ref_42
– ident: ref_35
– ident: ref_23
– ident: ref_58
– ident: ref_32
  doi: 10.3390/app14156824
– volume: 14
  start-page: 25
  year: 2011
  ident: ref_26
  article-title: Engineering Privacy by Design
  publication-title: Comput. Priv. Data Prot.
– ident: ref_63
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_14
  doi: 10.1145/3394171.3413972
– ident: ref_40
  doi: 10.1109/FG.2018.00020
– ident: ref_56
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_59
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_69
– volume: 4
  start-page: 13
  year: 2013
  ident: ref_11
  article-title: Holistic Privacy Impact Assessment Framework for Video Privacy Filtering Technologies
  publication-title: Signal Image Process. Int. J.
– ident: ref_70
  doi: 10.3390/s21113845
– ident: ref_6
  doi: 10.1109/SPW.2015.13
– ident: ref_45
– ident: ref_72
– ident: ref_54
  doi: 10.5244/C.29.41
– volume: 17
  start-page: 232
  year: 2005
  ident: ref_15
  article-title: Preserving privacy by de-identifying face images
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.32
– ident: ref_17
  doi: 10.1515/9780804772891
– ident: ref_28
  doi: 10.1007/978-3-319-46487-9_6
– ident: ref_55
  doi: 10.1109/CVPR.2019.00482
– ident: ref_29
  doi: 10.3390/su13031224
– volume: 404
  start-page: 132306
  year: 2020
  ident: ref_62
  article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: ref_7
– volume: 7
  start-page: 162708
  year: 2019
  ident: ref_18
  article-title: Artificial Neural Network Based Gait Recognition Using Kinect Sensor
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2952065
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_76
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_52
  doi: 10.1109/CVPR.2014.220
– ident: ref_30
– volume: 217
  start-page: 103695
  year: 2023
  ident: ref_16
  article-title: User-centric privacy preserving models for a new era of the Internet of Things
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103695
– ident: ref_3
– ident: ref_47
– ident: ref_61
  doi: 10.1109/ICCV.2017.322
– volume: 8
  start-page: 45753
  year: 2020
  ident: ref_74
  article-title: Efficient Parallel Inflated Convolution Architecture for Action Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978223
– ident: ref_65
  doi: 10.1109/ICCV.2019.00667
– ident: ref_66
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_10
  doi: 10.1007/978-3-030-01246-5_38
– ident: ref_9
  doi: 10.1109/CVPRW.2017.175
– ident: ref_44
– ident: ref_21
– ident: ref_73
– volume: 54
  start-page: 1
  year: 2020
  ident: ref_1
  article-title: When Machine Learning Meets Privacy: A Survey and Outlook
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3357375
– ident: ref_43
  doi: 10.1109/CVPR.2017.502
– ident: ref_75
– ident: ref_39
  doi: 10.1109/IWSSIP.2015.7314228
– volume: 2015
  start-page: 28
  year: 2015
  ident: ref_34
  article-title: Soft-biometrics evaluation for people re-identification in uncontrolled multi-camera environments
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-015-0078-1
– ident: ref_33
– ident: ref_49
  doi: 10.1145/2976749.2978318
– ident: ref_51
  doi: 10.1109/CVPR.2015.7298682
– ident: ref_12
– ident: ref_31
  doi: 10.1109/MMSP.2012.6343470
– volume: 51
  start-page: 739
  year: 2011
  ident: ref_38
  article-title: Bag of soft biometrics for person identification: New trends and challenges
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-010-0635-7
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_50
  article-title: Explainable AI (XAI): Core Ideas, Techniques and Solutions
  publication-title: CM Comput. Surv.
  doi: 10.1145/3561048
– ident: ref_41
  doi: 10.1007/978-3-319-10602-1_48
– volume: 9
  start-page: 215
  year: 2020
  ident: ref_48
  article-title: Deep Face Recognition: A Survey
  publication-title: Neurocomputing
– ident: ref_67
  doi: 10.1109/ICCV.2015.169
– volume: 16
  start-page: 479
  year: 2015
  ident: ref_46
  article-title: Privacy protection strategies on facebook: The internet privacy paradox
  publication-title: Inf. Commun. Soc.
  doi: 10.1080/1369118X.2013.777757
– volume: 23
  start-page: 499
  year: 2022
  ident: ref_57
  article-title: Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
  publication-title: IEEE Signal Process. Lett.
