Development of a low-cost PV system using an improved INC algorithm and a PV panel Proteus model
This paper proposes a photovoltaic (PV) model for the design of PV systems with a simple MPPT to achieve high efficiency, faster response and low cost. First, a PV panel model is developed using SPICE code in Proteus tool. The verification and the validation are performed via an experimental test be...
Saved in:
| Published in: | Journal of cleaner production Vol. 204; pp. 355 - 365 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
10.12.2018
Elsevier |
| Subjects: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper proposes a photovoltaic (PV) model for the design of PV systems with a simple MPPT to achieve high efficiency, faster response and low cost. First, a PV panel model is developed using SPICE code in Proteus tool. The verification and the validation are performed via an experimental test bench. Afterwards, a new modified Incremental Conductance (INC) algorithm is introduced. The proposed algorithm avoids the high number of the mathematical divisions used in the conventional INC. Both methods are implemented in the low-cost Arduino Uno board using the simulated PV panel model. The results show that the modified method presents good performances regarding response time (0.1 s), steady-state oscillation, and efficiency (98.5%). To validate the proposed system, a hardware testbench is implemented using the low-cost ATMega328 microcontroller in the Arduino Uno board. Substantial cost reduction has been attained proving the financial competitiveness of the proposed controller. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0959-6526 1879-1786 |
| DOI: | 10.1016/j.jclepro.2018.08.246 |