Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches

Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 22; no. 20; p. 11191
Main Authors: Islam, Md Ataul, Rallabandi, V. P. Subramanyam, Mohammed, Sameer, Srinivasan, Sridhar, Natarajan, Sathishkumar, Dudekula, Dawood Babu, Park, Junhyung
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 17.10.2021
MDPI
Subjects:
ISSN:1422-0067, 1661-6596, 1422-0067
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.
AbstractList Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.
Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.
Author Dudekula, Dawood Babu
Mohammed, Sameer
Park, Junhyung
Natarajan, Sathishkumar
Srinivasan, Sridhar
Rallabandi, V. P. Subramanyam
Islam, Md Ataul
AuthorAffiliation 2 3BIGS Co., Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Korea; sathish@3bigs.com
1 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; ataul@3bigs.com (M.A.I.); subramanyam@3bigs.com (V.P.S.R.); sameer@3bigs.com (S.M.); sridhar@3bigs.com (S.S.); dawood@3bigs.com (D.B.D.)
AuthorAffiliation_xml – name: 1 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; ataul@3bigs.com (M.A.I.); subramanyam@3bigs.com (V.P.S.R.); sameer@3bigs.com (S.M.); sridhar@3bigs.com (S.S.); dawood@3bigs.com (D.B.D.)
– name: 2 3BIGS Co., Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Korea; sathish@3bigs.com
Author_xml – sequence: 1
  givenname: Md Ataul
  orcidid: 0000-0001-6286-6262
  surname: Islam
  fullname: Islam, Md Ataul
– sequence: 2
  givenname: V. P. Subramanyam
  surname: Rallabandi
  fullname: Rallabandi, V. P. Subramanyam
– sequence: 3
  givenname: Sameer
  surname: Mohammed
  fullname: Mohammed, Sameer
– sequence: 4
  givenname: Sridhar
  surname: Srinivasan
  fullname: Srinivasan, Sridhar
– sequence: 5
  givenname: Sathishkumar
  orcidid: 0000-0002-9001-8495
  surname: Natarajan
  fullname: Natarajan, Sathishkumar
– sequence: 6
  givenname: Dawood Babu
  surname: Dudekula
  fullname: Dudekula, Dawood Babu
– sequence: 7
  givenname: Junhyung
  orcidid: 0000-0002-0805-6362
  surname: Park
  fullname: Park, Junhyung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34681845$$D View this record in MEDLINE/PubMed
BookMark eNptkctu1DAUhi1URC-wZIsisWET8DVjb5BGVblIU4G4rC3HPpl4lNjBTiqx4KX6IH0m3GmL2oqVf9nf-c_vc47RQYgBEHpJ8FvGFH7nd2OmlGJCiCJP0BHhlNYYN6uDe_oQHee8w5gyKtQzdMh4I4nk4gj9-W4TQPBhW8WuurokdWWCK4LWa5cgQNp6W30DC9McU3Ue3TKYonI19yku275auwsTLLjqa2_SaGz0oYtFzN7mvde5sb0PUG3ApH2j9TSlWC4hP0dPOzNkeHF7nqCfH85-nH6qN18-fj5db2rLiZhr6RrO245zppRooGs7yTvSCaO4WGEjjOysaJ0CLI0gDEsuHW8IxSBboqRjJ-j9je-0tCM4C2FOZtBT8qNJv3U0Xj98Cb7X23ihpWCyuBWDN7cGKf5aIM969NnCMJgAccmaCslXCivMCvr6EbqLSwrle3uKU1VmX6hX9xP9i3K3mQKwG8CmmHOCTls_l6HG64B-0ATr6_3rB_svVfWjqjvj__N_AW8UtI0
CitedBy_id crossref_primary_10_1007_s11030_022_10467_9
crossref_primary_10_1016_j_taap_2025_117567
crossref_primary_10_3390_ijms23169374
crossref_primary_10_3389_fpls_2022_934130
Cites_doi 10.1038/nature07101
10.1021/ci500747n
10.1371/journal.pcbi.1001053
10.1038/s41467-020-14526-3
10.1021/jm020017n
10.1186/s13321-015-0103-5
10.1016/j.bmcl.2010.01.084
10.3389/fphar.2018.01077
10.1016/j.bbamem.2006.09.019
10.1126/science.aax1566
10.1039/b409813g
10.1016/S0140-6736(04)17355-8
10.1007/BF00994018
10.1021/acs.jmedchem.5b00921
10.1021/jm300687e
10.1021/cc9800071
10.1201/9781498713702
10.1093/biomet/54.1-2.167
10.1002/prot.24456
10.1021/ci800293n
10.1073/pnas.0306077101
10.1021/ct400045d
10.1016/j.ddtec.2004.11.007
10.1186/1758-2946-3-33
10.2174/092986708783330683
10.1186/1758-2946-5-23
10.1021/acs.jmedchem.9b02147
10.1021/jm401908w
10.1080/10286020.2015.1123692