– volume: 64
  start-page: 122
  year: 2017
  ident: ref_4
  article-title: Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox phenomenon
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2015.07.002
– ident: ref_77
  doi: 10.3115/v1/D14-1179
– ident: ref_53
  doi: 10.1109/CVPR.2016.90
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_60
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– reference: 41305309 - Sensors (Basel). 2025 Nov 14;25(22):6957. doi: 10.3390/s25226957.
SSID ssj0023338
Score 2.460723
Snippet The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6105
SubjectTerms Algorithms
Artificial Intelligence
Biometrics
Biometry
Compliance
Computer Security
Data integrity
data intelligibility
Decision making
Facial recognition technology
hard biometrics
Humans
Machine learning
Multimedia
multimodal data
Ontology
Privacy
privacy engineering
Privacy, Right of
re-identification
Semantics
soft biometrics
Usability
User behavior
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAHypvQggxC4kLUTeLE9qnaAiu4lKqiYm-R7dglB5KSTYv4NfxVZhzvlofEhVOixLYszXg8nz3zDcCLUhbOm1ylhZUIUCrjU1W6LNVVmVveCC8cD8UmxOGhXC7VUTxwW8WwyrVNDIa66S2dke-hm0ExhLj97J99TalqFN2uxhIaV-Ealc0mPRfLS8BVIP6a2IQKhPZ7K8rSxFHK3_agQNX_t0H-w80M281i-38nehtuRUeTzSfNuANXXHcXbv5CP3gPfszZCWpgGk54W8sCUxUC4fk3PTi2WIdtMfRr2TE6lCnli7APaGS-xCAg1nsWUnhDAgp7o0fNjob2Qtvv-AwMENjqFdNdw2LiU-h2TK56ePvUjp_bLg7SNzTj9yzSqN-Hk8Xbj6_fpbFgQ2rRDxhTxTOhhW5mnq5nG6uUcUr4StlZ5XQlOHelU1pWJvelQpPvhPGZl9zPpPBKFg9gq-s79wiYRoUxRe5zLdBn8tageDMlXaUcYhpdJfB8LcL6bOLlqBHPkJzrjZwTOCDhbhoQlXb40A-ndVyZdaa9b4zkpkBo6NDoyspag7jOou9UuCyBl6QaNS34cdBWx7wFnCdRZ9VzxIS4baBxTGB3rRF1tASr-lIdEni2-Y1ioosZ3bn-fGpDRP-SJ_Bw0rrNnDn25iqXj_89-A7cyKkyMYU2FLuwNQ7n7glctxdjuxqehmXxE_AVGG4
  priority: 102
  providerName: ProQuest
Title A User-Centric Context-Aware Framework for Real-Time Optimisation of Multimedia Data Privacy Protection, and Information Retention Within Multimodal AI Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/41094928
https://www.proquest.com/docview/3261090061
https://www.proquest.com/docview/3261794684
https://doaj.org/article/1affdb84b3114e08886ccb606c8223e1
Volume 25
WOSCitedRecordID wos001593938200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiG8CS2UQEheibRInto9daMUetkQVK8rJsh1bmwMpSrOLuPBX-KuMHbda4MCFS1q5TuR0xuP3kplngFclL6zTuUgLw5GgVNqlorRZqqoyN7RhjlkaNptgyyVfr0V9ZasvnxM2ygOPf9xRppxrNKe6QORucU7wyhiNsNvg0lbYQHymTOzIVKRaBTKvUUeoQFJ_tPX1mQgUyt9WnyDS_3co_gNghoVmcRfuRIRIZuPI7sE1292H21d0Ax_Azxk5Q9dJw6PZ1pAgMYUMdvZN9ZYsdvlWBAEpWSESTH2hB_mA0eFLzN4hG0dC7W2oHCHv1KBI3beXynzHzyDdgL3eENU1JFYshdNWHmOHb5_a4bzt4kU2jR_xCYn65w_hbDH_-PZ9GndaSA0u4EMqaMYUU83U-feqjRFCW8FcJcy0sqpilNrSCsUrnbtSYKy2TLvMceqmnDnBi0dw0G06-wSIQkvrIne5Ygh2nNEZUjLBbSUskhFVJfByZwH5dRTUkEhEvJnk3kwJHHvb7Dt4DezQgJ4ho2fIf3lGAq-9ZaWfqUOvjIoFBzhOr3klZ0jmMN5jVEvgcGd8GafwViKu9UmriHcSeLH_Gc3k36iozm4uxj5eoZ_TBB6PTrMfM8Wzqcj50_9xL8_gVu43HvaZC8UhHAz9hX0ON83l0G77CVxnaxaOfAI3jufLejUJ8wGPpz_m2FafnNaffwFMARDv
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8H4EChgEYkPUydP2AqGBMuqoZaiqVp1dcBwbsiApmbRVv4Y_4Bu510mmPCR2XbCa0YxjWcnxuffE9wHwPBGRsXko_UgLFChpbn2ZmMBXaRLquOCWm9g1m-CzmZjP5c4K_BhyYSiscuBER9RFrekd-Tq6GRRDiObnzeE3n7pG0enq0EKjg8WWOT1BybZ4Pd3A5_siDCfv995t-n1XAV-jsWp9GQdccVWMLJ0hFlrK3EhuU6lHqVEpj2OTGKlEmoc2kchLhuc2sCK2I8GtFBHOewEuIo9zEnt8fibwItR7XfWiKJKj9QVlheKqk99snmsN8LcB-MOtdeZtcv1_uzE34FrvSLNxh_ybsGKqW3D1l_KKt-H7mO3jDvPdG-xSM1eJC4X--EQ1hk2GsDSGfjvbRYfZp3wY9hFJ9Gsf5MRqy1yKskuwYRuqVWynKY-VPsVPV-ECR71iqipYn9jlLtslKeK-HZTtl7LqJ6kLWvGU9WXi78D-udyhu7Ba1ZW5D0zhhsij0IaKo09odR6gcpXCpNKgZlOpB88GyGSHXd2RDPUa4Spb4sqDtwSm5QAqFe5-qJvPWc88WaCsLXIR5xFKX4NGRaRa56hbNfqGkQk8eElQzIjQ2kZp1edl4DqpNFg2Rs2LZhHJ34O1AYFZz3SL7Ax-Hjxd_o2PiQ6eVGXqo24MNTIQsQf3OpQv1xzj1bEMxYN_T_4ELm_ufdjOtqezrYdwJaQuzBTGEa3BatscmUdwSR-35aJ57LYkg0_nDfWf88Z22A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4P0IFDAIxIVoN4mT2AeEFpYVq8Kyqqgop-A4NuRAUrJpS38N_4Nfx9hxwkvi1gOnRIljOcnnmfnseQA8iFmkdB5yP5IMCUqSa5_HKvBFEoeSFqlOFbXFJtLlku3t8dUGfO9jYYxbZS8TraAuamnWyMdoZhgfQlQ_Y-3cIlaz-dP9L76pIGV2WvtyGh1EttXxEdK39ZPFDP_1wzCcv3j7_KXvKgz4EhVX63MapCIVxUSb_cRCcp4rnuqEy0miRJJSqmLFBUvyUMccZZRKcx1oRvWEpZqzCPs9BZtoktNwBJurxevV-4HuRcj-ulxGUcQn47WJEcV3iH_TgLZQwN_q4A8j1yq7-YX_-TNdhPPOxCbTbk5cgg1VXYZzvyRevALfpmQX555v17ZLSWyOrq-tPz0SjSLz3mGNoEVPdtCU9k2kDHmD4vWzc38itSY2eNmG3pCZaAVZNeWhkMd4tLkvsNVjIqqCuJAv-9iOISn27F3Zfior10ldmBEviEsgfxV2T-QLXYNRVVfqBhCBUyWPQh2KFK1FLfMAOS1nKuEK2ZxIPLjfwyfb7zKSZMjkDMayAWMePDPAGhqYJOL2Qt18zJxMygKhdZEzmkdIihWqG5ZImSOjlWg1Rirw4JGBZWZEXdsIKVzEBo7TJA3LpsiGUWGiWvBgq0dj5mTgOvsJRQ_uDbfxN5ktKVGp-qBrY0ocMOrB9Q7xw5gpPk15yG7-u_O7cAYRnr1aLLdvwdnQlGc2_h3RFoza5kDdhtPysC3XzR03Pwl8OGms_wAahoEn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+User-Centric+Context-Aware+Framework+for+Real-Time+Optimisation+of+Multimedia+Data+Privacy+Protection%2C+and+Information+Retention+Within+Multimodal+AI+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Topalli%2C+Ndricim&rft.au=Badii%2C+Atta&rft.date=2025-10-03&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=19&rft_id=info:doi/10.3390%2Fs25196105&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon