Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches
Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning...
Saved in:
| Published in: | International journal of molecular sciences Vol. 22; no. 20; p. 11191 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
17.10.2021
MDPI |
| Subjects: | |
| ISSN: | 1422-0067, 1661-6596, 1422-0067 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation. |
|---|---|
| AbstractList | Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation. Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation. |
| Author | Dudekula, Dawood Babu Mohammed, Sameer Park, Junhyung Natarajan, Sathishkumar Srinivasan, Sridhar Rallabandi, V. P. Subramanyam Islam, Md Ataul |
| AuthorAffiliation | 2 3BIGS Co., Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Korea; sathish@3bigs.com 1 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; ataul@3bigs.com (M.A.I.); subramanyam@3bigs.com (V.P.S.R.); sameer@3bigs.com (S.M.); sridhar@3bigs.com (S.S.); dawood@3bigs.com (D.B.D.) |
| AuthorAffiliation_xml | – name: 1 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; ataul@3bigs.com (M.A.I.); subramanyam@3bigs.com (V.P.S.R.); sameer@3bigs.com (S.M.); sridhar@3bigs.com (S.S.); dawood@3bigs.com (D.B.D.) – name: 2 3BIGS Co., Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Korea; sathish@3bigs.com |
| Author_xml | – sequence: 1 givenname: Md Ataul orcidid: 0000-0001-6286-6262 surname: Islam fullname: Islam, Md Ataul – sequence: 2 givenname: V. P. Subramanyam surname: Rallabandi fullname: Rallabandi, V. P. Subramanyam – sequence: 3 givenname: Sameer surname: Mohammed fullname: Mohammed, Sameer – sequence: 4 givenname: Sridhar surname: Srinivasan fullname: Srinivasan, Sridhar – sequence: 5 givenname: Sathishkumar orcidid: 0000-0002-9001-8495 surname: Natarajan fullname: Natarajan, Sathishkumar – sequence: 6 givenname: Dawood Babu surname: Dudekula fullname: Dudekula, Dawood Babu – sequence: 7 givenname: Junhyung orcidid: 0000-0002-0805-6362 surname: Park fullname: Park, Junhyung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34681845$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctu1DAUhi1URC-wZIsisWET8DVjb5BGVblIU4G4rC3HPpl4lNjBTiqx4KX6IH0m3GmL2oqVf9nf-c_vc47RQYgBEHpJ8FvGFH7nd2OmlGJCiCJP0BHhlNYYN6uDe_oQHee8w5gyKtQzdMh4I4nk4gj9-W4TQPBhW8WuurokdWWCK4LWa5cgQNp6W30DC9McU3Ue3TKYonI19yku275auwsTLLjqa2_SaGz0oYtFzN7mvde5sb0PUG3ApH2j9TSlWC4hP0dPOzNkeHF7nqCfH85-nH6qN18-fj5db2rLiZhr6RrO245zppRooGs7yTvSCaO4WGEjjOysaJ0CLI0gDEsuHW8IxSBboqRjJ-j9je-0tCM4C2FOZtBT8qNJv3U0Xj98Cb7X23ihpWCyuBWDN7cGKf5aIM969NnCMJgAccmaCslXCivMCvr6EbqLSwrle3uKU1VmX6hX9xP9i3K3mQKwG8CmmHOCTls_l6HG64B-0ATr6_3rB_svVfWjqjvj__N_AW8UtI0 |
| CitedBy_id | crossref_primary_10_1007_s11030_022_10467_9 crossref_primary_10_1016_j_taap_2025_117567 crossref_primary_10_3390_ijms23169374 crossref_primary_10_3389_fpls_2022_934130 |
| Cites_doi | 10.1038/nature07101 10.1021/ci500747n 10.1371/journal.pcbi.1001053 10.1038/s41467-020-14526-3 10.1021/jm020017n 10.1186/s13321-015-0103-5 10.1016/j.bmcl.2010.01.084 10.3389/fphar.2018.01077 10.1016/j.bbamem.2006.09.019 10.1126/science.aax1566 10.1039/b409813g 10.1016/S0140-6736(04)17355-8 10.1007/BF00994018 10.1021/acs.jmedchem.5b00921 10.1021/jm300687e 10.1021/cc9800071 10.1201/9781498713702 10.1093/biomet/54.1-2.167 10.1002/prot.24456 10.1021/ci800293n 10.1073/pnas.0306077101 10.1021/ct400045d 10.1016/j.ddtec.2004.11.007 10.1186/1758-2946-3-33 10.2174/092986708783330683 10.1186/1758-2946-5-23 10.1021/acs.jmedchem.9b02147 10.1021/jm401908w 10.1080/10286020.2015.1123692 10.1016/S1359-6446(03)02831-9 10.1371/journal.pone.0112456 10.1016/S0020-7373(87)80053-6 10.1016/j.bbamem.2007.02.010 10.1016/j.molstruc.2019.127660 10.1016/j.bmc.2019.05.034 10.1021/jm400140q 10.1161/CIRCRESAHA.118.311403 10.1080/1062936X.2020.1799433 10.3389/fimmu.2020.01664 10.3389/fcimb.2020.00118 10.1002/jcc.21707 10.1021/ci900228x 10.1126/science.1150577 10.1039/C7SC02664A 10.1021/acsomega.9b04403 10.1093/nar/28.1.235 10.1371/journal.pone.0107837 10.1021/acs.jmedchem.5b00104 10.1021/acs.jcim.9b00237 10.1002/jcc.24667 10.1038/nrd1549 10.3389/fgene.2018.00560 10.1139/y96-124 10.1002/wcms.1465 10.1038/nature25978 10.1021/jp8001614 10.1124/pr.110.003350 10.1093/nar/gkv315 10.2174/156802607780906753 10.1021/bi100580s 10.1021/jp003020w 