10.1016/S1359-6446(03)02831-9
10.1371/journal.pone.0112456
10.1016/S0020-7373(87)80053-6
10.1016/j.bbamem.2007.02.010
10.1016/j.molstruc.2019.127660
10.1016/j.bmc.2019.05.034
10.1021/jm400140q
10.1161/CIRCRESAHA.118.311403
10.1080/1062936X.2020.1799433
10.3389/fimmu.2020.01664
10.3389/fcimb.2020.00118
10.1002/jcc.21707
10.1021/ci900228x
10.1126/science.1150577
10.1039/C7SC02664A
10.1021/acsomega.9b04403
10.1093/nar/28.1.235
10.1371/journal.pone.0107837
10.1021/acs.jmedchem.5b00104
10.1021/acs.jcim.9b00237
10.1002/jcc.24667
10.1038/nrd1549
10.3389/fgene.2018.00560
10.1139/y96-124
10.1002/wcms.1465
10.1038/nature25978
10.1021/jp8001614
10.1124/pr.110.003350
10.1093/nar/gkv315
10.2174/156802607780906753
10.1021/bi100580s
10.1021/jp003020w
10.1146/annurev.physiol.69.022405.154731
10.1161/CIRCHEARTFAILURE.112.966895
10.1093/nar/gkv951
10.1063/5.0019056
10.1016/S1093-3263(00)00061-9
10.1093/nar/gkj067
10.3389/fphar.2019.00125
10.1073/pnas.0812657106
10.1016/bs.pmch.2021.01.004
10.1093/nar/gkp456
10.1021/acs.jcim.9b00778
10.2174/1381612053507549
10.3390/molecules19033417
10.1002/wcms.18
10.1080/07391102.2020.1779132
10.1002/jcc.21576
10.1080/00031305.1992.10475879
10.4155/fmc-2018-0358
10.1186/s13321-015-0069-3
10.1214/aos/1013203451
10.1016/S1574-1400(08)00012-1
10.1093/nar/gkx1037
10.1093/nar/gkaa971
10.1002/jcc.21334
10.1007/978-3-319-08798-6_5
10.1016/S0735-1097(18)31474-8
10.1002/jcc.20945
10.1074/jbc.M601809200
10.1093/nar/gkx1095
10.1159/000339271
10.1093/nar/gkw1074
10.3389/fchem.2020.00343
10.1021/acs.jcim.8b00312
10.1021/acs.jmedchem.5b02042
10.1021/ci700253h
10.3389/fphar.2018.01275
10.1039/C9ME00039A
10.1021/acs.jchemed.5b00404
10.1038/s41467-020-15864-y
10.1038/srep42717
10.3390/molecules200713384
10.1074/jbc.M116.730614
10.1021/acs.jcim.6b00740
10.1126/science.132.3434.1115
10.1039/C9CP06303J
10.3390/molecules25051135
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms222011191
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8538848
34681845
10_3390_ijms222011191
Genre Journal Article
GrantInformation_xml – fundername: Technology development Program, Ministry of SMEs and Startups, Republic of Korea.
  grantid: S2788640
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
ALIPV
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
COVID
ESTFP
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c415t-8d644bf4439956efbf84f1f5a94570a5a8fc5bd9e08a5130848d46120e8b198d3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716265200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-0067
1661-6596
IngestDate Tue Nov 04 01:59:26 EST 2025
Sun Sep 28 00:47:52 EDT 2025
Tue Oct 07 07:29:03 EDT 2025
Wed Feb 19 02:27:48 EST 2025
Tue Nov 18 22:12:59 EST 2025
Sat Nov 29 07:15:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords MD simulation
similarity search
cardiovascular diseases
virtual screening
machine learning
β-adrenergic receptors
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-8d644bf4439956efbf84f1f5a94570a5a8fc5bd9e08a5130848d46120e8b198d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0805-6362
0000-0001-6286-6262
0000-0002-9001-8495
OpenAccessLink https://www.proquest.com/docview/2584429681?pq-origsite=%requestingapplication%
PMID 34681845
PQID 2584429681
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8538848
proquest_miscellaneous_2584790903
proquest_journals_2584429681
pubmed_primary_34681845
crossref_citationtrail_10_3390_ijms222011191
crossref_primary_10_3390_ijms222011191
PublicationCentury 2000
PublicationDate 20211017
PublicationDateYYYYMMDD 2021-10-17
PublicationDate_xml – month: 10
  year: 2021
  text: 20211017
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wishart (ref_82) 2006; 34
ref_92
Ferguson (ref_7) 2001; 53
Kolb (ref_33) 2009; 106
Kim (ref_26) 2021; 49
Andricopulo (ref_45) 2008; 15
ref_97
Gardner (ref_19) 2006; 281
Hevener (ref_79) 2009; 49
Friedman (ref_99) 2001; 29
Stahura (ref_44) 2005; 11
Jo (ref_111) 2008; 29
Daina (ref_103) 2017; 7
Edgar (ref_105) 2000; 18
Willighagen (ref_84) 2013; 5
ref_15
Ghabbour (ref_31) 2014; 19
Grahl (ref_10) 2020; 11
Neves (ref_41) 2018; 9
Zardecki (ref_72) 2016; 93
Salon (ref_2) 2011; 63
Bajusz (ref_109) 2015; 7
ref_23
Yu (ref_107) 2015; 7
Schwalbe (ref_21) 2019; 27
Waszkowycz (ref_49) 2011; 1
He (ref_114) 2020; 153
ref_29
Salazar (ref_8) 2007; 1768
Wishart (ref_81) 2018; 46
Pires (ref_104) 2015; 58
Zamora (ref_43) 2009; 49
Wang (ref_90) 2017; 38
Pedregosa (ref_102) 2011; 12
Carlberg (ref_80) 2004; 364
Maffucci (ref_47) 2013; 9
Rogers (ref_108) 1960; 132
Rengo (ref_9) 2012; 5
ref_70
Gaillard (ref_77) 2018; 58
Li (ref_95) 2020; 10
Gurevich (ref_6) 2019; 10
Goth (ref_20) 2017; 292
Yang (ref_34) 2016; 18
Tan (ref_37) 2018; 9
Ribas (ref_5) 2007; 1768
Sutherland (ref_78) 2007; 47
Wang (ref_46) 2020; 22
Wu (ref_86) 2018; 9
Wang (ref_60) 2009; 37
Premont (ref_4) 2007; 69
Lipinski (ref_63) 2004; 1
Warne (ref_13) 2008; 454
Katsarou (ref_14) 2018; 9
Altman (ref_100) 1992; 46
Lymperopoulos (ref_17) 2018; 71
Cang (ref_18) 2014; 82
Ma (ref_87) 2015; 55
Yap (ref_28) 2011; 32
Christopher (ref_11) 2013; 56
Kitchen (ref_51) 2004; 3
Yang (ref_88) 2019; 59
Yohannan (ref_25) 2004; 101
Cherezov (ref_73) 2007; 318
Ghose (ref_64) 1999; 1
ref_57
Kim (ref_62) 2016; 44
Congreve (ref_66) 2003; 8
Joung (ref_113) 2008; 112
Ragoza (ref_89) 2017; 57
Wang (ref_16) 2018; 123
Ferguson (ref_3) 1996; 74
Mysinger (ref_27) 2012; 55
Mark (ref_112) 2001; 105
Gaulton (ref_83) 2017; 45
Wachter (ref_12) 2012; 122
Salentin (ref_30) 2015; 43
Elton (ref_94) 2019; 4
Smith (ref_54) 2016; 59
ref_69
ref_68
ref_67
Segler (ref_91) 2018; 555
Nguyen (ref_75) 2020; 60
Walker (ref_98) 1967; 54
Bender (ref_106) 2004; 2
Stanzione (ref_74) 2021; 60
Ferreira (ref_48) 2015; 20
Xu (ref_52) 2014; 57
Maia (ref_40) 2020; 5
ref_35
ref_32
Gupta (ref_55) 2020; 1205
ref_110
Cortes (ref_101) 1995; 20
Bolton (ref_59) 2008; Volume 4
ref_38
Shan (ref_22) 2010; 49
Shetve (ref_58) 2021; 32
Yang (ref_1) 2021; 6
Frei (ref_24) 2020; 11
Liu (ref_42) 2020; 10
Choudhary (ref_56) 2020; 11
Agarwala (ref_61) 2018; 46
Cavasotto (ref_50) 2007; 7
Steffen (ref_76) 2010; 31
Wu (ref_53) 2015; 58
Maia (ref_39) 2020; 8
Berman (ref_71) 2000; 28
Cai (ref_85) 2020; 63
Tamura (ref_36) 2010; 20
Xu (ref_93) 2019; 11
Quinlan (ref_96) 1987; 27
Veber (ref_65) 2002; 45
References_xml – volume: 454
  start-page: 486
  year: 2008
  ident: ref_13
  article-title: Structure of a β1-adrenergic G-protein-coupled receptor
  publication-title: Nature
  doi: 10.1038/nature07101
– volume: 55
  start-page: 263
  year: 2015
  ident: ref_87
  article-title: Deep neural nets as a method for quantitative structure-activity relationships
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci500747n
– ident: ref_23
  doi: 10.1371/journal.pcbi.1001053
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_24
  article-title: Conformational plasticity of ligand-bound and ternary GPCR complexes studied by 19F NMR of the β1-adrenergic receptor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14526-3
– volume: 45
  start-page: 2615
  year: 2002
  ident: ref_65
  article-title: Molecular properties that influence the oral bioavailability of drug candidates
  publication-title: J. Med. Chem.
  doi: 10.1021/jm020017n
– volume: 7
  start-page: 1
  year: 2015
  ident: ref_107
  article-title: Target enhanced 2D similarity search by using explicit biological activity annotations and profiles
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-015-0103-5
– volume: 20
  start-page: 1598
  year: 2010
  ident: ref_36
  article-title: Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos
  publication-title: Bioorganic Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2010.01.084
– ident: ref_68
– volume: 9
  start-page: 1077
  year: 2018
  ident: ref_37
  article-title: 28-Day Oral Chronic Toxicity Study of Arctigenin in Rats
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01077
– volume: 1768
  start-page: 913
  year: 2007
  ident: ref_5
  article-title: The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2006.09.019
– ident: ref_92
  doi: 10.1126/science.aax1566
– volume: 2
  start-page: 3204
  year: 2004
  ident: ref_106
  article-title: Molecular similarity: A key technique in molecular informatics
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b409813g
– volume: 364
  start-page: 1684
  year: 2004
  ident: ref_80
  article-title: Atenolol in hypertension: Is it a wise choice?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)17355-8
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_101
  article-title: Support-Vector Networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 58
  start-page: 7807
  year: 2015
  ident: ref_53
  article-title: Identification of Substituted Naphthotriazolediones as Novel Tryptophan 2,3-Dioxygenase (TDO) Inhibitors through Structure-Based Virtual Screening
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00921
– volume: 55
  start-page: 6582
  year: 2012
  ident: ref_27
  article-title: Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking
  publication-title: J. Med. Chem.
  doi: 10.1021/jm300687e
– volume: 1
  start-page: 55
  year: 1999
  ident: ref_64
  article-title: A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases
  publication-title: J. Comb. Chem.
  doi: 10.1021/cc9800071
– ident: ref_67
  doi: 10.1201/9781498713702
– volume: 54
  start-page: 167
  year: 1967
  ident: ref_98
  article-title: Estimation of the probability of an event as a function of several independent variables
  publication-title: Biometrika
  doi: 10.1093/biomet/54.1-2.167
– volume: 82
  start-page: 760
  year: 2014
  ident: ref_18
  article-title: Cholesterol-β1AR interaction versus cholesterol-β2AR interaction
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.24456
– volume: 49
  start-page: 444
  year: 2009
  ident: ref_79
  article-title: Validation of molecular docking programs for virtual screening against dihydropteroate synthase
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci800293n
– volume: 101
  start-page: 959
  year: 2004
  ident: ref_25
  article-title: The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0306077101
– volume: 9
  start-page: 2706
  year: 2013
  ident: ref_47
  article-title: Explicit ligand hydration shells improve the correlation between MM-PB/GBSA binding energies and experimental activities
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400045d
– volume: 1
  start-page: 337
  year: 2004
  ident: ref_63
  article-title: Lead- and drug-like compounds: The rule-of-five revolution
  publication-title: Drug Discov. Today Technol.
  doi: 10.1016/j.ddtec.2004.11.007
– ident: ref_69
  doi: 10.1186/1758-2946-3-33
– volume: 15
  start-page: 37
  year: 2008
  ident: ref_45
  article-title: Virtual Screening and Its Integration with Modern Drug Design Technologies
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986708783330683
– volume: 5
  start-page: 1
  year: 2013
  ident: ref_84
  article-title: The ChEMBL database as linked open data
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-5-23
– volume: 63
  start-page: 8683
  year: 2020
  ident: ref_85
  article-title: Transfer Learning for Drug Discovery
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.9b02147
– volume: 57
  start-page: 3737
  year: 2014
  ident: ref_52
  article-title: Discovery of novel inhibitors targeting the macrophage migration inhibitory factor via structure-based virtual screening and bioassays
  publication-title: J. Med. Chem.
  doi: 10.1021/jm401908w
– volume: 18
  start-page: 550
  year: 2016
  ident: ref_34
  article-title: Looking for agonists of β2adrenergic receptor from Fuzi and Chuanwu by virtual screening and dual-luciferase reporter assay
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2015.1123692
– volume: 8
  start-page: 876
  year: 2003
  ident: ref_66
  article-title: A “Rule of Three” for fragment-based lead discovery?
  publication-title: Drug Discov. Today
  doi: 10.1016/S1359-6446(03)02831-9
– ident: ref_97
– ident: ref_38
  doi: 10.1371/journal.pone.0112456
– volume: 27
  start-page: 221
  year: 1987
  ident: ref_96
  article-title: Simplifying decision trees
  publication-title: Int. J. Man. Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 1768
  start-page: 1006
  year: 2007
  ident: ref_8
  article-title: Cardiac GPCRs: GPCR signaling in healthy and failing hearts
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2007.02.010
– volume: 1205
  start-page: 127660
  year: 2020
  ident: ref_55
  article-title: Computational screening of promising beta-secretase 1 inhibitors through multi-step molecular docking and molecular dynamics simulations—Pharmacoinformatics approach
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2019.127660
– volume: 27
  start-page: 2959
  year: 2019
  ident: ref_21
  article-title: Development of covalent antagonists for β1- and β2-adrenergic receptors
  publication-title: Bioorganic Med. Chem.
  doi: 10.1016/j.bmc.2019.05.034
– volume: 56
  start-page: 3446
  year: 2013
  ident: ref_11
  article-title: Biophysical fragment screening of the β1-adrenergic receptor: Identification of high affinity arylpiperazine leads using structure-based drug design
  publication-title: J. Med. Chem.
  doi: 10.1021/jm400140q
– volume: 123
  start-page: 716
  year: 2018
  ident: ref_16
  article-title: G-protein-coupled receptors in heart disease
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.311403
– volume: 6
  start-page: 1
  year: 2021
  ident: ref_1
  article-title: G protein-coupled receptors: Structure-and function-based drug discovery
  publication-title: Signal Transduct. Target. Ther.
– volume: 32
  start-page: 1
  year: 2021
  ident: ref_58
  article-title: Identification of selective Lyn inhibitors from the chemical databases through integrated molecular modelling approaches
  publication-title: SAR QSAR Environ. Res.
  doi: 10.1080/1062936X.2020.1799433
– volume: 11
  start-page: 1664
  year: 2020
  ident: ref_56
  article-title: Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01664
– volume: 10
  start-page: 118
  year: 2020
  ident: ref_42
  article-title: Pharmacophore-Based Virtual Screening toward the Discovery of Novel Anti-echinococcal Compounds
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2020.00118
– volume: 32
  start-page: 1466
  year: 2011
  ident: ref_28
  article-title: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21707
– volume: 49
  start-page: 2129
  year: 2009
  ident: ref_43
  article-title: Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci900228x
– volume: 318
  start-page: 1258
  year: 2007
  ident: ref_73
  article-title: High-Resolution Crystal Structure of an Engineered Human β2- Adrenergic G Protein–Coupled Receptor
  publication-title: Science
  doi: 10.1126/science.1150577
– volume: 9
  start-page: 513
  year: 2018
  ident: ref_86
  article-title: MoleculeNet: A benchmark for molecular machine learning
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02664A
– volume: 5
  start-page: 6628
  year: 2020
  ident: ref_40
  article-title: Molecular Architect: A User-Friendly Workflow for Virtual Screening
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b04403
– volume: 28
  start-page: 235
  year: 2000
  ident: ref_71
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– ident: ref_32
  doi: 10.1371/journal.pone.0107837
– volume: 58
  start-page: 4066
  year: 2015
  ident: ref_104
  article-title: pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00104
– volume: 59
  start-page: 3370
  year: 2019
  ident: ref_88
  article-title: Analyzing Learned Molecular Representations for Property Prediction
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00237
– volume: 38
  start-page: 169
  year: 2017
  ident: ref_90
  article-title: Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24667
– volume: 3
  start-page: 935
  year: 2004
  ident: ref_51
  article-title: Docking and scoring in virtual screening for drug discovery: Methods and applications
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1549
– volume: 9
  start-page: 560
  year: 2018
  ident: ref_14
  article-title: Beta 1, Beta 2 and Beta 3 Adrenergic Receptor Gene Polymorphisms in a Southeastern European Population
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00560
– volume: 74
  start-page: 1095
  year: 1996
  ident: ref_3
  article-title: G-protein-coupled receptor regulation: Role of G-protein-coupled receptor kinases and arrestins
  publication-title: Can. J. Physiol. Pharmacol.
  doi: 10.1139/y96-124
– volume: 10
  start-page: e1465
  year: 2020
  ident: ref_95
  article-title: Machine-learning scoring functions for structure-based drug lead optimization. Wiley Interdiscip
  publication-title: Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1465
– volume: 555
  start-page: 604
  year: 2018
  ident: ref_91
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
  doi: 10.1038/nature25978
– volume: 112
  start-page: 9020
  year: 2008
  ident: ref_113
  article-title: Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp8001614
– volume: 63
  start-page: 901
  year: 2011
  ident: ref_2
  article-title: The significance of G protein-coupled receptor crystallography for drug discovery
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.110.003350
– volume: 43
  start-page: W443
  year: 2015
  ident: ref_30
  article-title: PLIP: Fully automated protein-ligand interaction profiler
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv315
– volume: 7
  start-page: 1006
  year: 2007
  ident: ref_50
  article-title: Ligand Docking and Structure-based Virtual Screening in Drug Discovery
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802607780906753
– volume: 49
  start-page: 10691
  year: 2010
  ident: ref_22
  article-title: Probing the structural determinants for the function of intracellular loop 2 in structurally cognate G-protein-coupled receptors
  publication-title: Biochemistry
  doi: 10.1021/bi100580s
– volume: 105
  start-page: 9954
  year: 2001
  ident: ref_112
  article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp003020w
– volume: 69
  start-page: 511
  year: 2007
  ident: ref_4
  article-title: Physiological roles of G protein-coupled receptor kinases and arrestins
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.69.022405.154731
– volume: 5
  start-page: 385
  year: 2012
  ident: ref_9
  article-title: Targeting the β-adrenergic receptor system through g-protein-coupled receptor kinase 2: A new paradigm for therapy and prognostic evaluation in heart failure from bench to bedside giuseppe rengo pasquale perrone-filardi
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.112.966895
– volume: 44
  start-page: D1202
  year: 2016
  ident: ref_62
  article-title: PubChem substance and compound databases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv951
– volume: 153
  start-page: 114502
  year: 2020
  ident: ref_114
  article-title: A fast and high-quality charge model for the next generation general AMBER force field
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0019056
– volume: 18
  start-page: 343
  year: 2000
  ident: ref_105
  article-title: Effectiveness of retrieval in similarity searches of chemical databases: A review of performance measures
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/S1093-3263(00)00061-9
– volume: 34
  start-page: D668
  year: 2006
  ident: ref_82
  article-title: DrugBank: A comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj067
– volume: 10
  start-page: 125
  year: 2019
  ident: ref_6
  article-title: GPCR signaling regulation: The role of GRKs and arrestins
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00125
– volume: 106
  start-page: 6843
  year: 2009
  ident: ref_33
  article-title: Structure-based discovery of β 2 -adrenergic receptor ligands
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0812657106
– volume: 60
  start-page: 273
  year: 2021
  ident: ref_74
  article-title: Use of molecular docking computational tools in drug discovery
  publication-title: Progress in Medicinal Chemistry
  doi: 10.1016/bs.pmch.2021.01.004
– volume: 37
  start-page: W623
  year: 2009
  ident: ref_60
  article-title: PubChem: A public information system for analyzing bioactivities of small molecules
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp456
– volume: 60
  start-page: 204
  year: 2020
  ident: ref_75
  article-title: Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00778
– volume: 11
  start-page: 1189
  year: 2005
  ident: ref_44
  article-title: New Methodologies for Ligand-Based Virtual Screening
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612053507549
– volume: 19
  start-page: 3417
  year: 2014
  ident: ref_31
  article-title: Synthesis, docking study and β-Adrenoceptor activity of some new oxime ether derivatives
  publication-title: Molecules
  doi: 10.3390/molecules19033417
– volume: 1
  start-page: 229
  year: 2011
  ident: ref_49
  article-title: Outstanding challenges in protein-ligand docking and structure-based virtual screening
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.18
– ident: ref_57
  doi: 10.1080/07391102.2020.1779132
– volume: 31
  start-page: 2967
  year: 2010
  ident: ref_76
  article-title: Software news and updates TmoleX-a graphical user interface for TURBOMOLE
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21576
– volume: 46
  start-page: 175
  year: 1992
  ident: ref_100
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 53
  start-page: 1
  year: 2001
  ident: ref_7
  article-title: Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling
  publication-title: Pharmacol. Rev.
– volume: 11
  start-page: 567
  year: 2019
  ident: ref_93
  article-title: Deep learning for molecular generation
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2018-0358
– ident: ref_110
– volume: 7
  start-page: 1
  year: 2015
  ident: ref_109
  article-title: Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-015-0069-3
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_99
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: Volume 4
  start-page: 217
  year: 2008
  ident: ref_59
  article-title: Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities
  publication-title: Annual Reports in Computational Chemistry
  doi: 10.1016/S1574-1400(08)00012-1
– volume: 46
  start-page: D1074
  year: 2018
  ident: ref_81
  article-title: DrugBank 5.0: A major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
– volume: 49
  start-page: D1388
  year: 2021
  ident: ref_26
  article-title: PubChem in 2021: New data content and improved web interfaces
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa971
– ident: ref_70
  doi: 10.1002/jcc.21334
– ident: ref_15
  doi: 10.1007/978-3-319-08798-6_5
– volume: 71
  start-page: A933
  year: 2018
  ident: ref_17
  article-title: Carvedilol Exerts Positive Inotropy in Cardiomyocytes By Uniquely Stimulating Beta-Arrestin2-Dependent Serca2a Activity Via the Beta1-Adrenergic Receptor
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(18)31474-8
– volume: 29
  start-page: 1859
  year: 2008
  ident: ref_111
  article-title: CHARMM-GUI: A web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20945
– volume: 281
  start-page: 33537
  year: 2006
  ident: ref_19
  article-title: AKAP79-mediated targeting of the cyclic AMP-dependent protein kinase to the β1-adrenergic receptor promotes recycling and functional resensitization of the receptor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M601809200
– volume: 46
  start-page: D8
  year: 2018
  ident: ref_61
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1095
– volume: 122
  start-page: 104
  year: 2012
  ident: ref_12
  article-title: Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application
  publication-title: Cardiology
  doi: 10.1159/000339271
– volume: 45
  start-page: D945
  year: 2017
  ident: ref_83
  article-title: The ChEMBL database in 2017
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1074
– volume: 8
  start-page: 343
  year: 2020
  ident: ref_39
  article-title: Structure-Based Virtual Screening: From Classical to Artificial Intelligence
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00343
– volume: 58
  start-page: 1697
  year: 2018
  ident: ref_77
  article-title: Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00312
– volume: 59
  start-page: 4342
  year: 2016
  ident: ref_54
  article-title: Structure-Based Identification of Novel Ligands Targeting Multiple Sites within a Chemokine-G-Protein-Coupled-Receptor Interface
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b02042
– volume: 47
  start-page: 2293
  year: 2007
  ident: ref_78
  article-title: Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci700253h
– volume: 9
  start-page: 1275
  year: 2018
  ident: ref_41
  article-title: QSAR-based virtual screening: Advances and applications in drug discovery
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01275
– volume: 4
  start-page: 828
  year: 2019
  ident: ref_94
  article-title: Deep learning for molecular design—A review of the state of the art
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00039A
– ident: ref_29
– volume: 93
  start-page: 569
  year: 2016
  ident: ref_72
  article-title: RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Structural Explorations of Large and Small Biomolecules
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.5b00404
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_10
  article-title: A high-resolution description of β1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15864-y
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_103
  article-title: SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules
  publication-title: Sci. Rep.
  doi: 10.1038/srep42717
– volume: 20
  start-page: 13384
  year: 2015
  ident: ref_48
  article-title: Molecular docking and structure-based drug design strategies
  publication-title: Molecules
  doi: 10.3390/molecules200713384
– volume: 292
  start-page: 4714
  year: 2017
  ident: ref_20
  article-title: Site-specific O-glycosylation by polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) co-regulates β1-adrenergic receptor N-terminal cleavage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.730614
– volume: 57
  start-page: 942
  year: 2017
  ident: ref_89
  article-title: Protein-Ligand Scoring with Convolutional Neural Networks
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00740
– volume: 132
  start-page: 1115
  year: 1960
  ident: ref_108
  article-title: A computer program for classifying plants
  publication-title: Science
  doi: 10.1126/science.132.3434.1115
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_102
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 3149
  year: 2020
  ident: ref_46
  article-title: Combined strategies in structure-based virtual screening
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06303J
– ident: ref_35
  doi: 10.3390/molecules25051135
SSID ssj0023259
Score 2.338973
Snippet Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR)...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11191
SubjectTerms Adrenergic receptors
Amino acids
Binding sites
Crystal structure
Drug Discovery
Humans
Kinases
Ligands
Machine Learning
Molecular Dynamics Simulation
Protein Binding
Proteins
R&D
Receptors, Adrenergic, beta-1 - chemistry
Receptors, Adrenergic, beta-2 - chemistry
Research & development
Signal transduction
Title Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches
URI https://www.ncbi.nlm.nih.gov/pubmed/34681845
https://www.proquest.com/docview/2584429681
https://www.proquest.com/docview/2584790903
https://pubmed.ncbi.nlm.nih.gov/PMC8538848
Volume 22
WOSCitedRecordID wos000716265200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: 7X7
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: PIMPY
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: M2O
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1qpyCx4V06tFRGQqywmoed2Cs0rVoViRkiXhpWkRPbMIgmw2SK1EV_ig_pN3GdeAIDgg2bKJGdxMq1fe51rs8BeILdwMaRiihCbUKZCjgVTBoa2MiGqsBju4v__ct0MhHTqcz8glvj0ypXc2I7Ueu6dGvkBxEiJc6diQifz79Spxrl_q56CY1N2HJMZWwAW4fHk-x1H3LFUSuXFiIK0YTLpGPZjDHQP5h9PmsQHJ3WugzXUekPV_P3jMlfIOjk1v82_jbc9M4nGXW95Q5smOouXO_kKC_uweWb0mXhIJiR2pKr7yElqtJ4EtGR2_BtFjhNEnQ0zRwjdTKutdP-qhcN8Wo_ZOQzCkjmGbE9L6vjgm6fNW5zNw3xtK4fychzmpvmPrw7OX57dEq9PAMtEfWXVGj0pQrLWLs71tjCCmZDy5VkPA0UV8KWvNDSBEJxhErBhGboUAVGFKEUOt6GQVVXZgdIiX6SZmVsFS-YMqkMCoGuqnXhjE7SeAjPVubJS89d7iQ0vuQYwzhr5mvWHMLTvvq8I-34W8W9lb1yP3ab_KexhvC4L8ZR536lqMrU510dbKUMsGkPuq7RvylmeKtgfAjpWqfpKzhG7_WSavapZfZG30ngZ3r472btwo3IZda4vJp0DwbLxbl5BNfKb8tZs9iHzXSatkex74cDXo2jV3iVvRhnH34AP-0XVw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOiDY8H4UBjASsMKaPOzEWSBUAaOppq0qMaCZVXBiG4ogKUkHNAt-iQUfwjdxnTiBgmA3CzZVpDipm57cc29yfQ7AfYSBCQMZUKTaiDLpcSpYoqlnAuPLDD-bVfyvJvFsJg4OkvkGfO3Wwti2yi4mNoFalbl9Rr4dIFNi7IyE_2T5kVrXKPt2tbPQaGGxp48_Y8lWPx4_w__3QRDsPN9_ukudqwDNkaxWVChMATLDWLOoU5vMCGZ8w2XCeOxJLoXJeaYS7QnJMcILJhTDPMDTIsMKXYV43lOwiZPhYgCb8_F0ftiXeGHQ2LP5yHo04knUqnqGYeJtL959qJGMrbd74q-z4B-p7e8dmr9Q3s6F_-1iXYTzLrkmo_ZuuAQburgMZ1q7zeMr8OVFbruMkKxJacj3bz4lslC4EdCRXdCuK6QBgom0Xq7KikxLZb3Nyqomzs2IjFzHBJk7xW-nO2u1rptzTZveVE2cbO0bMnKa7bq-Ci9P5Ldfg0FRFvoGkBzzQMXy0EieManjxMsEpuLGlmsqisMhPOrgkOZOm91ahLxPsUaz6EnX0DOEh_3wZStK8reBWx0-Uheb6vQnOIZwr9-NUcW-KpKFLo_aMTjLxMOpXW-h2H9TyPBQwfgQ4jWQ9gOsYvn6nmLxtlEux9xQ4GW6-e9p3YWzu_vTSToZz_ZuwbnAdhHZHqJ4Cwar6kjfhtP5p9Wiru6424_A65MG8Q9j327n
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLSA2vB8DBYwErGpN4jiJs0Bo1DKiajuMxEPdBSe220GQTJNpURf8FEs-gm_iOnECA4JdF2xGkeJkPJmTe-5Nrs8BeIwwMAGTjCLVRpRLL6SCJ5p6hhlfZvjZrOJ_txtPJmJ_P5muwLduLYxtq-xiYhOoVZnbZ-RDhkyJsTMS_tC4tojp1vj5_IhaByn7prWz02ghsqNPP2P5Vj_b3sL_-glj4xdvNl9S5zBAcySuBRUK04HMcN4s8NQmM4Ib34Qy4WHsyVAKk4eZSrQnZIjRXnChOOYEnhYZVusqwPOeg7WYIynbtkH2qi_2AtYYtfnIfzQKk6jV9wyCxBvOPnyqkZaty3viL_PhH0nu772av5Df-Mr_fNmuwmWXcpNRe49cgxVdXIcLrQnn6Q348jq3vUdI4aQ05PtXnxJZKNxgdGSXuesKyYFgeq3ni7Iie6WyjmdlVRPncURGro-CTJ0OuFOjtQrYzbn2mo5VTZyY7QEZOSV3Xd-Et2fy22_BalEW-g6QHLNDxfPAyDDjUseJlwlM0I0t4lQUBwPY6KCR5k6x3RqHfEyxcrNISpeQNICn_fB5K1Xyt4HrHVZSF7Hq9CdQBvCo342xxr5AkoUuj9sxOMvEw6ndbmHZf1PA8VDBwwHES4DtB1gd8-U9xeyw0TPHjFHgZbr772k9hIuI3HR3e7JzDy4x21pkG4vidVhdVMf6PpzPTxazunrQ3IcE3p81gn8Acad2IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+of+%CE%B21-+and+%CE%B22-Adrenergic+Receptor+Modulators+through+Advanced+Pharmacoinformatics+and+Machine+Learning+Approaches&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Islam%2C+Md+Ataul&rft.au=Rallabandi%2C+V+P+Subramanyam&rft.au=Mohammed%2C+Sameer&rft.au=Srinivasan%2C+Sridhar&rft.date=2021-10-17&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=20&rft_id=info:doi/10.3390%2Fijms222011191&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon