Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants

Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Her...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of general physiology Ročník 149; číslo 4; s. 465
Hlavní autori: Tikhonov, Denis B, Zhorov, Boris S
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 03.04.2017
Predmet:
ISSN:1540-7748, 1540-7748
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
AbstractList Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Author Zhorov, Boris S
Tikhonov, Denis B
Author_xml – sequence: 1
  givenname: Denis B
  surname: Tikhonov
  fullname: Tikhonov, Denis B
  organization: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
– sequence: 2
  givenname: Boris S
  orcidid: 0000-0002-3630-7114
  surname: Zhorov
  fullname: Zhorov, Boris S
  email: zhorov@mcmaster.ca
  organization: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28258204$$D View this record in MEDLINE/PubMed
BookMark eNpNUE1LxDAUDLLifujRq-Towa7Ja_PhURa_YMWL3oSSpKntmjZr0wr990at4Fxm3jA85r0lmrW-tQidUrKmRLLL3dt-DYRySjmXB2hBWUYSITI5-6fnaBnCjkQwIEdoDhKYBJIt0OujNZVq69BgX-Lgi3po8LfTWoe18-Yd6xFHVg6r1oa-sn1twkUc-lp1XTX2VTMZxY9pfPs5uBBlOEaHpXLBnky8Qi-3N8-b-2T7dPewud4mJqOsT6SKVahi_IpnghnFmQHDVKEhhbQASwVoTTiAZRREPBSo1VJpWVqdCiFghc5_9-47_zHEknlTB2Odi439EHIqRRYBXMbo2RQddGOLfN_VjerG_O8j8AWFbWSn
CitedBy_id crossref_primary_10_3390_ph15101208
crossref_primary_10_3390_insects13080745
crossref_primary_10_1002_cmdc_202100547
crossref_primary_10_3389_fphar_2022_855792
crossref_primary_10_3390_ijms252011229
crossref_primary_10_1038_s41589_018_0090_8
crossref_primary_10_3390_cancers14184401
crossref_primary_10_3389_fncel_2020_593050
crossref_primary_10_3389_fphys_2021_737834
crossref_primary_10_1073_pnas_1714131115
crossref_primary_10_1097_MS9_0000000000002291
crossref_primary_10_1177_1744806920901890
crossref_primary_10_1016_j_neuropharm_2020_108266
crossref_primary_10_1007_s00249_023_01628_1
crossref_primary_10_1038_s41598_018_22033_1
crossref_primary_10_3390_toxins14070490
crossref_primary_10_7554_eLife_103159_3
crossref_primary_10_1007_s10822_020_00330_0
crossref_primary_10_1038_s41598_020_69612_9
crossref_primary_10_1080_19336950_2022_2026015
crossref_primary_10_1152_jn_00210_2019
crossref_primary_10_3389_fphar_2018_00880
crossref_primary_10_3390_ph12020099
crossref_primary_10_1016_j_colsurfa_2022_128316
crossref_primary_10_1073_pnas_1817446116
crossref_primary_10_1016_j_bpj_2024_12_019
crossref_primary_10_1134_S199074782470017X
crossref_primary_10_1016_j_hrthm_2023_01_032
crossref_primary_10_3390_ph17040461
crossref_primary_10_1007_s11055_020_00987_y
crossref_primary_10_3389_fphar_2021_742508
crossref_primary_10_1124_jpet_122_001407
crossref_primary_10_3389_fphar_2022_837088
crossref_primary_10_7554_eLife_103159
crossref_primary_10_3390_membranes12100954
crossref_primary_10_3390_pharmaceutics14071356
crossref_primary_10_1124_mol_118_114025
crossref_primary_10_3390_ijms25074033
crossref_primary_10_1213_ANE_0000000000006738
crossref_primary_10_1016_j_neurom_2023_10_003
crossref_primary_10_1213_ANE_0000000000003597
crossref_primary_10_1016_j_toxicon_2020_06_002
crossref_primary_10_1073_pnas_1711699114
crossref_primary_10_1186_s13741_023_00314_2
crossref_primary_10_3389_fphar_2021_791740
crossref_primary_10_1134_S0022093021020150
crossref_primary_10_1016_j_drudis_2021_11_026
crossref_primary_10_3390_membranes12020229
crossref_primary_10_3390_ijms24010857
crossref_primary_10_7554_eLife_68128
crossref_primary_10_1134_S1607672919020054
crossref_primary_10_1016_j_molstruc_2020_128854
crossref_primary_10_1097_CORR_0000000000001566
crossref_primary_10_1002_chem_202203458
crossref_primary_10_3389_fphar_2021_756415
crossref_primary_10_3390_ijms22158143
crossref_primary_10_1016_j_colsurfb_2021_112215
crossref_primary_10_3389_fphar_2019_01374
crossref_primary_10_3390_toxins12040230
crossref_primary_10_1007_s00210_024_02954_7
crossref_primary_10_1146_annurev_biochem_030222_121430
crossref_primary_10_1213_ANE_0000000000004216
crossref_primary_10_3390_membranes12121252
crossref_primary_10_1016_j_cbpc_2024_110082
crossref_primary_10_3389_fphys_2019_00335
crossref_primary_10_7759_cureus_81128
crossref_primary_10_7759_cureus_43405
crossref_primary_10_1016_j_tips_2023_01_006
crossref_primary_10_1186_s13643_022_02068_2
crossref_primary_10_1093_ajhp_zxaf219
crossref_primary_10_1080_17460441_2019_1553951
crossref_primary_10_1016_j_jbc_2023_102967
crossref_primary_10_1085_jgp_202413658
crossref_primary_10_1097_EJA_0000000000001348
crossref_primary_10_1134_S0006350924700568
crossref_primary_10_3390_md21070396
crossref_primary_10_3390_ph14030204
crossref_primary_10_1007_s12016_022_08937_x
crossref_primary_10_1016_j_bpj_2021_11_014
ContentType Journal Article
Copyright 2017 Tikhonov and Zhorov.
Copyright_xml – notice: 2017 Tikhonov and Zhorov.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1085/jgp.201611668
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1540-7748
ExternalDocumentID 28258204
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
18M
29K
2WC
36B
4.4
5RE
5VS
79B
85S
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
GX1
H13
HF~
HYE
KQ8
L7B
NPM
O5R
O5S
OK1
P2P
PQQKQ
RHF
RHI
RPM
RXW
SJN
TAE
TAF
TR2
TRP
TWZ
UHB
UPT
W8F
WH7
WOQ
YKV
YOC
YQT
YSK
YWH
YZZ
ZCA
ZUP
7X8
ID FETCH-LOGICAL-c415t-8a2041a5696475ca65c2c5adb2323d2e172bb0622e512711621eb8ab8feb37772
IEDL.DBID 7X8
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403168100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-7748
IngestDate Fri Jul 11 09:55:08 EDT 2025
Thu Jan 02 22:41:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2017 Tikhonov and Zhorov.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-8a2041a5696475ca65c2c5adb2323d2e172bb0622e512711621eb8ab8feb37772
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3630-7114
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5379917
PMID 28258204
PQID 1874444268
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1874444268
pubmed_primary_28258204
PublicationCentury 2000
PublicationDate 20170403
PublicationDateYYYYMMDD 2017-04-03
PublicationDate_xml – month: 4
  year: 2017
  text: 20170403
  day: 3
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of general physiology
PublicationTitleAlternate J Gen Physiol
PublicationYear 2017
References 28289068 - J Gen Physiol. 2017 Apr 3;149(4):405
References_xml – reference: 28289068 - J Gen Physiol. 2017 Apr 3;149(4):405
SSID ssj0000520
Score 2.5073788
Snippet Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 465
SubjectTerms Acetamides - pharmacology
Anesthetics, Local - pharmacology
Animals
Anti-Arrhythmia Agents - pharmacology
Anticonvulsants - pharmacology
Benzhydryl Compounds - pharmacology
Binding Sites
Carbamazepine - pharmacology
Cocaine - pharmacology
Humans
Lacosamide
Lamotrigine
Lidocaine - analogs & derivatives
Lidocaine - pharmacology
Molecular Docking Simulation
NAV1.4 Voltage-Gated Sodium Channel - chemistry
NAV1.4 Voltage-Gated Sodium Channel - metabolism
Phenols - pharmacology
Phenytoin - pharmacology
Piperazines - pharmacology
Protein Binding
Pyrimidines - pharmacology
Quinidine - pharmacology
Sodium Channel Blockers - pharmacology
Triazines - pharmacology
Title Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants
URI https://www.ncbi.nlm.nih.gov/pubmed/28258204
https://www.proquest.com/docview/1874444268
Volume 149
WOSCitedRecordID wos000403168100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevDiqz7qixXEk6HN5rknKaJ4sKUHlR6EsK_YapPUphX6753ZpvQkCOYQyEIgmZ2d-Xb3228IuWIi5S3DfUfzlDu-4cYRwleOlgzArQo5s_LFr09Rtxv3-7xXLbiVFa1yGRNtoNaFwjXyJtaOg4uF8e34y8GqUbi7WpXQWCc1D6AMenXUX6mFI8fD6qUiay7y40pjE1BG8-MdxSoB7rhhGP-OLm2Wedj57_ftku0KX9L2wiH2yJrJ90m9ncPcOpvTa2oZn3YpvU7eOgbP_Q7LjBYpLQs9nGUUW3IzohKy3CeVc2qzHRUQEgEroqjzDTxAXJhMBvPpIKsatG1EDvtsVCK35oC8PNw_3z06VbUFR0ESnzqxYC3fFUGIZ1MDJcJAMRUI6DSPeZoZQDpStkLGDGCECOzGXCNjIeMU5uMRgPRDspEXuTkmVLZSHfE0kiISqIDPQ1czzwtcZbSXct0gl0sbJuDNuEUBf1HMymRlxQY5WnREMl7IbiR4yhbwin_yh7dPyRbD_IsUG--M1FIYy-acbKrv6bCcXFg3gXu31_kBJ4_Irg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+sodium+channel+block+by+local+anesthetics%2C+antiarrhythmics%2C+and+anticonvulsants&rft.jtitle=The+Journal+of+general+physiology&rft.au=Tikhonov%2C+Denis+B&rft.au=Zhorov%2C+Boris+S&rft.date=2017-04-03&rft.issn=1540-7748&rft.eissn=1540-7748&rft.volume=149&rft.issue=4&rft.spage=465&rft_id=info:doi/10.1085%2Fjgp.201611668&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7748&client=summon