10.1146/annurev.physiol.69.022405.154731 10.1161/CIRCHEARTFAILURE.112.966895 10.1093/nar/gkv951 10.1063/5.0019056 10.1016/S1093-3263(00)00061-9 10.1093/nar/gkj067 10.3389/fphar.2019.00125 10.1073/pnas.0812657106 10.1016/bs.pmch.2021.01.004 10.1093/nar/gkp456 10.1021/acs.jcim.9b00778 10.2174/1381612053507549 10.3390/molecules19033417 10.1002/wcms.18 10.1080/07391102.2020.1779132 10.1002/jcc.21576 10.1080/00031305.1992.10475879 10.4155/fmc-2018-0358 10.1186/s13321-015-0069-3 10.1214/aos/1013203451 10.1016/S1574-1400(08)00012-1 10.1093/nar/gkx1037 10.1093/nar/gkaa971 10.1002/jcc.21334 10.1007/978-3-319-08798-6_5 10.1016/S0735-1097(18)31474-8 10.1002/jcc.20945 10.1074/jbc.M601809200 10.1093/nar/gkx1095 10.1159/000339271 10.1093/nar/gkw1074 10.3389/fchem.2020.00343 10.1021/acs.jcim.8b00312 10.1021/acs.jmedchem.5b02042 10.1021/ci700253h 10.3389/fphar.2018.01275 10.1039/C9ME00039A 10.1021/acs.jchemed.5b00404 10.1038/s41467-020-15864-y 10.1038/srep42717 10.3390/molecules200713384 10.1074/jbc.M116.730614 10.1021/acs.jcim.6b00740 10.1126/science.132.3434.1115 10.1039/C9CP06303J 10.3390/molecules25051135 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.3390/ijms222011191 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1422-0067 |
| ExternalDocumentID | PMC8538848 34681845 10_3390_ijms222011191 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Technology development Program, Ministry of SMEs and Startups, Republic of Korea. grantid: S2788640 |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF ALIPV BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK COVID ESTFP K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c415t-8d644bf4439956efbf84f1f5a94570a5a8fc5bd9e08a5130848d46120e8b198d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716265200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-0067 1661-6596 |
| IngestDate | Tue Nov 04 01:59:26 EST 2025 Sun Sep 28 00:47:52 EDT 2025 Tue Oct 07 07:29:03 EDT 2025 Wed Feb 19 02:27:48 EST 2025 Tue Nov 18 22:12:59 EST 2025 Sat Nov 29 07:15:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | MD simulation similarity search cardiovascular diseases virtual screening machine learning β-adrenergic receptors |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-8d644bf4439956efbf84f1f5a94570a5a8fc5bd9e08a5130848d46120e8b198d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0805-6362 0000-0001-6286-6262 0000-0002-9001-8495 |
| OpenAccessLink | https://www.proquest.com/docview/2584429681?pq-origsite=%requestingapplication% |
| PMID | 34681845 |
| PQID | 2584429681 |
| PQPubID | 2032341 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8538848 proquest_miscellaneous_2584790903 proquest_journals_2584429681 pubmed_primary_34681845 crossref_citationtrail_10_3390_ijms222011191 crossref_primary_10_3390_ijms222011191 |
| PublicationCentury | 2000 |
| PublicationDate | 20211017 |
| PublicationDateYYYYMMDD | 2021-10-17 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211017 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | International journal of molecular sciences |
| PublicationTitleAlternate | Int J Mol Sci |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Wishart (ref_82) 2006; 34 ref_92 Ferguson (ref_7) 2001; 53 Kolb (ref_33) 2009; 106 Kim (ref_26) 2021; 49 Andricopulo (ref_45) 2008; 15 ref_97 Gardner (ref_19) 2006; 281 Hevener (ref_79) 2009; 49 Friedman (ref_99) 2001; 29 Stahura (ref_44) 2005; 11 Jo (ref_111) 2008; 29 Daina (ref_103) 2017; 7 Edgar (ref_105) 2000; 18 Willighagen (ref_84) 2013; 5 ref_15 Ghabbour (ref_31) 2014; 19 Grahl (ref_10) 2020; 11 Neves (ref_41) 2018; 9 Zardecki (ref_72) 2016; 93 Salon (ref_2) 2011; 63 Bajusz (ref_109) 2015; 7 ref_23 Yu (ref_107) 2015; 7 Schwalbe (ref_21) 2019; 27 Waszkowycz (ref_49) 2011; 1 He (ref_114) 2020; 153 ref_29 Salazar (ref_8) 2007; 1768 Wishart (ref_81) 2018; 46 Pires (ref_104) 2015; 58 Zamora (ref_43) 2009; 49 Wang (ref_90) 2017; 38 Pedregosa (ref_102) 2011; 12 Carlberg (ref_80) 2004; 364 Maffucci (ref_47) 2013; 9 Rogers (ref_108) 1960; 132 Rengo (ref_9) 2012; 5 ref_70 Gaillard (ref_77) 2018; 58 Li (ref_95) 2020; 10 Gurevich (ref_6) 2019; 10 Goth (ref_20) 2017; 292 Yang (ref_34) 2016; 18 Tan (ref_37) 2018; 9 Ribas (ref_5) 2007; 1768 Sutherland (ref_78) 2007; 47 Wang (ref_46) 2020; 22 Wu (ref_86) 2018; 9 Wang (ref_60) 2009; 37 Premont (ref_4) 2007; 69 Lipinski (ref_63) 2004; 1 Warne (ref_13) 2008; 454 Katsarou (ref_14) 2018; 9 Altman (ref_100) 1992; 46 Lymperopoulos (ref_17) 2018; 71 Cang (ref_18) 2014; 82 Ma (ref_87) 2015; 55 Yap (ref_28) 2011; 32 Christopher (ref_11) 2013; 56 Kitchen (ref_51) 2004; 3 Yang (ref_88) 2019; 59 Yohannan (ref_25) 2004; 101 Cherezov (ref_73) 2007; 318 Ghose (ref_64) 1999; 1 ref_57 Kim (ref_62) 2016; 44 Congreve (ref_66) 2003; 8 Joung (ref_113) 2008; 112 Ragoza (ref_89) 2017; 57 Wang (ref_16) 2018; 123 Ferguson (ref_3) 1996; 74 Mysinger (ref_27) 2012; 55 Mark (ref_112) 2001; 105 Gaulton (ref_83) 2017; 45 Wachter (ref_12) 2012; 122 Salentin (ref_30) 2015; 43 Elton (ref_94) 2019; 4 Smith (ref_54) 2016; 59 ref_69 ref_68 ref_67 Segler (ref_91) 2018; 555 Nguyen (ref_75) 2020; 60 Walker (ref_98) 1967; 54 Bender (ref_106) 2004; 2 Stanzione (ref_74) 2021; 60 Ferreira (ref_48) 2015; 20 Xu (ref_52) 2014; 57 Maia (ref_40) 2020; 5 ref_35 ref_32 Gupta (ref_55) 2020; 1205 ref_110 Cortes (ref_101) 1995; 20 Bolton (ref_59) 2008; Volume 4 ref_38 Shan (ref_22) 2010; 49 Shetve (ref_58) 2021; 32 Yang (ref_1) 2021; 6 Frei (ref_24) 2020; 11 Liu (ref_42) 2020; 10 Choudhary (ref_56) 2020; 11 Agarwala (ref_61) 2018; 46 Cavasotto (ref_50) 2007; 7 Steffen (ref_76) 2010; 31 Wu (ref_53) 2015; 58 Maia (ref_39) 2020; 8 Berman (ref_71) 2000; 28 Cai (ref_85) 2020; 63 Tamura (ref_36) 2010; 20 Xu (ref_93) 2019; 11 Quinlan (ref_96) 1987; 27 Veber (ref_65) 2002; 45 |
| References_xml | – volume: 454 start-page: 486 year: 2008 ident: ref_13 article-title: Structure of a β1-adrenergic G-protein-coupled receptor publication-title: Nature doi: 10.1038/nature07101 – volume: 55 start-page: 263 year: 2015 ident: ref_87 article-title: Deep neural nets as a method for quantitative structure-activity relationships publication-title: J. Chem. Inf. Model. doi: 10.1021/ci500747n – ident: ref_23 doi: 10.1371/journal.pcbi.1001053 – volume: 11 start-page: 1 year: 2020 ident: ref_24 article-title: Conformational plasticity of ligand-bound and ternary GPCR complexes studied by 19F NMR of the β1-adrenergic receptor publication-title: Nat. Commun. doi: 10.1038/s41467-020-14526-3 – volume: 45 start-page: 2615 year: 2002 ident: ref_65 article-title: Molecular properties that influence the oral bioavailability of drug candidates publication-title: J. Med. Chem. doi: 10.1021/jm020017n – volume: 7 start-page: 1 year: 2015 ident: ref_107 article-title: Target enhanced 2D similarity search by using explicit biological activity annotations and profiles publication-title: J. Cheminform. doi: 10.1186/s13321-015-0103-5 – volume: 20 start-page: 1598 year: 2010 ident: ref_36 article-title: Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos publication-title: Bioorganic Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.01.084 – ident: ref_68 – volume: 9 start-page: 1077 year: 2018 ident: ref_37 article-title: 28-Day Oral Chronic Toxicity Study of Arctigenin in Rats publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01077 – volume: 1768 start-page: 913 year: 2007 ident: ref_5 article-title: The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2006.09.019 – ident: ref_92 doi: 10.1126/science.aax1566 – volume: 2 start-page: 3204 year: 2004 ident: ref_106 article-title: Molecular similarity: A key technique in molecular informatics publication-title: Org. Biomol. Chem. doi: 10.1039/b409813g – volume: 364 start-page: 1684 year: 2004 ident: ref_80 article-title: Atenolol in hypertension: Is it a wise choice? publication-title: Lancet doi: 10.1016/S0140-6736(04)17355-8 – volume: 20 start-page: 273 year: 1995 ident: ref_101 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 58 start-page: 7807 year: 2015 ident: ref_53 article-title: Identification of Substituted Naphthotriazolediones as Novel Tryptophan 2,3-Dioxygenase (TDO) Inhibitors through Structure-Based Virtual Screening publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b00921 – volume: 55 start-page: 6582 year: 2012 ident: ref_27 article-title: Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking publication-title: J. Med. Chem. doi: 10.1021/jm300687e – volume: 1 start-page: 55 year: 1999 ident: ref_64 article-title: A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases publication-title: J. Comb. Chem. doi: 10.1021/cc9800071 – ident: ref_67 doi: 10.1201/9781498713702 – volume: 54 start-page: 167 year: 1967 ident: ref_98 article-title: Estimation of the probability of an event as a function of several independent variables publication-title: Biometrika doi: 10.1093/biomet/54.1-2.167 – volume: 82 start-page: 760 year: 2014 ident: ref_18 article-title: Cholesterol-β1AR interaction versus cholesterol-β2AR interaction publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.24456 – volume: 49 start-page: 444 year: 2009 ident: ref_79 article-title: Validation of molecular docking programs for virtual screening against dihydropteroate synthase publication-title: J. Chem. Inf. Model. doi: 10.1021/ci800293n – volume: 101 start-page: 959 year: 2004 ident: ref_25 article-title: The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0306077101 – volume: 9 start-page: 2706 year: 2013 ident: ref_47 article-title: Explicit ligand hydration shells improve the correlation between MM-PB/GBSA binding energies and experimental activities publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400045d – volume: 1 start-page: 337 year: 2004 ident: ref_63 article-title: Lead- and drug-like compounds: The rule-of-five revolution publication-title: Drug Discov. Today Technol. doi: 10.1016/j.ddtec.2004.11.007 – ident: ref_69 doi: 10.1186/1758-2946-3-33 – volume: 15 start-page: 37 year: 2008 ident: ref_45 article-title: Virtual Screening and Its Integration with Modern Drug Design Technologies publication-title: Curr. Med. Chem. doi: 10.2174/092986708783330683 – volume: 5 start-page: 1 year: 2013 ident: ref_84 article-title: The ChEMBL database as linked open data publication-title: J. Cheminform. doi: 10.1186/1758-2946-5-23 – volume: 63 start-page: 8683 year: 2020 ident: ref_85 article-title: Transfer Learning for Drug Discovery publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b02147 – volume: 57 start-page: 3737 year: 2014 ident: ref_52 article-title: Discovery of novel inhibitors targeting the macrophage migration inhibitory factor via structure-based virtual screening and bioassays publication-title: J. Med. Chem. doi: 10.1021/jm401908w – volume: 18 start-page: 550 year: 2016 ident: ref_34 article-title: Looking for agonists of β2adrenergic receptor from Fuzi and Chuanwu by virtual screening and dual-luciferase reporter assay publication-title: J. Asian Nat. Prod. Res. doi: 10.1080/10286020.2015.1123692 – volume: 8 start-page: 876 year: 2003 ident: ref_66 article-title: A “Rule of Three” for fragment-based lead discovery? publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(03)02831-9 – ident: ref_97 – ident: ref_38 doi: 10.1371/journal.pone.0112456 – volume: 27 start-page: 221 year: 1987 ident: ref_96 article-title: Simplifying decision trees publication-title: Int. J. Man. Mach. Stud. doi: 10.1016/S0020-7373(87)80053-6 – volume: 1768 start-page: 1006 year: 2007 ident: ref_8 article-title: Cardiac GPCRs: GPCR signaling in healthy and failing hearts publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2007.02.010 – volume: 1205 start-page: 127660 year: 2020 ident: ref_55 article-title: Computational screening of promising beta-secretase 1 inhibitors through multi-step molecular docking and molecular dynamics simulations—Pharmacoinformatics approach publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2019.127660 – volume: 27 start-page: 2959 year: 2019 ident: ref_21 article-title: Development of covalent antagonists for β1- and β2-adrenergic receptors publication-title: Bioorganic Med. Chem. doi: 10.1016/j.bmc.2019.05.034 – volume: 56 start-page: 3446 year: 2013 ident: ref_11 article-title: Biophysical fragment screening of the β1-adrenergic receptor: Identification of high affinity arylpiperazine leads using structure-based drug design publication-title: J. Med. Chem. doi: 10.1021/jm400140q – volume: 123 start-page: 716 year: 2018 ident: ref_16 article-title: G-protein-coupled receptors in heart disease publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.311403 – volume: 6 start-page: 1 year: 2021 ident: ref_1 article-title: G protein-coupled receptors: Structure-and function-based drug discovery publication-title: Signal Transduct. Target. Ther. – volume: 32 start-page: 1 year: 2021 ident: ref_58 article-title: Identification of selective Lyn inhibitors from the chemical databases through integrated molecular modelling approaches publication-title: SAR QSAR Environ. Res. doi: 10.1080/1062936X.2020.1799433 – volume: 11 start-page: 1664 year: 2020 ident: ref_56 article-title: Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01664 – volume: 10 start-page: 118 year: 2020 ident: ref_42 article-title: Pharmacophore-Based Virtual Screening toward the Discovery of Novel Anti-echinococcal Compounds publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2020.00118 – volume: 32 start-page: 1466 year: 2011 ident: ref_28 article-title: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints publication-title: J. Comput. Chem. doi: 10.1002/jcc.21707 – volume: 49 start-page: 2129 year: 2009 ident: ref_43 article-title: Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening publication-title: J. Chem. Inf. Model. doi: 10.1021/ci900228x – volume: 318 start-page: 1258 year: 2007 ident: ref_73 article-title: High-Resolution Crystal Structure of an Engineered Human β2- Adrenergic G Protein–Coupled Receptor publication-title: Science doi: 10.1126/science.1150577 – volume: 9 start-page: 513 year: 2018 ident: ref_86 article-title: MoleculeNet: A benchmark for molecular machine learning publication-title: Chem. Sci. doi: 10.1039/C7SC02664A – volume: 5 start-page: 6628 year: 2020 ident: ref_40 article-title: Molecular Architect: A User-Friendly Workflow for Virtual Screening publication-title: ACS Omega doi: 10.1021/acsomega.9b04403 – volume: 28 start-page: 235 year: 2000 ident: ref_71 article-title: The Protein Data Bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – ident: ref_32 doi: 10.1371/journal.pone.0107837 – volume: 58 start-page: 4066 year: 2015 ident: ref_104 article-title: pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b00104 – volume: 59 start-page: 3370 year: 2019 ident: ref_88 article-title: Analyzing Learned Molecular Representations for Property Prediction publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00237 – volume: 38 start-page: 169 year: 2017 ident: ref_90 article-title: Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest publication-title: J. Comput. Chem. doi: 10.1002/jcc.24667 – volume: 3 start-page: 935 year: 2004 ident: ref_51 article-title: Docking and scoring in virtual screening for drug discovery: Methods and applications publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1549 – volume: 9 start-page: 560 year: 2018 ident: ref_14 article-title: Beta 1, Beta 2 and Beta 3 Adrenergic Receptor Gene Polymorphisms in a Southeastern European Population publication-title: Front. Genet. doi: 10.3389/fgene.2018.00560 – volume: 74 start-page: 1095 year: 1996 ident: ref_3 article-title: G-protein-coupled receptor regulation: Role of G-protein-coupled receptor kinases and arrestins publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y96-124 – volume: 10 start-page: e1465 year: 2020 ident: ref_95 article-title: Machine-learning scoring functions for structure-based drug lead optimization. Wiley Interdiscip publication-title: Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1465 – volume: 555 start-page: 604 year: 2018 ident: ref_91 article-title: Planning chemical syntheses with deep neural networks and symbolic AI publication-title: Nature doi: 10.1038/nature25978 – volume: 112 start-page: 9020 year: 2008 ident: ref_113 article-title: Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations publication-title: J. Phys. Chem. B doi: 10.1021/jp8001614 – volume: 63 start-page: 901 year: 2011 ident: ref_2 article-title: The significance of G protein-coupled receptor crystallography for drug discovery publication-title: Pharmacol. Rev. doi: 10.1124/pr.110.003350 – volume: 43 start-page: W443 year: 2015 ident: ref_30 article-title: PLIP: Fully automated protein-ligand interaction profiler publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv315 – volume: 7 start-page: 1006 year: 2007 ident: ref_50 article-title: Ligand Docking and Structure-based Virtual Screening in Drug Discovery publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802607780906753 – volume: 49 start-page: 10691 year: 2010 ident: ref_22 article-title: Probing the structural determinants for the function of intracellular loop 2 in structurally cognate G-protein-coupled receptors publication-title: Biochemistry doi: 10.1021/bi100580s – volume: 105 start-page: 9954 year: 2001 ident: ref_112 article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K publication-title: J. Phys. Chem. A doi: 10.1021/jp003020w – volume: 69 start-page: 511 year: 2007 ident: ref_4 article-title: Physiological roles of G protein-coupled receptor kinases and arrestins publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.69.022405.154731 – volume: 5 start-page: 385 year: 2012 ident: ref_9 article-title: Targeting the β-adrenergic receptor system through g-protein-coupled receptor kinase 2: A new paradigm for therapy and prognostic evaluation in heart failure from bench to bedside giuseppe rengo pasquale perrone-filardi publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.112.966895 – volume: 44 start-page: D1202 year: 2016 ident: ref_62 article-title: PubChem substance and compound databases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv951 – volume: 153 start-page: 114502 year: 2020 ident: ref_114 article-title: A fast and high-quality charge model for the next generation general AMBER force field publication-title: J. Chem. Phys. doi: 10.1063/5.0019056 – volume: 18 start-page: 343 year: 2000 ident: ref_105 article-title: Effectiveness of retrieval in similarity searches of chemical databases: A review of performance measures publication-title: J. Mol. Graph. Model. doi: 10.1016/S1093-3263(00)00061-9 – volume: 34 start-page: D668 year: 2006 ident: ref_82 article-title: DrugBank: A comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj067 – volume: 10 start-page: 125 year: 2019 ident: ref_6 article-title: GPCR signaling regulation: The role of GRKs and arrestins publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00125 – volume: 106 start-page: 6843 year: 2009 ident: ref_33 article-title: Structure-based discovery of β 2 -adrenergic receptor ligands publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812657106 – volume: 60 start-page: 273 year: 2021 ident: ref_74 article-title: Use of molecular docking computational tools in drug discovery publication-title: Progress in Medicinal Chemistry doi: 10.1016/bs.pmch.2021.01.004 – volume: 37 start-page: W623 year: 2009 ident: ref_60 article-title: PubChem: A public information system for analyzing bioactivities of small molecules publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp456 – volume: 60 start-page: 204 year: 2020 ident: ref_75 article-title: Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00778 – volume: 11 start-page: 1189 year: 2005 ident: ref_44 article-title: New Methodologies for Ligand-Based Virtual Screening publication-title: Curr. Pharm. Des. doi: 10.2174/1381612053507549 – volume: 19 start-page: 3417 year: 2014 ident: ref_31 article-title: Synthesis, docking study and β-Adrenoceptor activity of some new oxime ether derivatives publication-title: Molecules doi: 10.3390/molecules19033417 – volume: 1 start-page: 229 year: 2011 ident: ref_49 article-title: Outstanding challenges in protein-ligand docking and structure-based virtual screening publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.18 – ident: ref_57 doi: 10.1080/07391102.2020.1779132 – volume: 31 start-page: 2967 year: 2010 ident: ref_76 article-title: Software news and updates TmoleX-a graphical user interface for TURBOMOLE publication-title: J. Comput. Chem. doi: 10.1002/jcc.21576 – volume: 46 start-page: 175 year: 1992 ident: ref_100 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 53 start-page: 1 year: 2001 ident: ref_7 article-title: Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling publication-title: Pharmacol. Rev. – volume: 11 start-page: 567 year: 2019 ident: ref_93 article-title: Deep learning for molecular generation publication-title: Future Med. Chem. doi: 10.4155/fmc-2018-0358 – ident: ref_110 – volume: 7 start-page: 1 year: 2015 ident: ref_109 article-title: Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? publication-title: J. Cheminform. doi: 10.1186/s13321-015-0069-3 – volume: 29 start-page: 1189 year: 2001 ident: ref_99 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: Volume 4 start-page: 217 year: 2008 ident: ref_59 article-title: Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities publication-title: Annual Reports in Computational Chemistry doi: 10.1016/S1574-1400(08)00012-1 – volume: 46 start-page: D1074 year: 2018 ident: ref_81 article-title: DrugBank 5.0: A major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1037 – volume: 49 start-page: D1388 year: 2021 ident: ref_26 article-title: PubChem in 2021: New data content and improved web interfaces publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa971 – ident: ref_70 doi: 10.1002/jcc.21334 – ident: ref_15 doi: 10.1007/978-3-319-08798-6_5 – volume: 71 start-page: A933 year: 2018 ident: ref_17 article-title: Carvedilol Exerts Positive Inotropy in Cardiomyocytes By Uniquely Stimulating Beta-Arrestin2-Dependent Serca2a Activity Via the Beta1-Adrenergic Receptor publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(18)31474-8 – volume: 29 start-page: 1859 year: 2008 ident: ref_111 article-title: CHARMM-GUI: A web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 281 start-page: 33537 year: 2006 ident: ref_19 article-title: AKAP79-mediated targeting of the cyclic AMP-dependent protein kinase to the β1-adrenergic receptor promotes recycling and functional resensitization of the receptor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M601809200 – volume: 46 start-page: D8 year: 2018 ident: ref_61 article-title: Database resources of the National Center for Biotechnology Information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1095 – volume: 122 start-page: 104 year: 2012 ident: ref_12 article-title: Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application publication-title: Cardiology doi: 10.1159/000339271 – volume: 45 start-page: D945 year: 2017 ident: ref_83 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1074 – volume: 8 start-page: 343 year: 2020 ident: ref_39 article-title: Structure-Based Virtual Screening: From Classical to Artificial Intelligence publication-title: Front. Chem. doi: 10.3389/fchem.2020.00343 – volume: 58 start-page: 1697 year: 2018 ident: ref_77 article-title: Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00312 – volume: 59 start-page: 4342 year: 2016 ident: ref_54 article-title: Structure-Based Identification of Novel Ligands Targeting Multiple Sites within a Chemokine-G-Protein-Coupled-Receptor Interface publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b02042 – volume: 47 start-page: 2293 year: 2007 ident: ref_78 article-title: Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy publication-title: J. Chem. Inf. Model. doi: 10.1021/ci700253h – volume: 9 start-page: 1275 year: 2018 ident: ref_41 article-title: QSAR-based virtual screening: Advances and applications in drug discovery publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01275 – volume: 4 start-page: 828 year: 2019 ident: ref_94 article-title: Deep learning for molecular design—A review of the state of the art publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C9ME00039A – ident: ref_29 – volume: 93 start-page: 569 year: 2016 ident: ref_72 article-title: RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Structural Explorations of Large and Small Biomolecules publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.5b00404 – volume: 11 start-page: 1 year: 2020 ident: ref_10 article-title: A high-resolution description of β1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR publication-title: Nat. Commun. doi: 10.1038/s41467-020-15864-y – volume: 7 start-page: 1 year: 2017 ident: ref_103 article-title: SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules publication-title: Sci. Rep. doi: 10.1038/srep42717 – volume: 20 start-page: 13384 year: 2015 ident: ref_48 article-title: Molecular docking and structure-based drug design strategies publication-title: Molecules doi: 10.3390/molecules200713384 – volume: 292 start-page: 4714 year: 2017 ident: ref_20 article-title: Site-specific O-glycosylation by polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) co-regulates β1-adrenergic receptor N-terminal cleavage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.730614 – volume: 57 start-page: 942 year: 2017 ident: ref_89 article-title: Protein-Ligand Scoring with Convolutional Neural Networks publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00740 – volume: 132 start-page: 1115 year: 1960 ident: ref_108 article-title: A computer program for classifying plants publication-title: Science doi: 10.1126/science.132.3434.1115 – volume: 12 start-page: 2825 year: 2011 ident: ref_102 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 3149 year: 2020 ident: ref_46 article-title: Combined strategies in structure-based virtual screening publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06303J – ident: ref_35 doi: 10.3390/molecules25051135 |
| SSID | ssj0023259 |
| Score | 2.338973 |
| Snippet | Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR)... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 11191 |
| SubjectTerms | Adrenergic receptors Amino acids Binding sites Crystal structure Drug Discovery Humans Kinases Ligands Machine Learning Molecular Dynamics Simulation Protein Binding Proteins R&D Receptors, Adrenergic, beta-1 - chemistry Receptors, Adrenergic, beta-2 - chemistry Research & development Signal transduction |
| Title | Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34681845 https://www.proquest.com/docview/2584429681 https://www.proquest.com/docview/2584790903 https://pubmed.ncbi.nlm.nih.gov/PMC8538848 |
| Volume | 22 |
| WOSCitedRecordID | wos000716265200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: 7X7 dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: PIMPY dateStart: 20000301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: M2O dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1qpyCx4V06tFRGQqywmoed2Cs0rVoViRkiXhpWkRPbMIgmw2SK1EV_ig_pN3GdeAIDgg2bKJGdxMq1fe51rs8BeILdwMaRiihCbUKZCjgVTBoa2MiGqsBju4v__ct0MhHTqcz8glvj0ypXc2I7Ueu6dGvkBxEiJc6diQifz79Spxrl_q56CY1N2HJMZWwAW4fHk-x1H3LFUSuXFiIK0YTLpGPZjDHQP5h9PmsQHJ3WugzXUekPV_P3jMlfIOjk1v82_jbc9M4nGXW95Q5smOouXO_kKC_uweWb0mXhIJiR2pKr7yElqtJ4EtGR2_BtFjhNEnQ0zRwjdTKutdP-qhcN8Wo_ZOQzCkjmGbE9L6vjgm6fNW5zNw3xtK4fychzmpvmPrw7OX57dEq9PAMtEfWXVGj0pQrLWLs71tjCCmZDy5VkPA0UV8KWvNDSBEJxhErBhGboUAVGFKEUOt6GQVVXZgdIiX6SZmVsFS-YMqkMCoGuqnXhjE7SeAjPVubJS89d7iQ0vuQYwzhr5mvWHMLTvvq8I-34W8W9lb1yP3ab_KexhvC4L8ZR536lqMrU510dbKUMsGkPuq7RvylmeKtgfAjpWqfpKzhG7_WSavapZfZG30ngZ3r472btwo3IZda4vJp0DwbLxbl5BNfKb8tZs9iHzXSatkex74cDXo2jV3iVvRhnH34AP-0XVw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOiDY8H4UBjASsMKaPOzEWSBUAaOppq0qMaCZVXBiG4ogKUkHNAt-iQUfwjdxnTiBgmA3CzZVpDipm57cc29yfQ7AfYSBCQMZUKTaiDLpcSpYoqlnAuPLDD-bVfyvJvFsJg4OkvkGfO3Wwti2yi4mNoFalbl9Rr4dIFNi7IyE_2T5kVrXKPt2tbPQaGGxp48_Y8lWPx4_w__3QRDsPN9_ukudqwDNkaxWVChMATLDWLOoU5vMCGZ8w2XCeOxJLoXJeaYS7QnJMcILJhTDPMDTIsMKXYV43lOwiZPhYgCb8_F0ftiXeGHQ2LP5yHo04knUqnqGYeJtL959qJGMrbd74q-z4B-p7e8dmr9Q3s6F_-1iXYTzLrkmo_ZuuAQburgMZ1q7zeMr8OVFbruMkKxJacj3bz4lslC4EdCRXdCuK6QBgom0Xq7KikxLZb3Nyqomzs2IjFzHBJk7xW-nO2u1rptzTZveVE2cbO0bMnKa7bq-Ci9P5Ldfg0FRFvoGkBzzQMXy0EieManjxMsEpuLGlmsqisMhPOrgkOZOm91ahLxPsUaz6EnX0DOEh_3wZStK8reBWx0-Uheb6vQnOIZwr9-NUcW-KpKFLo_aMTjLxMOpXW-h2H9TyPBQwfgQ4jWQ9gOsYvn6nmLxtlEux9xQ4GW6-e9p3YWzu_vTSToZz_ZuwbnAdhHZHqJ4Cwar6kjfhtP5p9Wiru6424_A65MG8Q9j327n |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLSA2vB8DBYwErGpN4jiJs0Bo1DKiajuMxEPdBSe220GQTJNpURf8FEs-gm_iOnECA4JdF2xGkeJkPJmTe-5Nrs8BeIwwMAGTjCLVRpRLL6SCJ5p6hhlfZvjZrOJ_txtPJmJ_P5muwLduLYxtq-xiYhOoVZnbZ-RDhkyJsTMS_tC4tojp1vj5_IhaByn7prWz02ghsqNPP2P5Vj_b3sL_-glj4xdvNl9S5zBAcySuBRUK04HMcN4s8NQmM4Ib34Qy4WHsyVAKk4eZSrQnZIjRXnChOOYEnhYZVusqwPOeg7WYIynbtkH2qi_2AtYYtfnIfzQKk6jV9wyCxBvOPnyqkZaty3viL_PhH0nu772av5Df-Mr_fNmuwmWXcpNRe49cgxVdXIcLrQnn6Q348jq3vUdI4aQ05PtXnxJZKNxgdGSXuesKyYFgeq3ni7Iie6WyjmdlVRPncURGro-CTJ0OuFOjtQrYzbn2mo5VTZyY7QEZOSV3Xd-Et2fy22_BalEW-g6QHLNDxfPAyDDjUseJlwlM0I0t4lQUBwPY6KCR5k6x3RqHfEyxcrNISpeQNICn_fB5K1Xyt4HrHVZSF7Hq9CdQBvCo342xxr5AkoUuj9sxOMvEw6ndbmHZf1PA8VDBwwHES4DtB1gd8-U9xeyw0TPHjFHgZbr772k9hIuI3HR3e7JzDy4x21pkG4vidVhdVMf6PpzPTxazunrQ3IcE3p81gn8Acad2IQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+of+%CE%B21-+and+%CE%B22-Adrenergic+Receptor+Modulators+through+Advanced+Pharmacoinformatics+and+Machine+Learning+Approaches&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Islam%2C+Md+Ataul&rft.au=Rallabandi%2C+V+P+Subramanyam&rft.au=Mohammed%2C+Sameer&rft.au=Srinivasan%2C+Sridhar&rft.date=2021-10-17&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=20&rft_id=info:doi/10.3390%2Fijms222011191&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |